
We are grateful to the reviewers for their time and comments. In the rest of this rebuttal, we address their questions in1

order, tagging the reviewers concerned in each as #RX.2

#R1: Examples of learning with inexact models. The reviewer is stating as a foremost concern the contention that3

we are not discussing settings and examples captured by our framework (other than the bandit case). This is factually4

incorrect: we are providing a detailed description of such a setting in Lines 143-153, at the end of Section 2. In5

this example (online clique prediction), the optimizer gets an imperfect observation Ât of the adjacency matrix At of6

the underlying, time-varying graph Gt (a social network, a feature map, etc.), and reconstructs the actual payoff model7

via the Motzkin-Straus theorem. As we explain in the text, the quality of the constructed model depends linearly on8

the accuracy of Ât as an estimator. In applications to social networks (see for example the highly cited paper [18] by9

Fortunato), Ât is typically obtained by mapping out a random portion of the graph starting with its most central nodes;10

as a result, Ât – and hence ût – has exponentially small bias. In this way, the online clique prediction problem satisfies11

all the requirements of the “inexact model” framework and requires its full capacity.12

We will be happy to use the extra page to expand our description of the online clique example and/or add others (e.g.,13

online path planning with variable traffic demands; see also the point on parametric models below). Since this was the14

reviewer’s foremost concern, we hope that the above clarifies the merits of our work.15

#R1: Unbiased feedback in Krichene et al. The reviewer is incorrect in claiming that Krichene et al. already deal16

with unbiased stochastic feedback: please see Algorithms 1 and 2 of Krichene et al. where it is clearly specified that the17

optimizer receives perfect, deterministic information on the loss functions, not stochastic observations thereof.18

#R1#R3: Open question of Krichene et al. The last phrase of the published ICML paper of Krichene et al. reads:19

“One question is whether one can generalize the Hedge algorithm to such a bandit setting, so that20

sublinear regret can be achieved without the need to explicitly maintain a cover”.21

The Hedge variant of Algorithm 2 provides exactly such a generalization, i.e., it achieves sublinear regret with bandit22

feedback and without needing to explicitly maintain a covering grid. We hope that this resolves any doubts.23

#R1#R3: Infinite-dimensional input. In many practical applications, constructing an inexact model does not require24

infinite-dimensional feedback. A prime example is parametric models of the form ut ≡ u(·; θt) where θt is a partially25

observable, time-varying vector of parameters. This makes our framework applicable to a very wide range of relevant26

problems that do not require infinite-dimensional input. This is a key feature of the “inexact models” setting.27

#R1: Benefits over Besbes et al. We will rephrase accordingly; at the same time, please note that the dynamic regret28

framework focuses by necessity on slowly varying loss functions, so forgetting the past could be a severe drawback.29

#R1: Missing references. The cited references mainly concern stochastic bandits, not adversarial problems. This is a30

drastically different setting with incompatible results and guarantees; we will cite these papers to explain this in detail.31

#R1: On covering nets. An extended discussion on covering nets had already appeared in Krichene et al., so we did32

not deem it relevant to repeat one here. However, we will gladly use the extra page to discuss this.33

#R2: On the problem of Eq. (7). Indeed, a badly chosen ψ could make (7) intractable. However, ψ is chosen by34

the optimizer, a fact which mitigates this problem. In particular, we provide a series of examples with closed form35

expressions – like Hedge (our centerpiece algorithm) and the decomposable regularizers that we discuss in Appendix A.36

#R2: On the structure of K. We clarify in the beginning of the paper that K is assumed convex (see Lines 13-14).37

#R2: On knowing ν in Theorem 2. Please note that this is a very difficult unsolved problem, even in the context38

of online linear optimization with unbiased stochastic input. [Certain papers [15,24] have proposed online convex39

optimization methods that adapt to ν with perfect, deterministic input, but the imperfect information case remains open.]40

#R3: Approximating pt. Yes, representing pt as a finite-dim. object is exactly why we focus on simple strategies.41

#R3: On Agarwal et al. Please note that Agarwal et al. also requires full knowledge of the loss functions (see (1) in42

Alg. 1), so its information requirements are the same as Krichene et al. – and hence heavier than an inexact model.43

#R3: On σt andMt. Good point, thanks! Indeed, since K is compact, there is little point in the distinction, will do.44

#R3: On the role of C. Good point, we understand how this can be confusing. As the reviewer suggests, we will45

explain in the main text that C is only needed for the analysis, not the derived bounds.46

#R3: On the tightness of O(
√
T ). This was shown rigorously by Abernethy et al. [1], we will give an exact pointer.47

#R1#R4: On experiments. On R4’s comment, we would like to point out that we already provide experiments in48

App. E; on R1’s comment, we can provide a github link with all code and notebooks for running the various experiments.49

#R4: On convex vs. concave. We understand R4’s presentation concern, we will do a sweep to minimize switches.50

#R4: Tabulation of previous bounds. Excellent suggestion, will do.51


