
We would like to thank the four reviewers for their feedback. We first discuss the common concern about our1

contributions and novelty shared by reviewer 2, reviewer 3 as follows.2

•• Key Contributions & Novelty: While the algorithm design idea of combining SPIDER and EM can be natural, this3

paper involves a significant work in the convergence analysis technique and gives new insights to deriving future4

stochastic EM algorithms. We highlight four particular challenges and contributions: (A) EM is not a gradient-based5

algorithm, while SPIDER is designed for accelerating gradient algorithm. The convergence analysis of EM-based6

algorithms can not be deduced from that of gradient-based procedures: they require a specific study. As a key observation7

to outline this difference, note that EM can be equivalently studied in the parameter space and in the expectation space -8

which is not the case for the gradient methods. (B) Among the incremental-EM techniques, we provide state-of-the art9

complexity bounds that overpass all the previous ones. (C) Contrary to previous incremental EM algorithms [6,15],10

the approximate mean field Hk+1 is biased except at the beginning of the epoch (Lemma 4, Corollary 5). A main11

novelty of the proof is therefore to show that the squared error when approximating the mean field, is of the same12

order as the squared of the approximation (Proposition 6) - contrary to previous EM-based proofs, the usual martingale13

increment property no longer holds, thus requiring a novel approach for the control of this error. (D) We provide a new14

perspective to interpret SPIDER-EM by showing its equivalence to a perturbed Online-EM where the perturbation acts15

as a control variate in order to reduce the variance (see Section 5).16

Reviewer 1. We thank the reviewer for the careful review of our paper. Please find our response as follows.17

Linear Convergence: The reviewer has made a mindful observation. Indeed, in Fig. 3, SPIDER-EM appears to converge18

linearly, i.e., faster than our theory’s prediction. We speculate that this is due to a local strong convexity condition of19

W(·) around a local minimum statistics ŝ, after SPIDER-EM reaches a neighborhood of ŝ. This condition was never20

made in our analysis, however it has been used as an assumption in sEM-vr without verification. Nevertheless, under21

this condition, we can show local linear convergence for SPIDER-EM. The proof idea will be included in the final22

version. Lastly, Balakrishnan et al. consider a non-incremental, first order EM that optimizes θ via gradient ascent, this23

is different from SPIDER-EM that operates on the statistics (Ŝ), this reference will be included in the final version.24

Complexity Guarantee with b = O(1): This can be easily derived from Theorem 2. If b � na, kin � nc in the case25

c ≥ a ≥ 0, then the overall complexity will be KCE(n, ε) = n+O(nmax{ a+c
2 ,1− a+c

2 }ε−1), KOpt(n, ε) = O(n
c−a
2 ε−1).26

Setting b = O(1) or equivalently a = 0 will lead to a tradeoff in complexity in terms of the number of parameter27

updates and of conditional expectations computed. We will include a discussion for these general settings.28

Comparison to Karimi et al.: The quasi-gradient interpretation of the E-step updates (see Proposition 1 and H5) is29

similar to those from Karimi et al. which analyzed the online EM, and the same technique has also been used in [8,15].30

Our analysis are different as there are additional complexity due to the biased, variance reduced estimator, note that31

this improves the convergence rate from O(1/ε2) (online EM) to O(
√
n/ε) (SPIDER-EM). That said, Karimi et al. is32

relevant to this work, which we will discuss in the final version.33

Second Order Stationary (SOS) point: This is an interesting question. The difficulty in applying the analysis for34

SOS point from [10] lies on the non-gradient update nature of SPIDER-EM. In fact, the procedures in Sec. 3.3. from35

[10] hinge on the availability of approximate Hessian. To our best knowledge, the convergence to SOS point has not36

been studied in the context of incremental EM. A possible solution is to apply the Louis’s missing info. principle [8]37

to estimate the Hessian of the log-likelihood, and thus diagnosing if the stationary point is SOS. We will include a38

discussion about the challenge in the final version.39

Reviewer 2: Thank you for the careful review of our paper. As per your suggestion, we will include a table in the final40

paper that compares the complexity results to existing works [also see the response on Complexity with b = O(1)].41

We emphasize that our contributions are beyond an application of SPIDER on EM algorithm. Instead, as explained in42

the beginning of this rebuttal, our analysis involve non-trivial proof techniques to bound the error of approximation to43

the mean field (non-gradient) update of SPIDER-EM. This analysis is different from sEM-vr, FIEM in [6,15] (inspired by44

SVRG, SAGA) while the approximate mean field for SPIDER-EM is biased. With such challenges, it is not obvious that45

the analysis of SPIDER can be directly applied to SPIDER-EM. In fact, our algorithm design/analysis is only inspired46

by SPIDER, for it involves a brand new analysis on incremental-EM algorithms.47

Reviewer 3: Thank you for the careful review and positive feedback. We have addressed your comments regarding the48

contributions and novelty in the beginning of this rebuttal. In the final version, we will include a highlight about them.49

Reviewer 4: Thank you for the careful review and positive feedback. Here are the specific answers to the comments.50

Assumptions H4.3 and H5: These assumptions are actually classical in the analysis of incremental/stochastic EM51

algorithms - a relevant reference is [15], where explicit examples satisfying H4.3, H5 are provided. In fact, B(s) can be52

written in terms of the Hessian of the function in H3, which is positive definite if the map T(s) is unique. As shown in53

[15], this holds for a number of distributions such as GMM when R(θ) is a properly designed barrier function.54

Parameter/Statistics Space: We emphasize that it is essential for the EM algorithm to work alternatively in the55

expectation space (E-step) and the parameter space (M-step). However, we agree that the present writing is not optimal56

and we will try to streamline the discussions in the final version.57


