
Response to reviewer 1. Weakness 1: The result for neural network is an upper bound which may not be tight. Indeed:1

Theorem 4 is just an upper bound on the approximation error, and a lower bound for NN is currently missing. The2

upper bound is sufficient to prove a separation result for κ large enough. While the upper bound is not tight pointwise3

(per function f∗), we believe it is almost tight in a minimax sense. Namely, if N � d`0, then there is a degree-(`+ 1)4

polynomial f∗ such that the corresponding approximation error RNN,N (f∗) is bounded below by a positive constant.5

This seems quite intuitive by parameter counting. We agree that this is an important question to be addressed. Weakness6

2: Our theory requires a smooth activation σ while our experiments uses ReLU activation. We believe that the7

smoothness σ is a technical issue and can be relaxed using soft approximation arguments. We did not relax this8

requirement since the paper is already technically involved and this point is tangential to the main questions we address.9

Experimentally, it is also easy to check that replacing ReLU by a smoothed ReLU does not change the numerical results.10

Response to reviewer 2. We will improve the readability, clarify the notations, and implications in the final version of11

the paper. Additional comment 1: How does the result of Theorem 1 depend on λ? Theorem 1 implies that —to the12

leading order– the test error is independent of λ as long as λ = λ(d) = Od(1). In particular, λ(d) = 0 is optimal up to13

subleading terms. On the contrary, our proofs also imply that λ(d) > dι leads to suboptimal test error for any ι > 0.14

λ(d) = 0 still leads to good generalization because, in high dimension, the non-vanishing high order derivatives of15

the kernel function induce regularization effects (hence the assumption that h(k)(0) > 0 for some k ≥ `). Additional16

comment 2: What is the ‘high dimensional regime’? We considered two regimes: 1) n =∞, N and d are polynomially17

related and goes to∞ together. 2) N =∞, n and d are polynomially related and go to∞ together. Additional comment18

3: Figure 3 shows that at finite samples the test error corresponding to the neural network appears to be more sensitive19

to κ which is puzzling. We agree that the test error of the SGD trained NN deserves further investigation. However20

notice that the test error of NTK is substantially larger, for each given κ. Since the error is normalized to be between 021

and 1, it cannot grow much, whence the apparent lack of variability.22

Response to reviewer 3. The reviewer’s summary of our work is incomplete. We considered the following model: the23

feature vector x = U(x1,x2) ∈ Rd is composed of an isotropic signal feature x1 in d0 dimensions and an isotropic24

junk feature x2 in d− d0 dimensions; the target function only depends on x1. We characterize the risk of KRR, RF, NT25

in terms of the effective dimension deff which depends on d, d0, and feature SNR (the variance of the signal feature26

over the variance of the junk feature). Crucially, the effective dimension deff does not depend uniquely on ‘d1’ (perhaps27

d0 is meant here), the dimension of subspace of the feature vector ‘concentrated in’, as written by the reviewer.28

Further, we do not agree with the reviewer that our results are incremental. We agree: it is natural to expect that the29

behaviors of RF, NT, KRR, only depend on some sort of ‘intrinsic dimension’. The result would be trivial if the variance30

in the junk subspace was zero, and feature vectors lied exactly on a d0-dimensional subspace. Our contribution is31

non-trivial in extending the result to the case when there is non-vanishing variance of junk features: we quantified32

how the effective dimension deff depends on the signal dimension d0 and feature SNR. (Often deff 6= d0.) Let us also33

emphasize that a model in which the data lie exactly on a d0-dimensional subspace would be extremely crude: in34

particular it would not explain the experiments in which we gradually add noise to the junk subspace.35

Weakness: Why do not just study a single neuron g(wTx)? First, limiting the analysis to the target function g(wTx)36

would not simplify the proofs: we would still need to develop the whole machinery and then apply them to this specific37

case. The real technical challenge arises in dealing with non-vanishing variance in the junk subspace. Second, the target38

function g(wTx) is too restrictive: we cannot consider this a remotely realistic model. On the other hand, functions of39

a low-dimensional subspace are a classical model in non-parametric theory.40

Clarity: why choosing λ = Od(1) instead of λ → 0? Notice that λ → 0 is a special case of λ = Od(1). (See41

comments to 2nd reviewer.) Finally, we agree that there is some room to improve the clarity and readability of this42

paper. We will make these changes in the final version.43

Response to reviewer 4. Weakness 1: What do we expect for multi-layers fully-connected networks? For KRR with44

multi-layers NT kernels with Gaussian weights (infinitely wide networks), the resulting kernel will still be an inner45

product kernel. Hence our Theorem 1 can be applied directly. We have also conducted experiments comparing 3-layers46

NN and 3-layers NT KRR in Figure 4. On the other hand, analyzing finite width NT KRR for 3-layers networks is47

beyond current techniques. Weakness 2: Does the model ϕ(UTx) tend to trivially favor NN models? As the reviewer48

writes, this is a natural way to model ‘low-dimensionality’ of the target function. In fact it is a standard model in the49

non-parametric regression literature and is directly related to other canonical functional classes. [Bac17] provides50

several pointer to the vast literature on this topic, and connections with other functional classes. Weakness 4: How51

would the performance of RKHS methods be in these experiments? We compared NN and KRR (RKHS methods) in52

Figure 1, 3, and 4 (in these figures, we use the shorthand NT KRR for the RKHS induced by the infinite-width NT53

kernel). We thank the reviewer for the additional remarks. We will make these changes in the final version.54

[Bac17] Breaking the Curse of Dimensionality with Convex Neural Networks. F. Bach.55


