Implicit Rank-Minimizing Autoencoder
Supplementary Materials

1 Experiment Detail

1.1 Dataset

For the synthetic shape dataset, we generate shape images on the fly. The size of each shape is
uniformly sampled between 3 and 8, inclusively. The color is uniformly sampled in RGB. The
coordinate of the center of the shape is randomly sampled with x and y between 8 and 24, inclusively.

For the MNIST dataset, all images are resized to 32x32.
For the CelebA dataset, all images are center-chopped to 148x148 and then resized to 64x64.

1.2 Architecture

The architecture of the encoder and the decoder for each experiment is listed in Tables
Conv,,/ConvT denotes a convolutional/transposed-convolutional layer with the output channel dimen-
sion equal to n. All convolutional layers use 4x4 kernel size with a stride 2, padding 1. FC,, denotes
a fully connected network with output dimension n.

Table 1: The architecture of the encoder and the decoder for each experiment.

Dataset | Shape \ MNIST \ CelebA
= R32$3213 = R32132zl = R64164z3
— Convsy — ReLU — Convsy — ReLU — Convysg — ReLU
— Convgy — ReLU — Convgy — RelLU — Convyss — ReLU
Encoder — Convysg — ReLU — Convysg — ReLU — Convs12 — ReLU
— Convysg — ReLU — Convysg — ReLU — Convygo4 — ReLU
— Convsy — ReLU — flattern_to 1024 — flattern_to 16384
— zZ € RSQ — FC128 — Z € R128 — FC512*> z € R512
z € R32 2z € R zE R
— FCGrr36
— ConvTy5¢ — ReLU — FCgpo6 o0
— ConvTi28 — ReLU — reshape_to 8x8x128 : gggi?re—toixgzi(g“
Decoder | — ConvTgs — ReLU — ConvTgs — ReLU - Coan512 o ReLU
— ConvT3y; — ReLU — ConvTs3y — ReLU = COHVT256 e ReLU
— ConvT3 — Tanh — ConvT3 — Tanh 128 h
L 4 € R32w3203 i € R32w3201 — ConvT; — Tan

St c R64m64m3

For VAE models, the last layer of the decoder has doubled output dimension, which is split as the
average and the standard deviation. It also uses Sigmoid instead of Tanh.
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1.3 Hyperparameters

The following hyperparameters for each experiment are listed in Table. [2] The number of epochs is
chosen for converged reconstruction error for the base model.

Table 2: hyperparameters.

Dataset | Shape | MNIST | CelebA
learning rate 0.0001 | 0.0001 | 0.0001
epochs 100 50 100
latent dimension 32 128 512
batch size 32 32 32

training examples 50000 | 60000 | 162770
evaluation examples | 10000 | 10000 19962

2 Additional Experiments

2.1 Effect of Varying Linear Layers Initial Variance

Initial variance of the linear matrices has strong influence on the regularization effect. We observe
that a larger variance weakens the regularization effect. See Table[3]

Table 3: Effect of varying initial variance of linear layers in IRMAE. Performed on MNIST dataset.
Latent rank represents corresponding number of nonzero singular values of the covariance matrix of
latent space.

Variance | Ix | 2x | 4x
LatentRank | 8 | 43 | 66
FID | 37.4 | 338 | 490

2.2 Effect of Varying Linear Layers Depth

Adding more linear layers will increase the regularization effect. We demonstrate such effect in
Table 4] The number of linear layers [ is a hyperparameter and needs to be optimized in practice.

Table 4: Effect of varying linear layers depth. Performed on MNIST dataset. Latent rank represents
corresponding number of nonzero singular values of the covariance matrix of latent space.

Depth () | 2 | 4 | 8 | 12
LatentRank | 70 | 39 | 8 | 4
FID ‘ 44.0 ‘ 30.1 ‘ 374 ‘ 62.6

2.3 Comparing to State-of-the-art Deterministic AEs

We compare IRMAE against several modern deterministic autoencders including WAE and RAE.
IRMAE demonstrates superior performance on CelebA dataset. See Table[3]

Table 5: Comparing IRMAE against state-of-the-art deterministic AEs on CelebA dataset.

WAE [3] | RAE[I] | IRMAE
537 | 447 | 420




2.4 Comparing to AEs with Various Latent Dimension

Autoencoders with different latent dimension or prior setting has trade-off in learning useful repre-
sentations. Here, we study the effect of latent dimensionality of IRMAE against AE in TableJ6|and
Figure[l] IRMAE with larger latent dimensions outperforms the optimal dimensional AE.

Table 6: Comparing IRMAE against AEs with different latent dimension. Performed on CelebA
dataset. IRMAE uses [ = 4 throughout the experiment. Results are listed in FID score.

Latent dimension | 32 | 64 | 128 | 256 | 512
IRMAE (1 = 4) | 81.6 | 64.6 | 47.6 | 427 | 420
AE | 782 [ 60.1 | 46.0 | 454 | 539

Figure 1: IRMAE vs AE with varying latent dimension
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Figure 1: Comparing IRMAE against AEs with different latent dimension. Performed on CelebA
dataset.

3 t-SNE visualization

We visualize the density of the sampled MNIST images by each model in Figure 2] using t-SNE [2].
Blue points represent the original data point, and the orange points represent the sampled ones. We
compare IRMAE against an AE and a VAE. It’s desirable that two point-clouds overlap. IRMAE
demonstrates a comparable performance to VAE and a superior performance to AE.
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Figure 2: t-SNE visualization on MNIST images. Blue points represent the test set data point. Orange

points represent the sampled images.
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