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Abstract

We introduce a new problem setting for continuous control called the LQR with
Rich Observations, or RichLQR. In our setting, the environment is summarized
by a low-dimensional continuous latent state with linear dynamics and quadratic
costs, but the agent operates on high-dimensional, nonlinear observations such as
images from a camera. To enable sample-efficient learning, we assume the learner
has access to a class of decoder functions (e.g., neural networks) that is flexible
enough to capture the mapping from observations to latent states. We introduce a
new algorithm, RichID, which learns a near-optimal policy for the RichLQR with
sample complexity scaling only with the dimension of the latent state space and the
capacity of the decoder function class. RichID is oracle-efficient and accesses the
decoder class only through calls to a least-squares regression oracle. Our results
constitute the first provable sample complexity guarantee for continuous control
with an unknown nonlinearity in the system model.

1 Introduction

In reinforcement learning and control, an agent must learn to minimize its overall cost in a unknown
dynamic environment that responds to its actions. In recent years, the field has developed a com-
prehensive understanding of the non-asymptotic sample complexity of linear control, where the
dynamics of the environment are determined by a noisy linear system of equations. While studying
linear models has led to a number of new theoretical insights, most practical control tasks are nonlin-
ear. In this paper, we develop efficient algorithms with provable sample complexity guarantees for
nonlinear control with rich, flexible function approximation.

For some control applications, the dynamics themselves are truly nonlinear, but another case—
which is particularly relevant to real-world systems—is where there are (unknown-before-learning)
latent linear dynamics which are identifiable through a nonlinear observation process. For example,
cameras watching a robot may capture enough information to control its actuators, but the optimal
control law is unlikely to be a simple linear function of the pixels. More broadly, with the decrease
in costs of sensing hardware, it is now common to instrument complex control tasks with high-
throughput measurement apparatus such as cameras, lidar, contact sensors, or other alternatives.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



These measurements constitute rich observations which often capture relevant information about
the system state. However, deriving a control policy from these complex, high-dimensional sources
remains a significant challenge in both theory and practice.

The RichLQR setting. We propose a learning-theoretic framework for rich observation continuous
control in which the environment is summarized by a low dimensional continuous latent state (such
as joint angles), while the agent operates on high-dimensional observations (such as images from
a camera). While this setup is more general, we focus our technical developments on perhaps the
simplest instantiation: the rich observation linear quadratic regulator (RichLQR). The RichLQR
posits that latent states evolve according to noisy linear equations and that each observation can be
associated with a latent state by an unknown nonlinear mapping.

We assume that every possible high-dimensional observation of the system corresponds to a unique
latent system state, a property we term decodability. This assumption is natural in applications where
the observations contain significantly more information than needed to control the system. However,
decoding the latent state may require a highly nonlinear mapping, in which case linear control on the
raw observations will perform poorly. Our aim is to learn such a mapping from data and use it for
optimal control in the latent space.

1.1 LQR with Rich Observations

RichLQR is a continuous control problem described by the following dynamics:
X1 = Axp + Bug +wy,  y~q(c [ %) (1)

Starting from x, the system state x; € R% evolves as a linear combination of the previous state,
a control input u; € R% selected by the learner, and zero-mean i.i.d. process noise w; € R%. The
learner does not directly observe the state, and instead sees an observation y, € R% drawn from the
observation distribution q(- | x;).' Here dy > dy; x; might represent the state of a robot’s joints,
while y; might represent an image of the robot in a scene. Given a policy 7+ (yo,...,y:) that selects
control inputs u; based on past and current observations, we measure performance as

1 T
Jr(m) =K, T > x{Qx¢ +uj Ruy |, )
t=1

where @, R > 0 are quadratic state and control cost matrices and E,; denotes the expectation when
the system’s dynamics (1) evolve under u; = m¢(yo,- - ., yt)-

In our model, the dynamics matrices (A, B) and the observation distribution ¢(- | x) are unknown to
the learner. We assume that the control cost matrix R > 0 is known, but the state cost matrix ¢ > 0
is unknown (so as not to tie the cost matrices to the system representation). We also assume the
instantaneous costs ¢; := X; Qx; + u] Ruy, are revealed on each trajectory at time ¢ (this facilitates
learning @, but not A or B). The learner’s goal is to PAC-learn an -optimal policy: given access to
n trajectories from the dynamics (1), produce a policy 7 such that J7(7) — Jr(7e ) < €, Where o,
is the optimal infinite-horizon policy. If the dynamics matrices (A, B) were known and the state x;
were directly observed, the RichLQR would reduce to the classical LQR problem [18], and we could
compute an optimal policy for (2) using dynamic programming. Indeed, the optimal policy has the
form 7o (x4) = KooXy, Where K, is the optimal infinite-horizon state-feedback matrix given by the
Discrete Algebraic Riccati Equation (Eq. (A.1) in Appendix A.2). To facilitate the use of optimal
control tools in our nonlinear observation model, we make the following assumption, which asserts
the state x; can be uniquely recovered from the observation y;.

Assumption 1 (Perfect decodability). There exists a decoder function f, : R% — R%< such that
fo(y) =z forall y e supp g(- | z).2

While a perfect decoder f, is guaranteed to exist under Assumption 1 (and thus the optimal LQR
policy can be executed from observations), f. is not known to the learner in advance. Instead, we
assume that the learner has access to a class of functions .%# (e.g., neural networks) that is rich enough
to express the perfect decoder. Our statistical rates depend on the capacity of this class.

'Our results do not depend on dy, and in fact do not even require that y belongs to a vector space.
*We remark that f, is typically referred to as an encoder rather than a decoder in the autoencoding literature.



Assumption 2 (Realizability). The learner’s decoder class .% contains the true decoder f,.

While these assumptions—especially decodability—may seem strong at first glance, we show that
without strong assumptions on the observation distribution, the problem quickly becomes statistically
intractable. Consider the following variant of the model (1):

Xie1 = Axy + Bug + wy, ye=fi1(xe) + e, 3

where € is an independent output noise variable with E[e;] = 0. In the absence of the noise &, the
system (3) is a special case of (1) for which f, is the true decoder, but in general the noise breaks
perfect decodability. Unfortunately, our first theorem shows that in general, output noise can lead to
exponential sample complexity for learning nonlinear decoders, even under very benign conditions.

Theorem (informal). Consider the dynamics (3) with dx = dy, = dy = T = 1 and unit Gaussian
noise. For every ¢ > 0 there exists an O(e™)-Lipschitz decoder f, and realizable function class .F

/
with | F| = 2 such that any algorithm requires Q(2(é)2 3) trajectories to learn an c-optimal decoder.

A full statement and proof for this lower bound is deferred to Appendix D for space.

Our Algorithm: RichID. Our main contribution is a new algorithmic principle, Rich Iterative De-
coding, or RichID, which solves the RichLQR problem with sample complexity scaling polynomially
in the latent dimension dx and the decoder class capacity In|.#|. We analyze an algorithm based on
this principle called RichID-CE (“RichID with Certainty Equivalence”), which solves the RichLQR by
learning an off-policy estimator for the decoder, using the off-policy decoder to approximately recover
the dynamics (A, B), and then using these estimates to iteratively learn a sequence of on-policy
decoders along the trajectory of a near-optimal policy. Our main theorem is as follows.

Theorem 1 (Main theorem). Under appropriate regularity conditions on the system parameters
and noise process (Assumptions 1-8), RichID-CE learns an e-optimal policy for horizon T using
164

C- M trajectories, where C' is a problem-dependent constant.’

Theorem 1 shows that it is possible to learn the RichLQR with complexity polynomial in the latent
dimension and decoder class capacity 1n|.%|, and independent of the observation space. To our
knowledge, this is the first polynomial-in-dimension sample complexity guarantee for continuous
control with an unknown system nonlinearity and general function classes. The main challenge

we overcome in attaining Theorem 1 is trajectory mismatch; a learned decoder f which accurately
approximates the true decoder f, well on one trajectory may significantly deviate from f, on another.
Our algorithm addresses this issue using a carefully designed iterative decoding procedure to learn a
sequence of decoders on-policy.We present our main theorem for finite classes .% for simplicity, but
this quantity arises only through standard generalization bounds for least squares, and can trivially be
replaced by learning-theoretic complexity measures such as Rademacher complexity (in fact, local
Rademacher complexity). For example, if .# has pseudodimension d, one can replace In|%#| with

O(d).

Theorem 1 requires relatively strong assumptions on the dynamical system—in particular, we require
that the system matrix A is stable, and that the process noise is Gaussian. Nonetheless, we believe that
our results represent an important first step toward developing provable and practical sample-efficient
algorithms for continuous control beyond the linear setting, and we are excited to see technical
improvements addressing these issues in future research.

1.2 Technical Preliminaries

In the interest of brevity, we present an abridged discussion of technical preliminaries; all omitted
formal definitions, further assumptions, and additional notation are deferred to Appendix A. The
main assumptions used by RichID are as follows.

Assumption 3 (Gaussian initial state and process noise). The initial state satisfies xg ~ N (0, X¢),
and process noise is i.i.d. wy ~ N(0,%,,). Here, g, 2, are unknown to the learner, with 3,, > 0.

Assumption 4 (Controllability). For each k > 1, define Cj, := [A* 1B | ... | B] e R®&*kdu_ We
assume that (A, B) is controllable, meaning that C,;, has full column rank for some ., € N.

?See Theorem la in Appendix J for the full theorem statement.



Note that Assumption 4 imposes the constraint dy k. > dx, which we use to simplify expressions.

Assumption 5 (Growth Condition). There exists L > 1 such that || f(y)| < Lmax{1, | f«(y)|} for
allyeYand f e &.

Assumption 6 (Stability). A is stable; that is, p(A) < 1, where p(-) denotes the spectral radius.

Our algorithms and analysis make heavy use of the Gaussian process noise assumption, which we use
to calculate closed-form expressions for certain conditional expectations that arise under the dynamics
model (1). We view relaxing this assumption as an important direction for future work. Controllability
is somewhat more standard [24], and the growth condition ensures predictions do not behave too
erratically. Stability ensures the state remains bounded without an initial stabilizing controller. While
assuming access to an initial stabilizing controller is fairly standard in the recent literature on linear
control, this issue is more subtle in our nonlinear observation setting. These assumptions can be
relaxed somewhat; see Appendix B.4. We make the stability assumption quantitative via the notion of
“strong stability” (Appendix A). Finally, we assume access to bounds on various system parameters.

Assumption 7. We assume that the learner has access to parameter upper bounds ¥, > 1, a, > 1,
v+ € (0,1), and k € N such that (I) k > k., (II) A and (A + BK,) are both (., 7, )-strongly stable,
and (IIT) W, is an upper bound on the operator norms of A, B, Q, R, 3., E;Ul, >0, Ko, and Pt

We use O, (+) to suppress polynomial factors in o, 7,1, (1 -7,)"1, ¥,, L, and o} (C.), and all
logarithmic factors except for In|.%| and In(1/5). We also write f = O(g) if f(z) < cg(z) for all

x € X, where ¢ = poly (7. (1 - 7+ ), a7, U7t LY 0in(C.)) is a sufficiently small constant.

2  An Algorithm for LQR with Rich Observations

Algorithm 1 RichID-CE
1: Inputs:
¢ (suboptimality), T' (horizon), .# (decoder class), dy, d,, (latent dimensions),
U, , K, i, 7« (system parameter upper bounds), R (control cost).

2: Parameters: // see Appendix J for values.
Nid, Nop // sample size for Phase/Phase II and Phase III, respectively.
Ko // burn-in time index.
Tid,Top // radius for sets JZy and J7;,.
a1/ exploration variance.
b7/ clipping parameter for decoders.

Phase I // learn a coarse decoder (see Section 2.1)

Set fiq < GETCOARSEDECODER (i, Ko, £, 7iq ). // Algorithm 3

Phase II // learn system’s dynamics and cost (see Section 2.2)

Set (Zid, Ei(h iw,ida @id) <« SYSID(fid, nig, Ko, k). // Algorithm 4

Phase III // compute optimal policy (see Section 2.3 and Appendix H)

Set 7 < COMPUTEPOLICY (Ai4, Bia, S id; Qids Ry Mop, 6, 02, T, b, Top). // Algorithm 5
Return: 7.

R A A

We now present our main algorithm, RichID-CE (Algorithm 1), which attains a polynomial sample
complexity guarantee for the RichLQR.

Algorithm overview. Algorithm 1 consists of three phases. In Phase I (Algorithm 3), we roll in
with Gaussian control inputs and learn a good decoder under this roll-in distribution by solving a
certain regression problem involving our decoder class .%. In Phase II (Algorithm 4), we leverage
this decoder to learn a model (;1\, B ) for the system dynamics (up to a similarity transform). Due
to linearity of the dynamics, this model is valid on any trajectory. Moreover, we can synthesize a
controller K so that the controller u, = Kx;, is optimal for (A, B), and thus near-optimal for (A, B).

“Here, P solves the DARE ((DARE) in Appendix A.2), and K is the optimal infinite horizon controller.



To actually implement this feedback controller, we still need a good decoder for the state. Unfortu-
nately, our decoder from Phase I may be inaccurate along the optimal (or near-optimal) trajectory.
Thus, in Phase III (Algorithm 5) we inductively solve a sequence of regression problems—one for
each time ¢ = 0,...,T—to learn a sequence of state decoders ( ft), such that for each ¢, ft ~ fy
under the roll-in distribution induced by playing K fs(ys) for s < t. We do this by rolling in with
this near-optimal policy until ¢, but rolling out with purely Gaussian inputs. The former ensures that
the decoder is accurate along the desired trajectory. The latter ensures that the regression at time
t is essentially “independent” of approximation errors incurred by steps 0, ...,? — 1, avoiding an
accumulation of errors which would otherwise compound exponentially in the horizon T'.

In what follows, we walk through each phase in detail and explain the motivation, the technical
assumptions required, and the key performance guarantees.

2.1 Phase I: Learning a Coarse Decoder

In Phase I (Algorithm 3), we gather 2n;q trajectories by selecting independent standard Gaussian
inputs uy ~ N (0, I, ) for each 0 <t < k1 := Ko + K, where we recall that « is an upper-bound on the
controllability index ., and where k¢ is a “burn-in” time used to ensure mixing to a near-stationary
distribution (this is useful for learning (A, B) in (9), ensuring fid is accurate at both time ~; and
k1 + 1). Ko is given by:

ko= [(1-7)" 1n(84\pia‘jdx(1 - 7:)In(10° - niq))] - 4)

Let (uO ,y0 ,c0 )) (u,i1 ,y,{1 ,c,ﬂ)) y ; denote the ith trajectory gathered in this fashion.
‘We now show that for the state distribution 1nduced the control inputs above, the true decoder f, can
be recovered up to a linear transformation by solving a regression problem whose goal is to predict a
sequence of control inputs from the observations at time x;. Define v = (uy ,...,u; ;)" Our
key lemma (Lemma G.3) shows that

VyeRY, h,(y)=E[v|y. =yl =CLE. f.(y), (5)

Cyo=[A"B|...| B];and &, := A" 5o(A)T + 21, ATH(S, + BBT)(A™)T. where we
recall that C,; = [A"”” 1B |...| B] and define

K1
Yy, = AN S (AT + > ATY(S, + BBT)(ATHT.
t=0

This lemma relies on perfect decodability and the fact that v and x,, are jointly Gaussian. In
particular, by verifying HCH o H <V VY,, the expression (5) ensures that i, belongs to the class

Ha = {Mf()|feZ, MeR"“d e | M |op < /T, }(that is, we can take riq = /¥,). The
main step of Phase I solves the well- spec1ﬁed regression problem:

~ id . .
hiq € argmin ) Hh(yfjl)) —-v®2, (6)
hesfa =1

Phase I is computationally efficient whenever we have a regression oracle for the induced function
class ##4. For many function classes of interest, such as linear functions and neural networks, solving
regression over this class is no harder than regression over the original decoder class .7, so we believe
this is a reasonably practical assumption. For n;q sufficiently large, a standard analysis for least
squares shows that the regressor hiq has low prediction error relative to h, in (5). However, this
representation is overparameterized and takes values in R*%* even though the true state lies in only
dy dimensions. For the second part of Phase I, we perform principle component analysis to reduce
the dimension to dx. Specifically, we compute a dimension-reduced decoder via

fa(y) = Vi hia(y) e R™, ()
* is an arbitrary orthonormal basis for the top dx eigenvectors of the empirical
second moment matrix fondd o ﬁid(y,(fl))ﬁid (yS})T/ niq. This approach exploits that the output
of the Bayes regressor h,—being a linear function of the dx-dimensional system state—lies in a
dx-dimensional subspace. Having reviewed the two components of Phase I, we can now state the

main guarantee for this phase. In light of (5), the result essentially follows from standard tools for
least-squares regression with a well-specified model, plus an analysis for PCA with errors in variables.

where Vg € Rfduxd



Theorem 2 (Guarantee for Phase I). If nig = Q. (dxdur(In|F| + dudxk)), then with probability at
least 1 — 30, there exists an invertible matrix Siq € R&XD gyuch that

dul‘ﬁ(ln |ﬁ| + dudx"‘ﬂ) 1113 (nld/(s) )

Nid

E”fid(ylﬂ) - Sidf*(ym1)||2 < O*(
andfor which amin(sid) 2 Omin,id = O'min(cn)(l - 7*)(4‘112052)_1 and HSid HOP < Omax,id ‘= \/\I/_*

2.2 Phase II: System Identification

In Phase II, we use the decoder from Phase I to learn the system dynamics, state cost, and process
noise covariance up to the basis induced by the transformation Sjq. Our targets are:

Aiq = S ASY,  Bia =SB, Suwid=SaXwSh, Q=S QS ¥

The key technique we use is to pretend that the decoder’s output fid(y,@1 ) is the true state x,, then
perform regressions which mimic the dynamics in (1):

. . 3niq R i R . .
(&g, Bua) cargmin " | fua(y\)y) - Afia(y()) - Bul)|?,  and ©)
(A,B) i=2n;q+1
1 3nia R . A . . .
>, (fid(y;(;l)+1) - Aid fid (y,ﬁ?) - Bidu,ﬁ?)m, where v®? := vv. (10

Nid j=2n;4+1

Yw,id =

Similarly, we recover the state cost () by fitting a quadratic function to observed costs via
3niq

3 . i i B _F ool AONE
Qia € al”ngln Z (Cf(ﬂ) - (ufgl))TRufgl) - fid(y,(ﬂ))Tind(Y,(ﬂ))) ) (11)

i:2nid+1

and then setting @id = (%@id + %ijd)+ as the final estimator, where (-), truncates non-positive
eignvalues to zero. This is the only place where the algorithm uses the cost oracle.

Since Theorem 2 ensures that fid (¥4, ) is not far from SigX,, , the regression problems (9)—(11) are
all nearly-well-specified, and we have the following guarantee.

Theorem 3 (Guarantee for Phase II). If niq = Q*(didun(ln | Z ]+ dydxr) max{1, omin (CH)’4}),
then with probability at least 1 — 116 over Phases I and II,

[ Aa; Bia] - [Aid; Biallop V | @ia = Qidllop V | Sw.id = Zwidllop < €id, (12)

where €iq < O, (n;dl/2 In*(nia/0)\/dxdur(In | Z| + dudxl*i)).

To simplify presentation, we assume going forward that S;q = I, which is without loss of generality
(at the cost of increasing parameters such as ¥, and ., by a factor of [ Sid|,,, v IS5 lop),” and drop

the “id” subscript on the estimators Zid, Eid, and so forth to reflect this.®

2.3 Phase III: Decoding Observations Along the Optimal Path

Given the estimates (Z, B, @) from Theorem 3, we can use certainty equivalence to synthesize an
optimal controller matrix K for the estimated dynamics. As long as €iq in (12) is sufficiently small,
the policy u; = Kx; is stabilizing and near optimal.

To (approximately) implement this policy from rich observations, it remains to accurately estimate the
latent state. The decoder learned in Phase I does not suffice; it only ensures low error on trajectories
generated with random Gaussian inputs, and not on the trajectory induced by the near-optimal policy.
Indeed, while it is tempting to imagine that the initial decoder f might generalize across different
trajectories, this is not the case in unless we place strong structural assumptions on .%.

3The controller Sjq Ko attains the same performance on (Aia, Bia) as Ko on (A, B)
We make this reasoning precise in the proof of Theorem 1.



IEstead, we iteratively learn a sequence of decoders ft—one per timestep ¢t =1,... ,T/.\ éssuming
K ~ K is near optimal, the suboptimality Jr(7) — Jr(7e ) of the policy m(yo:t) = K ft(yo:) is
controlled by the sum ZtT:l E. || ft (yo:t) = f+(y¢) ||2(note that the regret does not take into account
step 0). Thus, to ensure low regret, we ensure that, for all ¢ > 1, the decoder ft has low prediction error

on the distribution induced by running 7 with previous decoders ( fT)KKt and K. This motivates
the following iterative decoding procedure, executed for each time stept =1,...,T"

Step 1. Collect 2n,p, trajectories by executing the randomized control input u, = K fT (yo:r) + Vo,
for0 <7<t and u, = v, fort <7 <t+k, where v, ~ N'(0,0%1,4,); here, n,, € N and
0% < 1 are algorithm parameters to be specified later.

Step 2. Obtain a residual decoder hy satisfying (13) by solving regressions (21) and (22) using a
regression oracle.

Step 3. Form a state decoder ft+1 from fzt and ft using the update equation (14).

Forming the decoder fl requires additional regression steps (described in Appendix B.3) which
account for the uncertainty in the initial state xy. At each subsequent time ¢, the most important part

of the procedure above is Step 2, which aims to produce a regressor hy such that

he(yes1) = Ahy(ye) » Bug + Wy = Xpi1 — Axy. (13)
As we shall see, enforcing accuracy on the increments x;,1 — Ax; allows us to set up regression prob-
lems which do not depend on, and thus do not propagate forward, the errors in f;. In contrast, a naive
regression—say, arg min ; | [1f(yes1) = (A+ BK) fi () - Bv|?]—could compound decoding
errors exponentially in ¢.
Luckily, the increments in (13) are sufficient for recovery of the state by unfolding a recursion; this
comprises Step 3. Let b > 0 be an algorithm parameter. Given a regressor h; satisfying (13) and the
current decoder f;, we form next state decoder f;,1 via

ft+1 (1) = ﬁ+1()H{Hﬁt+1()H < B}% ﬁ+1(YO:t+1) = (ﬁt(}’ﬂl) -4 ilt(Yt)) + A ft(yO:t)7 (14)

where we set fo = fo = 0. By clipping ft, we ensure states remain bounded, which simplifies the

analysis. Crucially, by building our decoders (f,) this way,we ensure that the decoding error grows
at most linearly in t—as opposed to exponentially—as long as the system is stable (i.e. p(A4) < 1).

It remains to describe how to obtain a regressor hy satisfying (13). To this end, we use the added
Gaussian noise v, to set up the regression.

Warm-up: Invertible B. As a warm-up, suppose that B is invertible. Then, for the matrix
M, = B"(BB" +072%,,)", one can compute

E[vi | yo:+1] @ E[v, | w; + Bv,] () My (wy + Bvy) = My (%441 — Ax; - BK fi(y01)). (15)

The identity (*) uses the fact that conditioning on yq.;+1 i equivalent to conditioning on Xg.¢+1, due
to perfect decodability. We then use that the conditional distribution of v; | X¢.141 is equivalent to
Vi | X¢, X¢41, Which is in turn equivalent to v; | w; + Bv; due to the linear dynamics Eq. (1).

Since conditional expectations minimize the square loss, learning a residual regressor h; which
approximately minimizes

I B[ = Mi(h(yen) - Ah(ye) - B f(yor))|’] (16)
produces a decoder iy approximately satisfying (13):
Ml(ilt(yml) _Ailt(yml)) ~ My (Xpe1 = AXpa1), a7

since M1(}Alt(Yt+1) - Ailt(}’nl) - BI?ft(Yo:t)) N Ml(xt+1 - AXyy1 - Bf?ft(yO:t))~

For invertible B, the matrix M; is invertible, and so from (17), our state decoder hy.1 indeed satisfies
(13): he(yie1) — Ahi(ye) » xi41 — Ax;. We emphasize that regressing to purely Gaussian inputs v,
is instrumental in ensuring the conditional expectation equality in (15) holds. The noise variance o
trades off between the conditioning of the regression, and the excess suboptimality caused by noise
injection; we choose it so that the final suboptimality is O, (¢).



Extension to general controllable systems. For non-invertible B, we aggregate more regressions.
For k € [k], let My, := C](CkC]l + 072 XK A%, (A1) 7)™, where we recall Cj, from Assump-
tion 4. Generalizing (15), we show (Lemma 1.7 in Appendix H) that the outputs (y.) and the

Gaussian perturbation vector Vi.44-1 = (V{,...,v,,, ;)" generated according to Step 1 above
satisfy, for all k € [k],
E[Veteh-1 | Yot Yeer] = Mi(Xear — A% = A¥ B fy(you)) = 67 1 (Yorte)- (18)

Defining concatentations ¢; := (¢7,...,¢; ) and M = [M] | (M2A)" |- | (M, A" ")T]" and
stacking the conditional expectations gives:

E[d] (Yorter) | Yors1] = M(Bvy +wi) = M(fu(yer1) - Afu(ye) - BE fi(yox)). (19)

Hence, with infinite samples (and knowledge of B), we are able to recover the residual quantity
M(fi(yie1) — Afs(ye)). Again, the Gaussian inputs enable the conditional expectations (18)
and (19). The crucial insight for the stacked regression is that by rolling in and switching to pure
Gaussian noise only after time ¢, we maintain Gaussianity, while still yielding decoders that are valid
on-trajectory up to time ¢t. To ensure that we accurately recover the increment [, (yi+1) — Afe(¥t),
we require the overdetermined matrix M to be invertible. To facilitate this, let M2 denote the value
of M as a function of o2, and let o

M= lim M2 Jo? (20)
be the (normalized) limiting matrix as noise tends to zero, which is an intrinsic problem parameter.
Assumption 8. The limiting matrix M satisfies A = AX?H(MTM) > 0.

This assumption is central to the analysis, and we believe it is reasonable: we are guaranteed that it
holds if the system is controllable and either A or B has full column rank—see Appendix B.S5.

To approximate the conditional expectations (18), (19) from finite samples, we define another
expanded function class

%P = {Mf() | feyaMERdXdevHMHOP S\Iji}v

and use (M\ x) and M to denote plugin estimates of (M) and M, respectively, constructed from A
and B. Here, the subscript “op” subscript on %, abbreviates “on-policy”.

Next, given a state decoder f; for time ¢ and k € [«], we define
@,k(hyo;t,ym) = TVTk (h(}’t+k) - A\kh(}’t) - Zk_lEKft(YO:t)) for h ¢ %p~

With this and the 2n,, trajectories {(yg), V-(,—i) ) }1<i<2n,, gathered in Step 1 above, we obtain hy by
solving the following two-step regression:

; &= i) G i 2
b cargmin Y [Bx(h vy 0 - Vi | ke k), 1)
heop =1
; & o i - i 55 70 = (G 2
heargmin Y [M-(n(y{) - A-n(y{") - BR - fuly§))) - uySh )| @

heAop i=nop+1

where $t(yo;t+n) = [at,l(ibt,hYO:t,Ytﬂ)T, cee at,n(ilt,MYO:t,}"Hn)T]T e RU+™IRdu/2, (23)

We see that the first regression approximates (18), while the second approximates (19). We can now
state the guarantee for Phase III.

Theorem 4. Suppose £, < O((In|F| + d2)ngh). If we set b? = O, ((dx + dyu) In(nop)), Top = U2,
and 0 = O(Any), we are guaranteed that for any 0 € (0, 1/e], with probability at least 1 — O(kT5),
+In|.Z|) In® (nep /)

Nop

A 2 )\;\3[ 3 2 4 (d2
Eﬁ[ﬁﬁ?”ft(}’&t)—f*(yt)H ]SO*((#'T E(dy + dy)* - = ) (24)

To obtain Theorem 1, we combine Theorem 3 and Theorem 4, then appeal to Theorem 7 (Appendix F),
which bounds the policy suboptimailty in terms of regression errors. Finally, we set o o< € so that the
suboptimality due to adding the Gaussian noise (V¢ )o<t<7 is low. See Appendix J for details.



3 Discussion

We introduced RichID, a new algorithm for sample-efficient continuous control with rich observations.
We hope that our work will serve as a starting point for further research into sample-efficient
continuous control with nonlinear observations, and we are excited to develop the techniques we have
presented further, both in theory and practice. To this end, we list a few interesting directions and
open questions for future work.

* While our results constitute the first polynomial sample complexity guarantee for the RichLQR,
the sample complexity can certainly be improved. An important problem is to characterize the
fundamental limits of learning in the RichLQR and design algorithms to achieve these limits, which
may require new techniques. Of more practical importance, however, is to remove various technical
assumptions used by RichID. We believe the most important assumptions to remove are (I) the
assumption that the open-loop system is stable (Assumption 6), which is rarely satisfied in practice;
and (II) the assumption that process noise is Gaussian, which is currently used in a rather strong
sense to characterize the Bayes optimal solutions to the regression problems solved in RichID.

* RichID-CE is a model-based reinforcement learning algorithm. We are excited at the prospect of
expanding the family of algorithms for RichLQR to include provable model-free and direct policy
search-based algorithms. It may also be interesting to develop algorithms with guarantees for more
challenging variants of the RichLQR, including regret rather than PAC-RL, and learning from a
single trajectory rather than multiple episodes.

* Can we extend our guarantees to more rich classes of latent dynamical systems? For example, in
practice, rather than assuming the latent system is linear, it is common to assume that it is locally
linear, and apply techniques such as iterative LQR [44].

Related work. Our model and approach are related to the literature on Embedding to Control
(E2C), and related techniques [44, 2, 13, 22, 36, 7] (see also [23]). At a high level, these approaches
learn a decoder that maps images down to a latent space, then performs simple control techniques
such as iterative LQR (iLQR) in the latent space (Watter et al. [44] is a canonical example). These
approaches are based on heuristics, and do not offer provable sample complexity guarantees to learn
the decoder in our setting.

Our work is also related to recent results on rich observation reinforcement learning with discrete
actions [16]. We view our model as the control-theoretic analog of the Block MDP model studied
by Du et al. [8], Misra et al. [28], in which a latent state space associated with a discrete Markov
Decision Process is decodable from rich observations. However, our RichLQR setting is quite
different technically due to the continuous nature of the latent space, and the results and techniques
are incomparable. In particular, discretization approaches immediately face a curse-of-dimensionality
phenomenon and do not yield tractable algorithms. Interestingly, our setting does not appear to have
low Bellman rank in the sense of Jiang et al. [16].

A recent line of work [29, 33, 11] gives non-asymptotic system identification guarantees for a simple
class of “generalized linear” dynamical systems. These results address a non-linear dynamic system,
but are incomparable to our own as the non-linearity is known and the state is directly observed. Our
results also are related to the LQG problem, which is a special case of (3) with linear observations;
recent work provides non-asymptotic guarantees [24, 39, 20]. These results show that linear classes
do not encounter the sample complexity barrier exhibited by Theorem 5.

Finally, we mention two concurrent works which consider similar settings. First, [12] give guarantees
for a simpler problem in which we observe a linear combination of the latent state and a nonlinear
nuisance parameter, and where there is no noise. Second, Dean and Recht [6] (see also Dean et al.
[7]) give sample complexity guarantees for a variant of the our setting in which there is no system
noise, and where y; = ¢.(Cx;), where C' € RP*%= and g, : R? - R% is a smooth function. They
provide a nonparametric approach which scales exponentially in the dimension p. Compared to this
result, the main advantage of our approach is that it allows for general function approximation; that
is, we allow for arbitrary function classes .%, and our results depend only on the capacity of the
class under consideration. In terms of assumptions, the addition of the C' matrix allows for maps that
(weakly) violate the perfect decodability assumption; we suspect that our results can be generalized
in this fashion. Likewise, we believe that our stability assumption (i.e. p(A) < 1) can be removed in
the absence of system noise (system noise is one of the primary technical challenges we overcome).
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Broader Impact

There is potential for research into the RichLQR setting, or more generally perception-based control,
to have significant societal impact. Perception-based control systems are already being deployed in
applications such as autonomous driving and aerial vehicles where algorithmic errors can have catas-
trophic consequences. Unfortunately, there has been little research into the theoretical foundations of
such systems, and so the methods being deployed do not enjoy the formal guarantees that we should
demand for high-stakes applications. Thus, we are hopeful that with a principled understanding of
the foundations of perception-based control, which we pursue here, we will develop the tools and
techniques to make these systems safe, robust, and reliable.
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