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Abstract

This work addresses efficient inference and learning in switching Gaussian linear
dynamical systems using a Rao-Blackwellised particle filter and a corresponding
Monte Carlo objective. To improve the forecasting capabilities, we extend this
classical model by conditionally linear state-to-switch dynamics, while leaving
the partial tractability of the conditional Gaussian linear part intact. Furthermore,
we use an auxiliary variable approach with a decoder-type neural network that
allows for more complex non-linear emission models and multivariate observations.
We propose a Monte Carlo objective that leverages the conditional linearity by
computing the corresponding conditional expectations in closed-form and a suitable
proposal distribution that is factorised similarly to the optimal proposal distribution.
We evaluate our approach on several popular time series forecasting datasets as
well as image streams of simulated physical systems. Our results show improved
forecasting performance compared to other deep state-space model approaches.

1 Introduction

The Gaussian linear dynamical system (GLS) [4, 38, 31] is one of the most well-studied dynamical
models with wide-ranging applications in many domains, including control, navigation, and time-
series forecasting. This state-space model (SSM) is described by a (typically Markovian) latent linear
process that generates a sequence of observations. The assumption of Gaussian noise and linear state
transitions and measurements allows for exact inference of the latent variables—such as filtering
and smoothing—and computation of the marginal likelihood for system identification (learning).
However, most systems of practical interest are non-linear, requiring more complex models.

Many approximate inference methods have been developed for non-linear dynamical systems: Deter-
ministic methods approximate the filtering and smoothing distributions e.g. by using a Taylor series
expansion of the non-linear functions (known as extended Kalman filter (EKF) and second-order
EKF) or by directly approximating these marginal distributions by a Gaussian using moment matching
techniques [26, 27, 2, 3, 36]. Stochastic methods such as particle filters or smoothers approximate
the filtering and smoothing distributions by a set of weighted samples (particles) using sequential
Monte Carlo (SMC) [13, 16]. Furthermore, system identification with deep neural networks has been
proposed using stochastic variational inference [17, 15] and variational SMC [23, 29, 20].

A common challenge with both types of approximations is that predictions/forecasts over long forecast
horizons suffer from accumulated errors resulting from insufficient approximations at every time step.
Switching Gaussian linear systems (SGLS) [1, 12]—which use additional latent variables to switch
between different linear dynamics—provide a way to alleviate this problem: the conditional linearity
can be exploited by approximate inference algorithms to reduce approximation errors. Unfortunately,
this comes at the cost of reduced modelling flexibility compared to more general non-linear dynamical
systems. Specifically, we identify the following two weaknesses of the SGLS: i) the switch transition
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model is assumed independent of the GLS state and observation; ii) conditionally-linear emissions
are insufficient for modelling complex multivariate data streams such as video data, while more
suitable emission models (e.g. using convolutional neural networks) exist. The first problem has been
addressed in [21] through augmentation with a Polya-gamma-distributed variable and a stick-breaking
process. However, this approach uses Gibbs sampling to infer model parameters and thus does not
scale well to large datasets. The second problem is addressed in [11] using an auxiliary variable
between GLS states and emissions and stochastic variational inference to obtain a tractable objective
function for learning. Yet, this model predicts the GLS parameters deterministically using an LSTM
with an auto-regressive component, resulting in poor long-term forecasts.

We propose auxiliary variable recurrent switching Gaussian linear systems (ARSGLS), an extension
of the SGLS to address both weaknesses by building on ideas from [21] and [11]. ARSGLS improves
upon the SGLS by incorporating a conditionally linear state-to-switch dependence, which is crucial
for accurate long-term out-of-sample predictions (forecasting), and a decoder-type neural network
that allows modelling multivariate time-series data with a non-linear emission/measurement process.
As in the SGLS, a crucial feature of ARSGLS is that approximate inference and likelihood estimation
can be Rao-Blackwellised, that is, expectations involving the conditionally linear part of the model
can be computed in closed-form, and only the expectations wrt. the switch variables need to be
approximated. We leverage this feature and propose a Rao-Blackwellized filtering objective function
and a suitable proposal distribution for this model class.

We evaluate our model with two different instantiations of the GLS: in the first scenario, the GLS is
implemented with a constrained structure that models time-series patterns such as level, trend and
seasonality [14, 34]; the second scenario considers a general, unconstrained conditional GLS. We
compare our approach to closely related methods such as Deep State Space Models (DeepState)
[30] and Kalman Variational Auto-Encoders (KVAE) [11] on 5 popular forecasting datasets and
multivariate (image) data streams generated from a physics engine as used in [11]. Our results show
that the proposed model achieves improved performance for univariate and multivariate forecasting.

2 Background

2.1 Gaussian Linear Dynamical Systems

The GLS models sequence data using a first-order Markov linear latent and emission process:
xt = Axt−1 +But + wt, wt ∼ N (0, R), (1a)
yt = Cxt +Dut + vt, vt ∼ N (0, Q), (1b)

where the vectors u, x and y denote the inputs (also referred to as covariates or controls), latent
states, and targets (observations). A, and C are the transition and emission matrix, B and D are
optional control matrices, and R, Q are the state and emission noise covariances. In the follow-
ing, we will omit the optional inputs u to ease the presentation, however, we use inputs e.g. for
our experiments in Sec. 5.2. The appealing property of the GLS is that inference and likelihood
computation is analytically tractable using the well-known Kalman filter algorithm, alternating
between a prediction step p(xt | y1:t−1) =

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1 and update step

p(xt | y1:t) ∝ p(xt | y1:t−1)p(yt | xt), where p(xt | xt−1) is the state transition and p(yt | xt) is
the emission/measurement process corresponding to Eqs. (1a) and (1b), respectively.

2.2 Particle Filters

In non-linear dynamical systems, the filter distribution p(xt | y1:t) is intractable and needs to be
approximated. Particle filters are SMC algorithms that approximate the filter distribution at every time-
step t by a set of P weighted particles {x(p)}P , combining importance sampling and re-sampling.
Denoting the Dirac measure centred at xt by δ(xt), the filter distribution is approximated as

p(xt | y1:t) ≈
P∑
p=1

w
(p)
t δ(x

(p)
t ). (2)

In first-order Markovian dynamical systems, the importance-weights are computed recursively as
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where w̃(p)
t and w(p)

t denote the unnormalised and normalised importance-weights, respectively,
γ(x

(p)
t ;x

(p)
t−1) is the incremental importance-weight, and π(xt | x(p)

1:t−1) is the proposal distribution.
To alleviate weight degeneracy issues, a re-sampling step is performed if the importance-weights
satisfy a chosen degeneracy criterion. A common criterion is to re-sample when the effective sample
size (ESS) drops below half the number of particles, i.e. PESS =

(∑P
p=1(w(p))2

)−1 ≤ P/2.

2.3 Switching Gaussian Linear Systems with Rao-Blackwellised Particle Filters

Switching Gaussian linear systems (SGLS), also referred to as conditional GLS or mixture GLS,
are a class of non-linear SSMs that use additional (non-linear) latent variables s1:t that index the
parameters (transition, emission, control, and noise covariance matrices) of a GLS, allowing them to
“switch” between different (linear) regimes:

xt = A(st)xt−1 +B(st)ut + wt(st), wt(st) ∼ N (0, R(st)),

yt = C(st)xt +D(st)ut + vt(st), vt(st) ∼ N (0, Q(st)).
(4)

The switch variables st are typically categorical variables, indexing one of K base matrices; however,
other choices are possible (see Sec. 3.1). Omitting the inputs u again, the graphical model factorises
as p(y1:T ,x0:T , s1:T ) = p(x0)

∏T
t=1 p(yt | xt, st)p(xt | xt−1, st)p(st | st−1), where p(s1 | s0) =

p(s1) is the switch prior (conditioned on u1 if inputs are given). Note that we use an initial state x0

without corresponding observation for convenience.2

A crucial property of this model is that, while the complete model exhibits non-linear dynamics, given
a sample of the trajectory s

(p)
1:T , the rest of the model is (conditionally) linear. This allows for efficient

approximate inference and likelihood estimation. The so-called Rao-Blackwellised particle filter
(RBPF) leverages the conditional linearity by approximating expectations—that occur in filtering and
likelihood computation—wrt. the switch variables s1:T using SMC, while computing expectations
wrt. the state variables x1:T analytically. To achieve this, the posterior distribution is factorised as

p(x1:t, s1:t | y1:t) = p(x1:t | s1:t,y1:t)p(s1:t | y1:t). (5)

The first term of Eq. (5) is tractable given a sample trajectory s
(p)
1:t using a Kalman smoother. How-

ever, for forecasting and loss computation (Sec. 3.3.2) we only require the state from the last step
p(xt | s1:t,y1:t) for which even the Kalman filter suffices (cf. supplementary material for details).
The second term of Eq. (5) can also be computed recursively using Bayes rule:

p(s1:t | y1:t) ∝ p(yt | s1:t,y1:t−1) p(st | st−1,���s1:t−2,���y1:t−1) p(s1:t−1 | y1:t−1). (6)

Here and in the following we explicitly show the terms that cancel due to the Markov-property. The
predictive distribution

p(yt | s1:t,y1:t−1) =

∫
p(yt | xt, st,���s1:t−1,���y1:t−1)p(xt | s1:t,y1:t−1)dxt

is a by-product of the first term in Eq. (5); it can be computed in closed-form using the Kalman filter.
Since all terms in p(s1:t | y1:t) can be computed in closed-form, this distribution can be approximated
by a set of particles using SMC (cf. Eq. (2)). The corresponding incremental importance-weights are

γ(s
(p)
t ; s

(p)
1:t−1) =

p(yt | s(p)1:t , y1:t−1)p(s
(p)
t | s

(p)
t−1)

π(s
(p)
t | s

(p)
1:t−1)

. (7)

The resulting joint filter distribution for both the state and switch variables is a mixture of Gaussians:

p(xt, st | y1:t) ≈
P∑
p=1

w
(p)
t δ(s

(p)
t ) N

(
xt |mt(s

(p)
1:t ), Vt(s

(p)
1:t )
)
, (8)

where the history s
(p)
1:t−1 is dropped. To be precise, the mean mt(s

(p)
1:t ) and variance Vt(s

(p)
1:t ) of the

filtered state xt depend on the whole trajectory s
(p)
1:t , although from an algorithmic perspective, only

the current switch s
(p)
t is required to compute the incremental importance-weights in Eq.(7).

2We do not include an initial, unconditional switch variable s0, as the optimal proposal distribution would be
proportional to p(s0,x0); thus not using observations in the initial proposal distribution would lead to inefficient
proposals for the following time steps.
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3 Auxiliary Variable Recurrent Switching Gaussian Linear Systems

The SGLS provides an attractive tradeoff between model complexity and efficient inference. However,
this model is limited in the following respects: i) switch transitions are assumed to be independent
of the state variable; ii) multivariate observations with a complex non-linear dependence—such as
streams of image data—are not well-described by a conditionally linear emission model. We propose
the auxiliary variable recurrent SGLS (ARSGLS) to address both of these issues in Secs. 3.1 and 3.2.
Furthermore, we leverage the conditional linearity using a RBPF (Sec. 3.3) with a suitable proposal
distribution that is structurally simliary to the optimal (minimum variance) proposal distribution. The
resulting graphical model and corresponding proposal distribution is visualised in Fig. 1 and the
algorithm for filtering and loss computation is presented in Alg. 1 in the supplementary material.

yt−1 yt yt+1

zt−1 zt zt+1

xt−1 xt xt+1

st−1 st st+1

ut−1 ut ut+1

zt

st

φzq

φsq
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ytut
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φxtφxt−1

φstst−1

EncoderForward model Proposal

ut

Figure 1: Left: Forward graphical model of ARSGLS, incl. inputs (controls) ut. Shaded/unshaded nodes
indicate observed/hidden variables. New components (auxiliary variable, state-to-switch recurrence) are marked
in red. Right: Inference proposal distribution for time step t. The left part is identical (shared) to the forward
model, the right part is the approximated likelihood function given by a ladder-type encoder, and the proposal
distribution results from taking the product of the two respective Gaussian functions (cf. Sec. 3.3.3, Eq. (14)).
To visualise the marginalisation of xt−1 and xt as well as the product of Gaussian functions of the variables st
and zt, we explicitly denote the distribution parameters (location, covariance) of the respective Gaussians by φ.

3.1 Gaussian Recurrent Switch Transition

Although the classical SGLS is capable of generating sequences with non-linear dynamics (due to
non-linear switches), it makes a very limiting assumption: the switch variables s1:T are independent
of the state variables x1:T , resulting in open loop switch dynamics. However, most non-linear
systems can be approximated by a conditionally linear system only through linearisation at the
current state. Thus, a feedback (closed loop) coupling with the states xt−1 would be necessary
(cf. Fig. 2 for an example with a simple non-linear system). Unfortunately, using a more powerful
switch transition model p(st | st−1,xt−1) complicates inference [5, 21]: In order to compute
p(s1:t | y1:t) =

∫
p(s1:t,xt | y1:t)dxt, the previous state variable must be integrated out in closed-

form (since we want to avoid sampling the states). While this problem has been addressed in [21],
we take a different route that admits a re-parametrised proposal distribution, suitable for optimisation
with stochastic gradient descent. It has been shown that Gaussian-distributed switch variables [6] can
perform as well or better than continuous relaxations of categorical variables [24] in this setting. We
propose to use Gaussian switch variables with a learnable Gaussian prior p(s1) and conditionally
linear state-to-switch transformations that allow for closed-form marginalisation of the state variable:

s
(p)
t = F (s

(p)
t−1)xt−1 + f(s

(p)
t−1) + εt(s

(p)
t−1), εt(s

(p)
t−1) ∼ N

(
0, S(s

(p)
t−1)

)
, (9)

where f is a non-linear function (neural network), and F (st−1) and S(st−1) are the transition and
covariance matrix predicted by the previous switch variable. Marginalising the states results in
p(st|s(p)1:t−1) = N

(
st;F (s

(p)
t−1)mt−1(s

(p)
1:t−1)+f(s

(p)
t−1), F (s

(p)
t−1)Vt−1(s

(p)
1:t−1)F

T (s
(p)
t−1)+S(s

(p)
t−1)

)
. (10)

The SGLS parameters {A,B,C,D,R,Q, F, S} can be predicted from the Gaussian s
(p)
t and s

(p)
t−1

in different ways, e.g. i) as the direct outputs a neural network; or ii) as a weighted average of a set
of base matrices, where the weights are predicted by a neural network. We use the latter approach,
which has been shown to be effective by previous work [6]. Deterministic weighted averages are also
used in [37, 15, 11], while the “direct” approach of predicting the parameters is used e.g. by [30].
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3.2 Non-linear Multivariate Emission Model

Time-series data is often non-Gaussian or multivariate with a complex dependence on hidden variables
(e.g. images, point clouds, discrete data). To model such data, we augment the recurrent SGLS with a
Gaussian latent variable z1:T that decouples the observations from the SGLS through the conditional
independence p(x1:t | s1:t, z1:t,y1:t) = p(x1:t | s1:t, z1:t). The resulting joint distribution is given as

p(y1:T , z1:T ,x0:T , s1:T ) = p(x0)

T∏
t=1

p(yt | zt)p(zt | xt, st)p(xt | xt−1, st)p(st | st−1,xt−1).

This auxiliary variable zt enables the use of arbitrary conditional distributions p(yt | zt) for which
the distribution parameters are predicted by a non-linear emission model such as a neural network.
Samples of the auxiliary variables can be interpreted as pseudo-observations in the SGLS. This
emission model and auxiliary is similar to the additional latent variable in the KVAE [11]; cf. Sec. 4
for further details on the similarities and differences.

3.3 Inference and Parameter Estimation

We extend the RBPF from Sec. 2.3 to infer the latent variables {s,x, z}; and we use maximum
likelihood estimation to learn the model parameters θ (shared between multiple time-series). These
include i) the base matrices of the (recurrent) SGLS, ii) the parameters of the state prior, iii) the
switch prior and transition (neural network), and iv) the auxiliary variable decoder (neural network).

3.3.1 Rao-Blackwellised Particle Filtering

Filtering can be performed analogous to the standard Rao-Blackwellised particle filter (cf. Sec. 2.3).
To this end, we factorise the posterior distribution similarly as was shown for the SGLS:

p(z1:t,x1:t, s1:t | y1:t) = p(x1:t | z1:t, s1:t,��y1:t) p(z1:t, s1:t | y1:t). (11)
The first term in Eq. (11) can again be computed in closed-form while the second density can be
approximated using SMC. The incremental importance-weights for this model are given as

γ(s
(p)
t , z

(p)
t ; s

(p)
1:t−1, z

(p)
1:t−1) =

p(yt | z(p)t ) p(z
(p)
t | z

(p)
1:t−1, s

(p)
1:t ) p(s

(p)
t | z

(p)
1:t−1, s

(p)
1:t−1)

π(z
(p)
t , s

(p)
t | s

(p)
1:t−1, z

(p)
1:t−1)

. (12)

The numerator p(yt, zt, st | y1:t−1, z1:t−1, s1:t−1) reveals that the switch transition (last term) with
state-to-switch dynamics is no longer Markovian. This is because we marginalise the filtered
state p(st | s1:t−1, z1:t−1) =

∫
p(st | st−1,xt−1)p(xt−1 | z1:t−1, s1:t−1)dxt−1 that depends on all

previous switches and pseudo-observations similarly to the generative case in Eq. (10). As for the
SGLS in Sec. 2.3, the conditional distribution of the auxiliary variable (second term) is a by-product
of the Kalman filter prediction and update step that is required for computing the first term in Eq. (11):

p(zt | z(p)1:t−1, s
(p)
1:t ) =

∫
p(zt | xt)p(xt | z(p)1:t−1, s

(p)
1:t )dxt,

p(xt | z(p)1:t−1, s
(p)
1:t ) =

∫
p(xt | xt−1, s(p)t )p(xt−1 | z(p)1:t−1, s

(p)
1:t−1)dxt−1.

3.3.2 Parameter Estimation

For learning the model parameters shared between different time-series we use maximum like-
lihood estimation and stochastic gradient descent (SGD). In the SMC setting, an unbiased es-
timator of the marginal likelihood p̂(y1:T ; θ) =

∏T
t=1

∑P
p=1 w̃

(p)
t (θ) can be obtained from the

unnormalised importance-weights [9] (cf. supplementary material for more details). Consequently,
E
[

log p̂(y1:T ; θ)
]
≤ log p(y1:T ; θ) due to Jensen’s inequality. Based on this, [29, 23, 20] proposed

a tractable lower bound to the log-marginal likelihood that can be optimised with SGD:

L(y1:T ; θ) =

T∑
t=1

log p̂(yt | y1:t−1; θ) =

T∑
t=1

log

P∑
p=1

w̃
(p)
t (θ) ≤ log p(y1:T ; θ). (13)

We propose to use the same objective function, however, leveraging the conditional linearity of our
model, using the incremental importance-weights of Eq. (12) for computing the importance-weights
(cf. Eq. (3)).
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3.3.3 Ladder Proposal Distribution

Choosing a good proposal distribution is essential to obtain reliable estimates with low variance.
The optimal (minimum variance) proposal distribution is proportional to the joint distribution
p(yt, zt, st | s1:t−1, z1:t−1,���y1:t−1), i.e. the numerator of the incremental importance-weights. We
therefore propose a proposal distribution with similar structure, while reusing the known densities:

π(zt, st | z1:t−1, s1:t−1,yt) ∝ q(zt, st | yt)p(zt, st | z1:t−1, s1:t−1)

= q(zt, st | yt)p(zt | z1:t−1, s1:t)p(st | z1:t−1, s1:t−1)
(14)

The last two terms are the transition of the switches and the resulting auxiliary variable in the
generative model; the first term is a Gaussian approximation of the likelihood, predicted by an
encoder neural network.3 Both pairs of Gaussians are combined as a product of experts, resulting in a
Gaussian proposal distribution. The switch transition is readily available from the previous step t− 1,
while the predictive distribution for the auxiliary variable requires sampling st first. We therefore
propose to structure the encoder with dependencies in the same direction as the generative model,
i.e. as presented in Eq. (14). The resulting encoder resembles the encoder in the Ladder VAE [35].
Thus, combining it with the densities from the forward model, we obtain a proposal distribution
π(zt, st | z1:t−1, s1:t−1,yt) = π(st | z1:t−1, s1:t−1,yt)π(zt | z1:t−1, s1:t,yt) that is factorised such
that samples can be drawn in the same direction as the generative process, while reusing the predictive
quantities of the forward (generative) model. The proposal distribution is optimal if the Gaussian
encoder distribution is proportional to the likelihood.

We use the effective sample-size criterion mentioned in Sec. 2.2 with systematic re-sampling [8].
Following previous work, we omit the score function estimator term for re-sampled variables, resulting
in biased but lower variance gradient estimates. We refer to [23, 29, 20] for a discussion.

4 Related work

Extensions of the classical SGLS with a state-to-switch dependence have been proposed in previous
work [5, 21, 6]: In [5], the required marginalisation of previous Gaussian states is approximated
numerically through sampling. [21] uses logistic stick-breaking for the discrete switches and augments
the model with a Polya-Gamma distributed auxiliary variable, rendering the states conjugate to the
switch variables such that marginalising the Polya-Gamma variables leaves the original model intact.
Inference in this model is accomplished through Gibbs sampling, whereas our work uses a RBPF and
SGD for state and parameter inference. Different from these two approaches, [6] uses a Gaussian
switch variable. In contrast to our work, inference is performed using stochastic variational inference
without exploiting the conditional tractability of the SGLS, instead sampling both states and switches.

Many efficient approximate inference methods have been proposed for the classical SGLS, including
approaches using variational inference [12], expectation propagation [39], and a RBPF [10]. Our
ARSGLS uses an extension of RBPF that includes the additional auxiliary variable (cf. Sec. 3.2) in
the SMC approximation. Learning through Monte Carlo objectives [28] for particle filters has been
proposed in [23, 29, 20]. Our objective function is a special case that exploits the conditionally linear
structure of the ARSGLS through Rao-Blackwellisation to reduce variance in the estimates.

Parameter learning with a conditional GLS and closed-form inference has been proposed previously
in DeepState [30] and the KVAE [11]. Our model differs substantially in the i) graphical model, ii)
latent variable inference and iii) parameter learning:
i) DeepState and KVAE can be interpreted as a deterministic SGLS, where the GLS parameters
are predicted by an RNN, whereas our proposed model uses probabilistic switch transitions that
receive feedback from the previous state. Furthermore, the GLS parameters in DeepState have a fixed
structure that model time-series patterns such as level, trend and seasonality; transition and emission
matrices are fixed and the two (diagonal) noise covariance matrices are predicted by the RNN directly.
The KVAE uses unrestricted GLS parameters, which are predicted as a weighted average of a set of
base matrices, where the weights are given by the RNN. Our proposed model uses a similar weighted

3Note that we omitted inputs ut; however we use both ut and yt in the encoder. Furthermore, we made the
simplifying assumption that q only depends on the latest observation yt. One way to go beyond that would be
to include y1:t−1 through sufficient statistics, such as the natural parameters, of the state variable xt−1. We
decided to use only the latest observation yt in our model, since information from xt−1 and thus y1:t−1 is
incorporated into the proposal distribution through the state-to-switch recurrence.
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Figure 2: Filtered and forecasted emissions of a recurrent (left) and non-recurrent (right) SGLS for synthetic
data of a swinging pendulum. Observations are noisy x-/y-position (blue/orange). The plots show the mean (line)
and 3 std. deviations (shaded); filter and forecast range are separated by a vertical line, 50 (noisy) observations
(dots) are used for filtering, the forecast ground-truth is shown as a dashed line. The SGLS relies on the filter
update, whereas the RSGLS successfully uses state information to select the correct base matrices for prediction.

average of base matrices, but the weights are functions of a probabilistic Gaussian switch variable. A
further difference to both models is the dependence of the RNN/switch transition on observations
and controls: The RNN in DeepState is conditioned on inputs (controls), whereas the RNN in the
KVAE depends (auto-regressively) on samples of the previous (pseudo-) observation of the GLS.
In contrast, the switch transition of the ARSGLS is conditioned on the previous GLS state variable,
thus using information from all previous inputs and observations. Finally, the KVAE uses the same
type of auxiliary variable and non-linear emission model as our ARSGLS. However, the encoder is
conditioned only on the current observations; in contrast, the structure of our proposal distribution
(corresponding to the encoder in the KVAE) is chosen to resemble the optimal (minimum variance)
proposal distribution, thus including the current observation and inputs as well as the predictive
distribution of the previous state.
ii) Given the deterministically predicted GLS parameters, DeepState/KVAE uses the Kalman fil-
ter/smoother for inference. In contrast, we use a Rao-Blackwellised particle filter to infer non-linear
switch variables through SMC and the conditionally linear states through the Kalman filter.
iii) DeepState uses maximum likelihood for parameter learning where the log-likelihood is estimated
using the filter formulation (normalisation constants), whereas the KVAE is learnt using a variational
EM objective. Our proposed model is learnt through a (Rao-Blackwellised) particle filter-based
Monte Carlo objective (cf. prev. paragraph).

5 Experiments

5.1 Pendulum

We start with a qualitative assessment of the state-to-switch dependence from Sec. 3.1. We refer to
this model (without the auxiliary variable of Sec. 3.2) as RSGLS. We consider noisy observations of
the xy-positions of a dampened pendulum. Initial states (angle, angular velocity) are drawn randomly
from a Gaussian centred at 180 deg (top position) and zero velocity. Both models are trained on 5000
sequences with 50 time-steps. For evaluation, we filter for 50 time-steps and forecast the next 100
time-steps. We visualise the resulting filter and forecast distribution together with noisy observations
(t ≤ 50) and ground-truth (t > 50) in Fig. 2. As can be seen, the SGLS can not learn linearised
dynamics without information from the state. On the other hand, the RSGLS generates very accurate
forecasts with reasonable predictive uncertainty, showing the necessity of state-to-switch dynamics.

5.2 Time series forecasting

We evaluate our approach in the context of time-series forecasting on 5 popular public datasets
(electricity, traffic, solar, exchange, wiki) used in [32]. The data is recorded with hourly
or daily frequency and exhibits seasonal patterns with different frequency (e.g. daily and weekly).

We experimented with two instantiations of our proposed model: Similar to previous work [30], we
implement the GLS as an innovation state space model (ISSM) with a constrained structure that
models temporal patterns such as level, trend and seasonality (cf. supplementary material for details).
In this model, labelled as RSGLS-ISSM, the dimension of the state xt and the transition and emission
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CRPS rolling

exchange solar electricity traffic wiki

DeepAR 0.009±0.001 0.357±0.002 0.057±0.003 0.120±0.003 0.281±0.008
DeepState 0.010±0.001 0.379±0.002 0.071±0.000 0.131±0.002 0.296±0.007
KVAE-MC 0.010±0.000 0.377±0.005 0.319±0.010 0.233±0.014 0.276±0.028
KVAE-RB 0.009±0.000 0.384±0.005 0.296±0.024 0.179±0.001 0.245±0.004
RSGLS-ISSM (ours) 0.007±0.000 0.355±0.004 0.070±0.001 0.148±0.003 0.248±0.006
ARSGLS (ours) 0.009±0.000 0.369±0.008 0.138±0.003 0.136±0.005 0.217±0.010

CRPS long-term

DeepAR 0.019±0.002 0.440±0.004 0.062±0.004 0.138±0.001 0.855±0.552
DeepState 0.017±0.002 0.379±0.002 0.088±0.007 0.131±0.005 0.338±0.017
KVAE-MC 0.020±0.001 0.389±0.005 0.318±0.011 0.261±0.016 0.341±0.032
KVAE-RB 0.018±0.001 0.393±0.006 0.305±0.022 0.221±0.002 0.317±0.013
RSGLS-ISSM (ours) 0.014±0.001 0.358±0.001 0.091±0.004 0.206±0.002 0.345±0.010
ARSGLS (ours) 0.022±0.001 0.371±0.007 0.154±0.005 0.175±0.008 0.283±0.006

Table 1: CRPS metrics (lower is better). Mean and std. deviation are computed over 4 independent runs for our
method and 3 runs for the competing methods. The method achieving the best result is highlighted in bold.

Figure 3: 20 time-steps of groundtruth (1st row) and 3 random trajectories from forecast distribution (remaining
rows) for ARSGLS on box dataset. Forecasts were generated after 20 filtering time-steps (not shown).

matrices A and C are pre-defined and not learned; for this model, we do not use the non-linear
emission model from Sec. 3.2. The second model, labelled ARSGLS, uses a general, unrestricted GLS;
here we use the complete model, including a non-linear emission model. We compare to two closely
related methods, i.e. DeepState [30] and KVAE [11], and a strong baseline that uses an autoregressive
RNN (DeepAR) [33]. DeepState is implemented with the same ISSM structure as RSGLS-ISSM,
whereas KVAE is implemented with the same unconstrained GLS and measurement model as ARSGLS.
Furthermore, we note that the objective function proposed in [11] uses samples from the smoothing
distribution. However, in line with this work, the corresponding expectation can be computed in
closed-form; the resulting objective function has lower variance. We implemented both objective
functions, denoting them as KVAE-MC (Monte Carlo) and KVAE-RB (Rao-Blackwellised), respectively.

We use data prior to a fixed forecast date for training and test the forecasts on the remaining data.
The probabilistic forecasts are conditioned on the training range and computed with 100 samples
for each method. We evaluate in a rolling fashion and with a single long-term forecast. In case of
daily/hourly data, the rolling evaluation uses 5/7 windows each with a forecast covering 30 days/24
hours; long-term evaluation uses all 5/7 windows (i.e. 150 days/168 hours) without updating the
model with the new data. We score forecasts using the continuous ranked probability score (CRPS)
[25].

CRPS(F−1, y) =

∫ 1

0

2Λα(F−1(α), y)dα, (15)

where Λα(q, y) = (α − I[y<q])(y − q) is the quantile loss at the quantile level α ∈ [0, 1], q is the
predicted α-th quantile level and y is the observation. The results are summarised in Tab. 1. Both
of our model variants compare favorably or similarly to their respective closely related competitive
model (i.e. RSGLS-ISSM and DeepState; ARSGLS and KVAE). Only the auto-regressive baseline
DeepAR remains challenging on 2/5 datasets.

5.3 Simulated physical environments

We evaluate our model for unsupervised forecasting of high-dimensional multivariate data streams
(video), emitted from simulated physical environments. To this end, we consider the 4 synthetic
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Figure 4: Wasserstein distance in filter/smoothing (ARSGLS/ KVAE) range (t < 20) and forecast range (t ≥ 20).
Results are averaged over 1000 test samples and 3 independent runs.

video datasets (Box, Box-Gravity, Polygon, Pong) used in [11], consisting of streams of 32× 32
binary images of an object moving in an environment and colliding with walls. We compare our
model to the KVAE-MC (proposed in [11]) and our Rao-Blackwellised version KVAE-RB cf. 5.2). We
use the same model architecture as in [11], except that each model has 10-dimensional states and
10 base matrices (cf. App. 7.7.3 for more details). All models are trained on 5000 time-series of 20
time-steps. We visualise forecasted trajectories in Fig. 3.

Next, we test the learned hidden dynamics quantitatively, comparing the forecasts to the true data.
This is challenging for image data: standard metrics such as predictive log-likelihood, (pixel-wise)
accuracy or squared error do not differentiate between small and large dis-placements of object in the
environment (e.g. if all pixels corresponding to the object are falsely predicted). Interpreting these
binary images as a 2D distribution over the xy-positions of the objects in the scene, we propose to
score the models using the Wasserstein metric with the Euclidean norm as distance function:

D(yτ , ŷτ ) =

∫
W(yτ , ŷτ )p(ŷτ | y1:t)dŷτ , (16)

where p(ŷτ | y1:t) is the forecast distribution (time-steps τ > t) or predictive distribution from the
filter (t = τ ). The natural interpretation of this metric is the minimum average distance (in pixel
coordinates) needed to move each pixel from the forecast to its true position in the xy-plane. We
approximate p(ŷτ | y1:t) =

∫
p(ŷτ | zt,xt, st)p(zt,xt, st | y1:t)dztxtst (no st in KVAE) using

32 samples and Monte Carlo integration. We evaluate the metric from Eq. (16)—averaged over
3 independent runs and 1000 test data points—for 20 time-steps of filtering (in case of ARSGLS)
and smoothing (in case of KVAE) and 40 time-steps forecasting. Results (Fig. 4) show that ARSGLS
produces more accurate forecasts.

6 Conclusion

In this work, we proposed an extension of the classical SGLS that addresses two weaknesses, while
leaving the conditional tractability of this model intact. We improve the forecasting capabilities by
conditionally linear state-to-switch recurrence with Gaussian switch variables, keeping the conditional
tractability of the GLS intact. Furthermore, we augment the emission model by an auxiliary variable
that allows for modelling multi-variate and non-Gaussian observations with complex non-linear
transformations such as convolutional neural networks. We leverage the conditional linear structure
of this model using Rao-Blackwellised particle filtering and we propose a corresponding Monte
Carlo objective for parameter estimation. Experiments on popular time series forecasting datasets
and simulated video data from physical environments demonstrate improvements compared to other
deep state-space model approaches.

This work offers several interesting research directions: the proposed approach can be generalised to
hierarchical models, interleaving linear and non-linear variables; observed data and the corresponding
ladder-encoder can be extended to handle multimodal and missing data similar to [19]; offline
inference can be done through Rao-Blackwellised particle smoothing [22] and used for learning with
a corresponding variational EM objective function; finally, the model parameters may be inferred
by means of a variational Bayesian approximation [7] with further extensions to online learning
scenarios under data drift [18].
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Broader impact

This paper stems from the author’s work on time series forecasting and anomaly detection in industrial
settings. The proposed methods are applicable to forecasting from univariate and multivariate data
streams more generally. Business applications include supply chain monitoring and sales prediction.
Furthermore, accurate forecasts allows better resource management, such as waste reduction and
optimisation of energy consumption.

Funding disclosure

This work was funded by Amazon Research.

References
[1] G Ackerson and K Fu. On state estimation in switching environments. IEEE Transactions on

Automatic Control, 15:10–17, 1970.

[2] I. Arasaratnam and S. Haykin. Cubature kalman filters. IEEE Transactions on Automatic
Control, 54:1254–1269, 2009.

[3] I. Arasaratnam, S. Haykin, and R. J. Elliott. Discrete-time nonlinear filtering algorithms using
gauss–hermite quadrature. Proceedings of the IEEE, 95:953–977, 2007.

[4] Yaakov Bar-Shalom and Xiao-Rong Li. Estimation and Tracking: Principles, Techniques, and
Software. Artech House, 1993.

[5] David Barber. Expectation correction for smoothed inference in switching linear dynamical
systems. J. Mach. Learn. Res., 7:2515–2540, 2006.

[6] Philip Becker-Ehmck, Jan Peters, and Patrick Van Der Smagt. Switching linear dynamics
for variational Bayes filtering. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97, pages
553–562. PMLR, 2019.

[7] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. volume 37 of Proceedings of Machine Learning Research, pages 1613–1622.
PMLR, 2015.

[8] J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter for nonlinear problems. IEE
Proceedings - Radar, Sonar and Navigation, 146:2–7, 1999.

[9] Pierre Del Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems With
Applications. 2004.

[10] Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Russell. Rao-blackwellised
particle filtering for dynamic bayesian networks. In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, UAI ’00, page 176–183. Morgan Kaufmann Publishers
Inc., 2000.

[11] Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recogni-
tion and nonlinear dynamics model for unsupervised learning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 3601–3610. Curran Associates, Inc., 2017.

[12] Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching state-space
models. Neural Computation, 12:831–864, 2000.

[13] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-gaussian
bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140:107–113(6),
1993.

10



[14] Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with exponential
smoothing: the state space approach. Springer Science & Business Media, 2008.

[15] Maximilian Karl, Maximilian Sölch, Justin Bayer, and Patrick van der Smagt. Deep variational
bayes filters: Unsupervised learning of state space models from raw data. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

[16] Genshiro Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state space
models. Journal of Computational and Graphical Statistics, 5:1–25, 1996.

[17] Rahul G. Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear
state space models. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
page 2101–2109. AAAI Press, 2017.

[18] Richard Kurle, Botond Cseke, Alexej Klushyn, P. V. D. Smagt, and Stephan Günnemann.
Continual learning with bayesian neural networks for non-stationary data. In ICLR, 2020.

[19] Richard Kurle, Stephan Günnemann, and P. V. D. Smagt. Multi-source neural variational
inference. In AAAI, 2019.

[20] Tuan Anh Le, Maximilian Igl, Tom Jin, Tom Rainforth, and Frank Wood. Auto-encoding
sequential monte carlo. 2017.

[21] Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam
Paninski. Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems.
In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, volume 54, pages 914–922. PMLR, 20–22 Apr 2017.

[22] F. Lindsten, P. Bunch, S. Särkkä, T. B. Schön, and S. J. Godsill. Rao-blackwellized particle
smoothers for conditionally linear gaussian models. IEEE Journal of Selected Topics in Signal
Processing, 10(2):353–365, 2016.

[23] Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy
Mnih, Arnaud Doucet, and Yee Whye Teh. Filtering variational objectives. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 6573–6583. Curran Associates, Inc., 2017.

[24] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. ArXiv, 2016.

[25] James E. Matheson and Robert L. Winkler. Scoring rules for continuous probability distributions.
Management Science, 22:1087–1096, 1976.

[26] P. S. Maybeck. Stochastic Models, Estimation and Control. Mathematics in science and
engineering. Academic Press, 1982.

[27] Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, 2001.

[28] Andriy Mnih and Danilo J. Rezende. Variational inference for monte carlo objectives. In
Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, page 2188–2196. JMLR.org, 2016.

[29] Christian A. Naesseth, Scott W. Linderman, Rajesh Ranganath, and David M. Blei. Variational
sequential Monte Carlo. In 21st International Conference on Artificial Intelligence and Statistics
(AISTATS 2018), pages 968–977, January 2018.

[30] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang,
and Tim Januschowski. Deep state space models for time series forecasting. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 7785–7794. Curran Associates, Inc., 2018.

[31] Sam Roweis and Zoubin Ghahramani. A unifying review of linear Gaussian models. Neural
Computation, 11:305–345, 1999.

11



[32] David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus.
High-dimensional multivariate forecasting with low-rank gaussian copula processes. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 6827–6837. Curran Associates, Inc., 2019.

[33] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. DeepAR: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 2019.

[34] Matthias Seeger, Syama Rangapuram, Yuyang Wang, David Salinas, Jan Gasthaus, Tim
Januschowski, and Valentin Flunkert. Approximate Bayesian inference in linear state space
models for intermittent demand forecasting at scale. arXiv preprint arXiv:1709.07638, 2017.

[35] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder variational autoencoders. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, page 3745–3753. Curran Associates Inc., 2016.

[36] E. A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear estimation. In
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and
Control Symposium (Cat. No.00EX373), pages 153–158, 2000.

[37] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 2746–2754. Curran Associates, Inc., 2015.

[38] Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic Models (2nd Ed.). Springer,
1997.

[39] Onno Zoeter and Tom Heskes. Change point problems in linear dynamical systems. J. Mach.
Learn. Res., 6:1999–2026, 2005.

12


