
Supplemental material

A Detailed derivation of the SFA objective

Here, we provided a detailed derivation of the SFA objective (9). We allow for the case that Cxx is
not full rank (but is at least rank k).

Our starting point is the objective in Eq. (6), which we recall here:

argmin
V2Rm⇥k

TrV>CẋẋV subject to V>CxxV = Ik. (20)

Under the whitening constraint V>CxxV = Ik, we have the following relation:

V>CẋẋV = 2Ik �
1

T

TX

t=1

V>(xtx
>
t�1 + xt�1x

>
t )V = 4Ik �V>Cx̄x̄V.

Since Tr Ik = k is constant, it does not affect the output of the argmin. Therefore, we can rewrite the
objective in Eq. (20) as the following maximization problem:

argmax
V2Rm⇥k

TrV>Cx̄x̄V subject to V>CxxV = Ik. (21)

Next, let k  n  m be the rank of Cxx. We first project X onto its n-dimensional principal subspace;
i.e., onto the subspace spanned by eigenvectors of Cxx corresponding to positive eigenvalues. To this
end, consider the eigendecomposition Cxx = U⇤U>, where ⇤ is an n⇥ n diagonal matrix whose
diagonal elements are the positive eigenvalues of Cxx and U is a m⇥ n matrix whose orthonormal
column vectors are the corresponding eigenvectors. Then UU> 2 Rm⇥m is the matrix that projects
X onto its n-dimensional principal subspace and Eq. (21) is equivalent to the maximization problem:

argmax
V2Rm⇥k

TrV>UU>Cx̄x̄UU>V subject to V>UU>CxxUU>V = Ik. (22)

Setting x̂t := ⇤�1/2U>x̄t for t = 1, . . . , T , and

V̂ := ⇤1/2U>V, Cx̂x̂ :=
1

T

TX

t=1

x̂tx̂
>
t = ⇤�1/2U>Cx̄x̄U⇤�1/2,

we see that V̂ is the solution of:

argmax
V̂2Rm⇥k

Tr V̂>Cx̂x̂V̂ subject to V̂>V̂ = Ik. (23)

Eq. (23) is the variance maximization objective for the PCA eigenproblem, which is optimized when
the column vectors of V̂ span the k-dimensional principal subspace of Cx̂x̂.

Finally, define the data matrices

X̄ := [x̄t, . . . , x̄T ], X̂ := [x̂1, . . . , x̂T ], Ȳ := [ȳ1, . . . , ȳT ].

Then, since ȳt = V>UU>x̄t = V̂>x̂t, we see that Ȳ is the projection of X̂t onto its k-dimensional
principal subspace. As shown in [6], this principal projection can be expressed as a solution of the
following objective from classical multidimensional scaling:

argmin
Ȳ2Rk⇥T

1

2T 2

��Ȳ>Ȳ � X̂>X̂
��2

Frob = argmin
Ȳ2Rk⇥T

1

2T 2

��Ȳ>Ȳ � X̄>C+
xxX̄

��2
Frob,

where we have used the fact that X̂>X̂ = X̄>U⇤�1U>X̄ = X̄>C+
xxX̄. Lastly, we note that the

minimization problem in Eq. (10) is equivalent to the min-max problem in Eq. (11) with C+
xx in place

of C�1
xx . This can be verified by differentiating L(W,M, Ȳ) with respect to W and noting that the

optimal value is achieved when W equals 1
T ȲX̄>C+

xx.

12



B Experimental methods

In this section, we detail how we implemented each experiment.

B.1 Implementation of neural dynamics

In Bio-SFA, to compute the output yt = M�1at, we use the recursive updates yt  yt+�(at�Myt)
because they respect the neural architecture. For purposes of simulation, we multiply M�1 by at
to compute the output. When k > 1, to speed up simulations, we store the value of M�1 and make
rank-1 updates at each iteration using the Sherman-Morrison formula.

B.2 Chaotic time series

Driving force: The driving force {�t} is defined to be the sum of 6 sine functions, as follows:

�t :=
6X

i=1

Ai sin(✓it+ !i), t = 1, 2, . . . .

Here the amplitudes A1, . . . , A6 are uniformly sampled from the interval (.1, 2) and then normalized
so that they sum to 1, the frequencies ✓1, . . . , ✓6 are uniformly sampled from the interval (0.25, 1.25),
and the phases !1, . . . ,!6 are uniformly sampled from the interval (0, 2⇡).

Hyperparameters: We used the learning rate ⌘t = 1/(a + bt). To choose our hyperparameters,
we performed a grid search over a 2 {102, 103, 104, 105}, b 2 {10�1, 10�2, 10�3, 10�4} and
⌧ 2 {0.01, 0.05, 0.1, 0.5, 1, 5}. We found the optimal hyperparameters to be a = 4, b = �4 and
⌧ = 0.5.

Hardware: The experiment was performed on a 2.8 GHz Quad-Core Intel Core i7 CPU.

B.3 Sequence of natural images

Implementation: We extracted 2,500 image sequences from the 13 images used in [12]. To
generate each sequence, one of the 13 images was chosen uniformly at random, and then a sequence
of 100 16⇥ 16 patches was extracted following the procedure in [1, 2], using the default parameters
from the code released with those papers. In particular, sums of sinusoids with random phases
and amplitudes are used to drive the translation, zoom and rotation of the 16 ⇥ 16 field of view.
Following [1, 2], we first project the 254-dimensional image sequence onto its 64-dimensional
principal subspace. Bio-SFA is then trained on the 2144-dimensional quadratic expansion of the
64-dimensional projected sequence.

Hyperparameters: We used the learning rate ⌘t = ↵/(1 + t/�). To choose our hyperparameters,
we performed a grid search over ↵ 2 {2.5⇥ 10�6, 5⇥ 10�6, 2.5⇥ 10�5, 5⇥ 10�5, 2.5⇥ 10�4, 5⇥
10�4}, � 2 {104, 106, 5 ⇥ 106, 107, 5 ⇥ 107, 108, 109, 1010} and ⌧ 2 {0.5, 1, 2, 4}. We found the
optimal hyperparameters to be ↵ = 5⇥ 10�6, � = 5⇥ 106 and ⌧ = 1.

Orthonormality constraint: To evaluate if Bio-SFA satisfies the orthonormality constraint
V>CxxV = Ik in Eq. (7), where V = W>M�1, we use the normalized squared Frobenius
norm, defined as follows:

Constraint error =
1

k

��M�1WCxxW
>M�1 � Ik

��2
Frob . (24)

In Fig. 5, we plot the constraint error at each iteration.

Hardware: The experiment was performed on an NVIDIA Tesla V100 GPU.

B.4 Hierarchical SFA on the visual stream of a simulated rat

Simulated visual stream: To generate the input data to the hierarchical network, a sequence of
10,000 samples from the default scene in RatLab [24] was generated, following the open field

13



Figure 5: Convergence of the constraint error defined in Eq. (24) for Bio-SFA (Alg. 1). The lines and
shaded regions show the mean error and 90% confidence intervals over ten runs.

experiments in [25]. RatLab simulates a rat’s motion by driving its linear and angular momentum by
random signals chosen to match experimental data. A wide image is extracted to match the rat’s wide
field of view. The resulting image sequence is used directly as training data for the online experiments
here, after centering and rescaling.

Architecture: The hierarchical organization consists of 3 layers of Bio-SFA “modules”, described
below, followed by a fourth ICA layer; see Fig. 4a. The input to the layered architecture is a
sequence of 320⇥ 40 color images. The output of all SFA layers and the ICA layer are sequences of
32-dimensional vectors.

Description of the layers: The 4 layers are as follows:

1. The first layer consists of a 2-dimensional array of 63⇥ 9 Bio-SFA modules. Each module
receives as input 10 ⇥ 8 pixel patches sampled from the 320 ⇥ 40 input, with each patch
offset from its neighbors by half of the receptive field width in each dimension. The patches
are then transformed into 240 = 80⇥ 3-dimensional vectors to be passed into the modules.
The output of each module is a sequence of 32-dimensional vectors.

2. The second layer consists of a 2-dimensional array of 8⇥ 2 Bio-SFA modules. Each module
receives inputs from a 14⇥ 6 grid of modules from the first layer, again overlapping each
other by half their length in each dimension. Since the output of each module in the first layer
is 32-dimensional, the vectorized input to each module has dimension 2688 = 32⇥ 14⇥ 6.
The output of each module in the second layer is a sequence of 32-dimensional vectors.

3. The third layer consists of a single Bio-SFA module that receives input from all 8 ⇥ 2
modules in the second layer. Thus, the input to the third layer module has dimension
512 = 32⇥ 8⇥ 2. The output of the third layer is a sequence of 32-dimensional vectors.

4. The fourth layer is an offline ICA algorithm, described below. It receives as input the
32-dimensional vector output of the third layer and produces a 32-dimensional output.

Description of a Bio-SFA module: Each module receives a sequence of vector inputs (whose
dimension depends on the layer) and outputs a 32-dimensional sequence. The module consists of 3
steps:

1. Bio-SFA is applied to the input sequence to generate the slowest 32-dimensional projection.
2. The projected sequence is quadratically expanded to generate the 560-dimensional expanded

sequence, which is centered in the online setting using the running mean.
3. Bio-SFA is applied to the expanded sequence to generate a 32-dimensional output.

14



Description of the ICA layer: After an online hierarchy is trained, it is exported to a hierarchy of
MDP (Modular toolkit for Data Processing) [35] nodes that can be read by the RatLab framework
[24]. Then, RatLab is instructed to fit an ICA layer in the offline setting, using MDP’s implementation
of CuBICA [4].

Training procedure: Following [9], the layers were trained in a greedy layer-wise fashion, i.e.,
the layers are trained sequentially and the weights in a layer are fixed once it has been trained. The
Bio-SFA layers are trained using weight sharing; that is, each layer uses the same synaptic weights
W and M, which are shared across all patches. To compute the W and M updates at each training
step, the updates for each patch is computed according to Alg. 1, and these updates are summed to
generate the updates for W and M, which are scaled by the square root of the number of patches.

We use time-dependent learning rates of the form ⌘t = ↵/(1 + t/�), with � fixed to 5⇥ 106 in all
modules. For the first Bio-SFA step in the first module, we set ↵ = 5⇥ 10�7 and ⌧ = 5⇥ 10�4. In
the rest of the modules, the first Bio-SFA step used ↵ = 2.5⇥ 10�6 with the same ⌧ . For the second
Bio-SFA step in each module, we set ↵ = 5⇥ 10�5 and ⌧ = 1.

Firing maps: To generate a firing map from either the final SFA layer or the ICA layer, RatLab
is instructed to generate a test set of still images by sampling the visual field of the simulated rat
across a fine grid of spatial positions, using 8 head directions at each location. The output activities
from each of the 32 units in either the final SFA or ICA layer are averaged over head orientation to
generate a heatmap of that unit’s activity over the spatial grid. Those maps are shown in Fig. 4.

Quantification of slowness: To demonstrate that each layer is finding slower features, we plot the
“slowness” of each layer’s output, which is defined by

Slowness = Ṽ>CẋẋṼ,

where Ṽ is defined as in Eq. (19) and Cẋẋ denotes the covariance of the discrete-time derivative of
the expanded input for that module.

Hardware: This experiment was performed on an Intel Xeon Gold 6148 CPU.

15



C SFA for reversible processes

The update for W in Alg. 1 requires the input neurons to store both the input, xt, and the delayed
sum, x̄t. Here, we propose a modification of the algorithm, which is exactly SFA in the case that the
expanded input {xt} is reversible, that only requires the input neurons to store the input xt. Suppose
the expanded signal {xt} exhibits time-reversal symmetry; that is,

1

T

TX

t=1

xtx
>
t�1 =

1

T

TX

t=1

xt�1x
>
t .

Then

Cx̄x̄ =
1

T

TX

t=1

x̄t(xt + xt�1)
>

=
1

T

TX

t=1

x̄tx
>
t +

1

T

TX

t=1

(xt + xt�1)x
>
t�1

=
1

T

TX

t=1

x̄tx
>
t +

1

T

TX

t=1

xt�1x
>
t +

1

T

TX

t=1

xtx
>
t +

1

T
(x0x

>
0 � xTx

>
T )

=
2

T

TX

t=1

x̄tx
>
t +

1

T
(x0x

>
0 � xTx

>
T )

= 2Cx̄x +
1

T
(x0x

>
0 � xTx

>
T ),

where

Cx̄x :=
1

T

TX

t=1

x̄tx
>
t .

In the large T limit, we can approximate the offline gradient descent update for W in Bio-SFA by
replacing Cx̄x̄ with 2Cx̄x, which results in the update

W W + 2⌘(2M�1WCx̄x �WCxx).

Recalling that ȳt = M�1Wx̄t, we can write the online stochastic gradient descent step for W as

W W + 2⌘(2ȳt � at)x
>
t .

This yields our online SFA algorithm for reversible processes (Alg. 2).

Algorithm 2: Bio-SFA for reversible processes
input expanded signal {x0,x1, . . . ,xT }; dimension k; parameters �, ⌘, ⌧
initialize matrix W and positive definite matrix M
for t = 1, 2, . . . , T do
at  Wxt

repeat
yt  yt + �(at �Myt) . compute output

until convergence
x̄t  xt + xt�1

ȳt  yt + yt�1

W W + 2⌘(ȳt � at)x>
t . stochastic gradient descent-ascent steps

M M+ ⌘
⌧ (ȳtȳ>

t �M)
end for

As with Bio-SFA, Alg. 2 can be implemented in the neural network shown in Fig. 6. Note that in this
case, the elementwise synaptic update for Wij , given by

Wij  Wij + 2⌘(2ȳit � ait)x
j
t ,

16



depends only on ȳit, ait and xj
t , so the pre-synaptic input neuron only needs to represent the xj

t ,
as opposed to both xj

t and x̄j
t . Biologically, this is more realistic because the signal frequency of

dendrites is slower than the signal frequency of axons, so it is more likely that slow variables are
represented in the post-synaptic neuron.

Variable Biological interpretation

xt expanded signal
W feedforward synaptic weights

at := Wxt dendritic current
M lateral synaptic weights
yt output signal

Neural dynamics & plasticity rules

dyt(�)/d� = at �Myt(�)

�W = 2⌘(2yt + 2yt�1 � at)xt
>

�M = ⌘
⌧ ((yt + yt�1)(yt + yt�1)

> �M)

Figure 6: A biologically plausible neural network implementation of Bio-SFA for reversible processes.
The figure on the left depicts the architecture of the neural network. Blue circles are the input neurons
and black circles are the output neurons with separate dendritic and somatic compartments. Lines
with circles connecting the neurons denote synapses. Filled (resp. empty) circles denote excitatory
(resp. inhibitory) synapses.

We test Alg. 2 on the naturalistic image sequences from [28], which are not reversible (due to the
rotation of the images). In Fig. 7a, we display the optimal stimuli for the filters that are found by
Alg. 2. These optimal stimuli are in close qualitative agreement with the optimal stimuli found by
Bio-SFA, shown in Fig. 3. In Fig. 7b, we plot the error defined in Eq. (19) and find that Alg. 2
(Bio-SFA for reversible processes) performs comparably with Alg. 1 (Bio-SFA).

(a) Optimal Stimuli (b) Error

Figure 7: Performance of Bio-SFA for reversible processes on a sequence of natural images. Panel
(a) shows the maximally excitatory stimuli for the 49-dimensional output obtained by Bio-SFA for
reversible processes. Panel (b) shows the mean error and 90% confidence intervals over 10 runs.

17


