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Reviewer 1:2

Discrete Laplace comparison: We consider the comparison with prior related work to be important, as it3

highlights the value of our discrete Gaussian over the discrete Laplace. This comparison is crucial to help the4

reader/practicioner(/reviewer) weigh the pros and cons of each method. Unfortunately, the advantages of the5

Gaussian over the Laplace are not as widely known as they should be, so we consider it worthwhile to reiterate6

this. Nonetheless, we will consider reallocating space in the final version.7

Runtime analysis: The running time of our algorithm can be shown to be subexponential (measured by8

the number of arithmetic operations, where the bit complexity of each operation is determined by the bit9

complexity of the input parameters). We will add a statement on this to the final version of the main document.10

(Currently there is a brief discussion in the supplement, which we will flesh out into a full proof.)11

Sampling Algorithm: We like our algorithm and consider it to be a contribution, as it is simpler than the prior12

work by Karney. However, we chose not to emphasize it because there is prior work; instead we emphasized13

our other contributions which are more clearly novel. We also did not want to dedicate space to a comparison14

with Karney’s algorithm.15

Reviewer 2:16

Technical content: The technical contribution of the paper is to solve the problem of practical implementation17

of differentially private noise addition. We combine a number of techniques to solve the problem. We agree18

that some of the techniques that we apply, such as the Poisson summation formula, are known within certain19

communities. However, to the best of our knowledge, these techniques are not well known to the NeurIPS and20

Privacy communities, and have not been applied before in this context. Furthermore, we believe that all of21

our lemmata and theorems are novel and fundamental statements. Additionally, the focus of the cryptography22

community is specifically on the high-dimensional discrete Gaussian, which is crucially believed to be hard23

to sample as the dimension grows, a desirable feature for cryptographic applications; while we rely on the24

efficient sampling for the univariate case. In that sense, the viewpoint and goals are fundamentally different.25

Reviewer 3:26

Parameterization of CDP: The parameterizations ρ-CDP and ε2

2 -CDP are interchangeable. We prefer the latter27

as it puts CDP on the same familiar “scale” as pure ε-DP and approximate (ε, δ)-DP (indeed, ε-DP implies28

ε2

2 -CDP which in turn implies (O(ε
√

log(1/δ)), δ)-DP) – i.e., people are more accustomed to ε as a privacy29

parameter than ρ. We revert to ρ when we are comparing CDP with approx DP as otherwise the parameter ε30

would be overloaded. We will make this correspondence of ρ = ε2

2 more explicit in the final version.31

Numerical comparison of RDP to DP conversion with previous results: We did not include the comparison32

because the numerical instability issues created weird artifacts in our plots. The code for the plots is included in33

the supplementary material and this comparison can be added to the plot by simply changing numeric=False34

to numeric=True at the end of the file and re-running the code. The resulting plots are included below.35

Figure 1: Numerical comparison of RDP to DP conversion with previous results


