
5 10 15 20 25 30 35
Number of Tasks Learned

0.4

0.6

0.8

A
cc

ur
ac

y

SupSup (GNu, γ = 1/2)

SupSup (GNu, γ = 1/4)

SupSup (GNu, γ = 1/8)

SupSup (GNu, γ = 1/16)

SupSup (GNu, γ = 1/36) 106 2× 106

Total Number of Bytes

0.83

0.84

0.85

0.86

0.87

A
cc

ur
ac

y

SupSup (GG) (100 epochs)

SupSup (GG) Transfer (50 epochs)

0 10 20 30 40 50
Number of Tasks Learned

0.20

0.25

0.30

0.35

0.40

0.45

A
cc

ur
ac

y

Upper Bound

SupSup (GNu, oneshot, G)

SupSup (GNu, binary, G)

Figure 1: (left) Interpolating between the binary and one-shot algorithm with γ. (center) Transfer enables faster
learning on SplitCIFAR. (right) One-shot vs. binary for permutations of CIFAR. Figures viewed best with zoom.

• R1: Thank you for the great suggestions and thorough review, we look forward to fully incorporating your detailed1

recommendations to improve the paper.2

Empirical comparison between binary and one-shot. An empirical comparison between the binary and one-shot3

algorithms is a fantastic addition: In Figure 1 (left) we directly interpolate between these two algorithms. We replace4

line 6 of the binary algorithm, gi ≤ median(g), with gi ≤ top-γ%-element(g). Then when γ = 1/2 we recover the5

binary algorithm (as median(g) = top-50%-element(g)) and when γ = 1/k we recover the one-shot algorithm. A6

performance drop is observed from binary to one-shot for the difficult task of MNISTRotate—sequentially learning 367

rotations of MNIST (each new rotation differing by only 10 degrees).8

Further comparison in GNu. We believe the comparison of SupSup (in GNu) with recent methods (PSP [1], BatchE9

[2]) in the GG scenario is fair since GG is strictly easier than GNu. However we agree that this is a weakness and will10

update the paper to compare SupSup with methods e.g. from [3]. The initial reason for comparison of SupSup in GNu11

with recent methods in the strictly easier GG scenario is because they were more competitive. For instance [3] considers12

sequential learning problems with only 5-10 tasks. SupSup, after sequentially learning 250 permutations of MNIST,13

outperforms all non-replay methods from [3] in the GNu scenario after they have learned only 10 permutations of14

MNIST with a similar network: In GNu, Online EWC achieves 33.88% & SI achieves 29.31% on 10 permutations of15

MNIST [3] while SupSup achieves 94.91% accuracy after 250 permutations (see Table 5 in [3] vs. Table 7 in our work).16

Additional comments. We have updated the appendix to explicitly detail the supermask training algorithm, which17

improves clarity. The method provided for NNs will not work with data that is common between tasks. We say that 1618

bit integers are used instead of single bits because they store the index of the nonzero elements of the mask with the19

CSC sparse matrix format. PSP on SplitCIFAR achieves worse performance than BatchE (GG) with similar bytes. We20

will definitely think about extensions of SupSup to the continuous case, but do not currently have a solution.21

• R2: We appreciate the suggestions, in particular to enhance the clarity of the figures which will improve the paper. For22

further comparisons please see the Further Comparison in GNu section in R1 above. In reference to the comments23

concerning lack of novelty and lack of coverage of previous approaches we highlight R3’s comments: 1) Applying24

supermasks to a continual learning scenario is definitely novel, and of interest to the community and 2) The paper has a25

lot of prior work to cover (CL, supermasks, batch ensembles) and is done correctly. Prior work is concise and clear.26

The most similar approach to SupSup is [4] and they are limited to scenario GG while requiring more storage.27

• R3: We are grateful for a comprehensive and thoughtful review. We complete variants of the two very useful28

experiments that you have suggested, and detail the results below.29

Forward transfer. Thank you for highlighting the importance of transfer. We illustrate in Figure 1 (center) that our30

method for transfer (initializing each new mask with a running mean of previous masks) does enable faster learning31

(less epochs are required to reach a given accuracy). Training all tasks for 50 epochs with our transfer method provides32

a significant accuracy boost over training individually on all tasks for 100 epochs for SplitCIFAR.33

Towards more complex tasks. We illustrate in Figure 1 (right) that SupSup with the binary algorithm can sequentially34

learn 50 permutations of CIFAR pixels with minimal forgetting. As in the paper we use the FC-1024-1024 network35

and train on each task for 1000 iterations, and accordingly the upper bound accuracy is low. However, we are most36

interested in the deviation from the upper bound. We will update the introduction to better reflect the scope of the paper.37

[1] Brian Cheung et al.. Superposition of many models into one. NeurIPS 2019.38

[2] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient ensemble and lifelong learning.39

ICLR 2020.40

[3] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv, 2019.41

[4] Arun Mallya, et al.: Adapting a single network to multiple tasks by learning to mask weights. ECCV, 2018.42


