
Supplementary

A Model Implementation Details

Code for our implementation can be found at https://github.com/MilesCranmer/symbolic_
deep_learning. Here we describe how one can implement our model from scratch in a deep
learning framework. The main argument in this paper is that one can apply strong inductive biases to
a deep learning model to simplify the extraction of a symbolic representation of the learned model.
While we emphasize that this idea is general, in this section we focus on the specific Graph Neural
Networks we have used as an example throughout the paper.

A.1 Basic Graph Representation

We would like to use the graph G = (V,E) to predict an updated graph G′ = (V ′, E). Our input
dataset is a graph G = (V,E) consisting of Nv nodes with Lv features each: V = {vi}i=1:Nv ,

with each vi ∈ R
Lv

. The nodes are connected by Ne edges: E = {(rk, sk)}k=1:Ne , where
rk, sk ∈ {1 : Nv} are the indices for the receiving and sending nodes, respectively. We would like

to use this graph to predict another graph V ′ = {v′
i}i=1:Nv , where each v′

i ∈ R
Lv′

is the node
corresponding to vi. The number of features in these predicted nodes, Lv′, need not necessarily be
the same as for the input nodes (Lv), though this could be the case for dynamical models where one
is predicting updated states of particles. For more general regression problems, the number of output
features is arbitrary.

Edge model. The prediction is done in two parts. We create the first neural network, the edge model

(or “message function”), to compute messages from one node to another: φe : RLv

× R
Lv

→ R
Le′

.

Here, Le′ is the number of message features. In the bottleneck model, one sets Le′ equal to the known

dimension of the force, which is 2 or 3 for us. In our models, we set Le′ = 100 for the standard and
L1 models, and 200 for the KL model (which is described separately later on). We create φe as a
multi-layer perceptron with ReLU activations and two hidden layers, each with 300 hidden nodes.
The mapping is e′k = φe(vrk ,vsk) for all edges indexed by k (i.e., we concatenate the receiving and
sending node features).

Aggregation. These messages are then pooled via element-wise summation for each receiving

node i into the summed message, ē′i ∈ R
Le′

. This can be written as ē′i =
∑

k∈{1:Ne|rk=i} e
′
k.

Node model. We create a second neural network to predict the output nodes, v′
i, for each i from the

corresponding summed message and input node. This net can be written as φv : RLv

×R
Le′

→ R
Lv′

,
and has the mapping: v̂′

i = φv(vi, ē
′
i), where v̂′

i is the prediction for v′
i. We also create φv as a

15

https://github.com/MilesCranmer/symbolic_deep_learning
https://github.com/MilesCranmer/symbolic_deep_learning

multi-layer perceptron with ReLU activations and two hidden layers, each with 300 hidden nodes.
This model is then trained with the loss function as described later in this section.

Summary. We can write out our forward model for the bottleneck, standard, and L1 models as:

Input graph G = (V,E) with

nodes (e.g., positions of particles) V = {vi}i=1:Nv ; vi ∈ R
Lv

, and

edges (indices of connected nodes) E = {(rk, sk)}k=1:Ne ; rk, sk ∈ {1 : Nv}.

Compute messages for each edge: e′k = φe(vrk ,vsk),

e′k ∈ R
Le′

, then

sum for each receiving node i : ē′i =
∑

k∈{1:Ne|rk=i}

e′k,

ē′i ∈ R
Le′

.

Compute output node prediction: v̂′
i = φv(vi, ē

′
i)

v̂′
i ∈ R

Lv′

.

Loss. We jointly optimize the parameters in φv and φe via mini-batch gradient descent with Adam
as the optimizer. Our total loss function for optimizing is:

L = Lv + α1Le + α2Ln, where

the prediction loss is Lv =
1

Nv

∑

i∈{1:Nv}

∣

∣v′
i − v̂′

i

∣

∣,

the message regularization is Le =
1

Ne







∑

k∈{1:Ne}

∣

∣e′k

∣

∣, L1

0, Standard
0, Bottleneck

,

with the regularization constant α1 = 10−2, and the

regularization for the network weights is Ln =
∑

l={1:N l}

|wl|
2
,

with α2 = 10−8,

where v′
i is the true value for the predicted node i. wl is the l-th network parameter out

of N l total parameters. This implementation can be visualized during training in the video
https://github.com/MilesCranmer/symbolic_deep_learning. During training, we also ap-
ply a random translation augmentation to all the particle positions to artificially generate more training
data.

Next, we describe the KL variant of this model. Note that for the cosmology example in section 4.3,
we use the L1 model described above with 500 hidden nodes (found with coarse hyperparameter
tuning to optimize accuracy) instead of 300, but other parameters are set the same.

A.2 KL Model

The KL model is a variational version of the GN implementation above, which models the messages
as distributions. We choose a normal distribution for each message component with a prior of
µ = 0, σ = 1. More specifically, the output of φe should now map to twice as many features as it

is predicting a mean and variance, hence we set Le′ = 200. The first half of the outputs of φe now
represent the means, and the second half of the outputs represent the log variance of a particular

16

https://github.com/MilesCranmer/symbolic_deep_learning

message component. In other words,

µ
′
k = φe

1:100(vrk ,vsk),

σ
′2
k = exp

(

φe
101:200(vrk ,vsk)

)

,

e′k ∼ N (µ′
k, diag(σ′2

k)),

ē′i =
∑

k∈{1:Ne|rk=i}

e′k,

v̂′
i = φv(vi, ē

′
i),

where N is a multinomial Gaussian distribution. Every time the graph network is run, we calculate
the mean and log variance of messages, sample each message once to calculate e′k, and pass those
samples through a sum to compute a sample of ē′i and then pass that value through the edge function
to compute a sample of v̂′

i. The loss is calculated normally, except for Le, which becomes the KL
divergence with respect to our Gaussian prior of µ = 0, σ = 1:

Le =
1

Ne

∑

k={1:Ne}

∑

j={1:Le′/2}

1

2

(

µ′2
k,j + σ′2

k,j − log
(

σ′2
k,j

)

)

,

with α1 = 1 (equivalent to β = 1 for the loss of a β-Variational Autoencoder; simply the standard
VAE). The KL-divergence loss also encourages sparsity in the messages e′k similar to the L1 loss.
The difference is that here, an uninformative message component will have µ = 0, σ = 1 (a KL of 0)
rather than a small absolute value. We train the networks with a decaying learning schedule as given
in the example code.

A.3 Constraining Information in the Messages

The hypothesis which motivated our graph network inductive bias is that if one minimizes the
dimension of the vector space used by messages in a GN, the components of message vectors will
learn to be linear combinations of the true forces (or equivalent underlying summed function) for
the system being learned. The key observation is that e′k could learn to correspond to the true force
vector imposed on the rk-th body due to its interaction with the sk-th body.

Here, we sketch a rough mathematical explanation of our hypothesis that we will reconstruct the true
force in the graph network given our inductive biases. Newtonian mechanics prescribes that force
vectors, fk ∈ F , can be summed to produce a net force,

∑

k fk = f̄ ∈ F , which can then be used to
update the dynamics of a body. Our model uses the i-th body’s pooled messages, ē′i to update the
body’s state via v′

i = φv(vi, ē
′
i). If we assume our GN is trained to predict accelerations perfectly

for any number of bodies, this means (ignoring mass) that f̄i =
∑

rk=i fk = φv(vi,
∑

rk=i e
′
k) =

φv(vi, ē
′
i). Since this is true for any number of bodies, we also have the result for a single interaction:

f̄i = fk,rk=i = φv(vi, e
′
k,rk=i) = φv(vi, ē

′
i). Thus, we can substitute this expression into the

multi-interaction case:
∑

rk=i φ
v(vi, e

′
k) = φv(vi, ē

′
i) = φv(vi,

∑

rk=i e
′
k). From this relation, we

see that φv has to be a linear transformation conditioned on vi. Therefore, for cases where φv(vi, ē
′
i)

is invertible in ē′i (which becomes true when ē′i is the same dimension as the output of φv), we can
write e′k = (φv(vi, ·))

−1(fk), which is also a linear transform, meaning that the message vectors are

linear transformations of the true forces when Le′ is equal to the dimension of the forces.

If the dimension of the force vectors (or what the minimum dimension of the message vectors “should”
be) is unknown, one can encourage the messages to be sparse by applying L1 or Kullback-Leibler
regularizations to the messages in the GN. The aim is for the messages to learn the minimal vector
space required for the computation automatically. This is a more mathematical explanation of why the
message features are linear combinations of the force vectors, when our inductive bias of a bottleneck
or sparse regularization is applied. We emphasize that this is a new contribution: never before has
previous work explicitly identified the forces in a graph network.

General Graph Neural Networks. In all of our models here, we assume the dataset does not have
edge-specific features, such as a different coupling constants between different particles, but these
could be added by concatenating edge features to the receiving and sending node input to φe. We
also assume there are no global properties. The graph neural network is described in general form
in [4]. All of our techniques are applicable to the general form: one would approximate φe with a
symbolic model with included input edge parameters, and also fit the global model, denoted φu.

17

A.4 Flattened Hamiltonian Graph Network.

As part of this study, we also consider an alternate dynamical model that is described by a linear
latent space other than force vectors. In the Hamiltonian formalism of classical mechanics, energies
of pairwise interactions and kinetic and potential energies of particles are pooled into a global energy
value, H, which is a scalar. We label pairwise interaction energy Hpair and the energy of individual
particles as Hself. Thus, using our previous graph notation, we can write the total energy of a system
as:

H =
∑

i=1:Nv

Hself(vi) +
∑

k∈{1:Ne}

Hpair(vrk ,vsk). (1)

For particles interacting via gravity, this would be

H =
∑

i

p2i
2mi

−
1

2

∑

i 6=j

mimj
∣

∣ri − rj
∣

∣

, (2)

where pi,mi, ri indicates the momentum, mass, and position of particle i, respectively, and we have
set the gravitational constant to 1. Following [45, 44], we could model H as a neural network, and
apply Hamilton’s equations to create a dynamical model. More specifically, as in [44], we can predict
H as the global property of a GN (this is called a Hamiltonian Graph Network or HGN). However,
energy, like forces in Cartesian coordinates, is a summed quantity. In other words, energy is another
“linear latent space” that describes the dynamics.

Therefore, we argue that an HGN will be more interpretable if we explicitly sum up energies over
the system, rather than compute H as a global property of a GN. Here, we introduce the “Flattened
Hamiltonian Graph Network,” or “FlatHGN”, which uses eq. (1) to construct a model that works on a
graph. We set up two Multi-Layer Perceptrons (MLPs), one for each node:

Hself : R
Lv

→ R, (3)

and one for each edge:

Hpair : R
Lv

× R
Lv

→ R. (4)

Note that the derivatives of H now propagate through the pool, e.g.,

∂H(V)

∂vi
=

∂Hself(vi)

∂vi
+

∑

rk=i

∂Hpair(ek,vrk ,vsk)

∂vi
(5)

+
∑

sk=i

∂Hpair(ek,vrk ,vsk)

∂vi
.

This model is similar to the Lagrangian Graph Network proposed in [47]. Now, should this FlatHGN
learn energy functions such that we can successfully model the dynamics of the system with Hamil-
ton’s equations, we would expect that Hself and Hpair should be analytically similar to parts of the
true Hamiltonian. Since we have broken the traditional HGN into a FlatHGN, we now have pairwise
and self energies, rather than a single global energy, and these are simpler to extract and interpret.
This is a similar inductive bias to the GN we introduced previously. To train a FlatHGN, one can
follow our strategy above, with the output predictions made using Hamilton’s equations applied to
our H. One difference is that we also regularize Hpair, since it is degenerate with Hself in that it can
pick up self energy terms.

B Simulations

Our simulations for sections 4.1 and 4.2 were written using the JAX library (https://github.
com/google/jax) so that we could easily vectorize computations over the entire dataset of 10,000
simulations. Example “long exposures” for each simulation in 2D are shown in fig. 4. To create each
simulation, we set up the following potentials between two particles, 1 (receiving) and 2 (sending).
Here, r′12 is the distance between two particles plus 0.01 to prevent singularities. For particle i, mi

is the mass, qi is the charge, n is the number of particles in the simulation, ri is the position of a

18

https://github.com/google/jax
https://github.com/google/jax

Figure 4: Examples of a selection of simulations, for 4 nodes and two dimensions. Decreasing
transparency shows increasing time, and size of points shows mass.

particle, and ṙi is the velocity of a particle.

1/r2 : U12 = −m1m2/r
′
12

1/r : U12 = m1m2 log
(

r′12
)

Spring : U12 = (r′12 − 1)2

Damped : U12 = (r′12 − 1)2 + r1 · ṙ1/n

Charge : U12 = q1q2/r
′
12

Dicontinuous : U12 =

{

0, r′12 < 2
(r′12 − 1)2, r′12 ≥ 2

All variables lack units. Here, mi is sampled from a log-normal distribution with µ = 0, σ = 1. Each
component of ri and ṙi is randomly sampled from a normal distribution with µ = 0, σ = 1. qi is
randomly drawn from a set of two elements: {−1, 1}, representing charge. The acceleration of a
given particle is then

r̈i = −
1

mi

∑

j

∇ri
Uij . (6)

This is integrated over 1000 time steps of a fixed step size for a given random initial configuration
using an adaptive RK4 integrator. The step size varies for each simulation due to the differences
in scale. It is: 0.005 for 1/r, 0.001 for 1/r2, 0.01 for Spring, 0.02 for Damped, 0.001 for Charge,
and 0.01 for Discontinuous. Each simulation is performed in two and three dimensions, for 4 and 8
bodies. We store these simulations on disk. For training, the simulations for the particular problem
being studied are loaded, and each instantaneous snapshot of each simulation is converted to a fully
connected graph, with the predicted property (nodes of V ′, see appendix A) being the acceleration of
the particles at that snapshot.

The test loss of each model trained on each simulation set is given in table 3.

As described in the text (and visualized in the drive video), we can fit linear combinations of the true
force components to each of the significant features of a message vector. This fit is summarized by
table 1, and the fit itself is visualized in fig. 5 for various models on the 2D spring simulation.

19

Sim. Standard Bottleneck L1 KL FlatHGN

Charge-2 49 50 52 60 55
Charge-3 1.2 0.99 0.94 4.2 3.5
Damped-2 0.30 0.33 0.30 1.5 0.35
Damped-3 0.41 0.45 0.40 3.3 0.47
Disc.-2 0.064 0.074 0.044 1.8 0.075
Disc.-3 0.20 0.18 0.13 4.2 0.14

r−1-2 0.077 0.069 0.079 3.5 0.05

r−1-3 0.051 0.050 0.055 3.5 0.017

r−2-2 1.6 1.6 1.2 9.3 1.3

r−2-3 4.0 3.6 3.4 9.8 2.5
Spring-2 0.047 0.046 0.045 1.7 0.016
Spring-3 0.11 0.11 0.090 3.8 0.010

Table 3: Test prediction losses for each model on each dataset in two and three dimensions. The
training was done with the same batch size, schedule, and number of epochs.

Figure 5: The most significant message components of each model compared with a linear combina-
tion of the force components: this example, the spring simulation in 2D with eight nodes for training.
These plots demonstrate that the GN’s messages have learned to be linear transformations of the
vector components of the true force, in this case a springlike force, after applying an inductive bias to
the messages.

C Symbolic Regression Details

After training a model on each simulation, we convert a deep learning model to a symbolic expression
by approximating subcomponents of the model with symbolic regression, over observed inputs and
outputs. For our aforementioned GNN implementation, we can record the outputs of φe and φv for
various data points in the training set.

For models other than the bottleneck and Hamiltonian model (where we explicitly limit the features)
we calculate the most significant output features of φe (we also refer to the output features as “message
components”). For the L1 and standard model, this is done by sorting the message components
with the largest standard deviation; the most significant feature is the one with the largest standard
deviation, which are the features we study. For the KL model, we consider the feature with the
largest KL-divergence: µ2 + σ2 − log

(

σ2
)

. These features are the ones we consider to be containing
information used by the GN, so are the ones we fit symbolic expressions to.

As an example, here we fit the most significant feature, which we refer to as φe
1, over random examples

of the training dataset. We do this for the particle simulations in section 4.1. The inputs to the actual
φe
1 neural network are: m1,m2, q1, q2, x1, x2, . . . (mass, charge, and Cartesian positions of receiving

20

and sending node), leaving us with many examples of (m1,m2, q1, q2, x1, x2, . . . , φ
e
1). We would

like to fit a symbolic expression to map (m1,m2, q1, q2, x1, x2, . . .) → φe
1. To simplify things for this

symbolic model, we convert the input position variables to a more interpretable format: ∆x = x2−x1

for x displacement, likewise for y (and z, if it is a 3D simulation), and r =
√

∆x2 +∆y2 (+∆z2)
for distance.

We then pass these (m1,m2, q1, q2,∆x,∆y, (∆z,)r, φe
1) examples (we take 5000 examples for each

of our tests) to eureqa, and ask it to fit φe
1 as a function of the others by minimizing the mean

absolute error (MAE). We allow it to use the operators +,−,×, /, >,<, ^, exp, log, IF(·, ·, ·) as
well as real constants in its solutions. We score complexity by counting the number of occurrences
of each operator, constant, and input variable. We weight ^, exp, log, IF(·, ·, ·) as three times the
other operators, since these are more complex operations. eureqa outputs the best equation at
each complexity level, denoted by c. Example outputs are shown in table 4 for the 1/r and 1/r2

simulations. We select a formula from this list by taking the one that maximizes the fractional drop
in mean absolute error (MAE) over an increase in complexity from the next best model. This is
analogous to Occam’s Razor: we jointly optimize for simplicity and accuracy of the model. The
objective itself can be written as maximizing (−∆ log(MAEc)/∆c) over the best model at each
maximum complexity level, and is schematically illustrated in fig. 6. We find experimentally that this
score produces the best-recovered solutions in a variety of tests on different generating equations.

Following the process of fitting analytic equations to the messages, we fit a single analytic expression
to model φe

1 as a function of the simplified input variables. We recover many analytical expressions
that were used to generate the data, examples of which are listed below (a, b indicate learned
constants):

• Spring, 2D, L1 (expect φe
1 ≈ (a · (∆x,∆y))(r − 1) + b).

φe
1 ≈ 1.36∆y + 0.60∆x−

0.60∆x+ 1.37∆y

r
− 0.0025

• 1/r2, 3D, Bottleneck (expect φe
1 ≈ a·(∆x,∆y,∆z)

r3 + b).

φe
1 ≈

0.021∆xm2 − 0.077∆ym2

r3

• Discontinuous, 2D, L1 (expect φe
1 ≈ IF(r > 2, (a · (∆x,∆y,∆z))r, 0) + b).

φe
1 ≈ IF(r > 2, 0.15r∆y + 0.19r∆x, 0)− 0.038

Examples of failed reconstructions. Note that reconstruction does not always succeed, especially
for training strategies other than L1 or bottleneck models that cannot successfully find compact
representations of the right dimensionality. We demonstrate some failed examples below:

• Spring, 3D, KL (expect φe
1 ≈ (a · (∆x,∆y,∆z))(r − 1) + b).

φe
1 ≈ 0.57∆y + 0.32∆z

• 1/r, 3D, Standard (expect φe
1 ≈ a·(∆x,∆y,∆z)

r2 + b).

φe
1 ≈

0.041 +m2IF(∆z > 0, 0.021, 0.067)

r

We do not attempt to make any general statements about when symbolic regression applied to the
message components will fail or succeed in extracting the true law. Simply, we show that it is possible,
for a variety of physical systems, and argue that reconstruction is more likely by the inclusion of a
strong inductive bias in the network.

A full table of successes and failures in reconstructing the force law over the different n-body
experiments is given in table 5. While the equations given throughout the paper were generated with
eureqa, to create this table in particular, we switched from eureqa to PySR. This is because PySR
allows us to configure a controlled experiment with fixed hyperparameters and total mutation steps for
each force law, whereas Eureqa makes these controls inaccessible. However, given enough training
time, we found eureqa and PySR produced equivalent results for equations at this simplicity level.

21

Solutions extracted for the 2D 1/r2 Simulation MAE Complexity

φe
1 = 0.162 + (5.62 + 20.3m2∆x− 153m2∆y)/r3 17.954713 22

φe
1 = (6.07 + 19.9m2∆x− 154m2∆y)/r3 18.400224 20

φe
1 = (3.61 + 20.9∆x− 154m2∆y)/r3 42.323236 18

φe
1 = (31.6∆x− 152m2∆y)/r3 69.447467 16

φe
1 = (2.78− 152m2∆y)/r3 131.42547 14

φe
1 = −142m2∆y/r3 160.31243 12

φe
1 = −184∆y/r2 913.83751 8

φe
1 = −7.32∆y/r 1520.9493 6

φe
1 = −0.282m2∆y 1551.3437 5

φe
1 = −0.474∆y 1558.9756 3

φe
1 = 0.0148 1570.0905 1

Solutions extracted for the 2D 1/r Simulation MAE Complexity

φe
1 = (4.53m2∆y − 1.53∆x− 15.0m2∆x)/r2 − 0.209 0.37839388 22

φe
1 = (4.58m2∆y −∆x− 15.2m2∆x)/r2 − 0.227 0.38 20

φe
1 = (4.55m2∆y − 15.5m2∆x)/r2 − 0.238 0.42 18

φe
1 = (4.59m2∆y − 15.5m2∆x)/r2 0.46575519 16

φe
1 = (10.7∆y − 15.5m2∆x)/r2 2.48 14

φe
1 = (∆y − 15.6m2∆x)/r2 6.96 12

φe
1 = −15.6m2∆x/r2 7.93 10

φe
1 = −34.8∆x/r2 31.17 8

φe
1 = −8.71∆x/r 68.345174 6

φe
1 = −0.360m2∆x 85.743106 5

φe
1 = −0.632∆x 93.052677 3

φe
1 = −∆x 96.708906 2

φe
1 = −0.303 103.29053 1

Table 4: Results of using symbolic regression to fit equations to the most significant (see text) feature
of φe, denoted φe

1, for the 1/r2 (top) and 1/r (bottom) force laws, extracted from the bottleneck

model. We expect to see φe
1 ≈ a·(∆x,∆y,∆z)

rα + b, for arbitrary a and b, and α = 2 for the 1/r

simulation and α = 3 for the 1/r2 simulation, which is approximately what we recover. The row
with a gray background has the largest fractional drop in mean absolute error in their tables, which
according to our parametrization of Occam’s razor, represents the best model. This demonstrates a
technique for learning an unknown “force law” with a constrained graph neural network.

Pure eureqa experiment To demonstrate that eureqa by itself is not capable of finding many of
the equations considered from the raw high-dimensional dataset, we ran it on the simulation data
without our GN’s factorization of the problem, giving it the features of every particle. As expected,
even after convergence, it cannot find meaningful equations; all of the solutions it provides for the
n-body system are very poor fits. One such example of an equation, for the acceleration of particle 2
along the x direction in a 6-body system under a 1/r2 force law, is:

ẍ2 =
0.426

367y4 − 1470
+

2.88× 105x1

2.08× 103y4 + 446y24
− 5.98× 10−5x6 − 109x1,

where the indices refer to particle number. Despite eureqa converging, this equation is evidently
meaningless and achieves a poor fit to the data. Thus, we argue that raw symbolic regression is
intractable for the problems we consider, and only after factorization with a neural network do these
problems become feasible for symbolic regression.

Discovering potentials using FlatHGN. Lastly, we also show an example of a successful recon-
struction of a pairwise Hamiltonian from data. We treat the Hpair just as we would φe

1, and fit it to
data. The one difference here is that there are potential Hpair values offset by a constant function of
the non-dynamical parameters (fixed properties like mass) which still produce the correct dynamics,
since only the derivatives of Hpair are used. Thus, we cannot simply fit a linear transformation of the
true Hpair to data to verify it has learned our generating equation: we must rely on symbolic regression

22

����������

��������
����

Figure 6: A plot of the data for the 1/r simulation in table 4, indicating mean absolute error versus
complexity in the top plot and fractional drop in mean absolute error over the next-best model in the
bottom plot. As indicated, we take the largest drop in log-loss over a single increase in complexity as
the chosen model—it is our parametrization of Occam’s Razor.

Sim. Standard Bottleneck L1 KL

Charge-2 ✗ ✓ ✗ ✗

Charge-3 ✗ ✓ ✗ ✗

r−1-2 ✗ ✓ ✓ ✓

r−1-3 ✗ ✓ ✓ ✓

r−2-2 ✗ ✓ ✓ ✗

r−2-3 ✗ ✓ ✓ ✗

Spring-2 ✗ ✓ ✓ ✓

Spring-3 ✗ ✓ ✓ ✓

Table 5: Success/failure of a reconstruction of the force law by symbolic regression, corresponding to
the values in table 1.

to extract the full functional form. We follow the same procedure as before, and successfully extract
the potential for a charge simulation:

Hpair ≈
0.0019q1q2

r
− 0.0112− 0.00143q1 − 0.00112q1q2,

where we expect Hpair ≈ a q1q2
r + f(q1, q2,m1,m2), for constant a and arbitrary function f , which

shows that the neural network has learned the correct form of the Hamiltonian.

23

Hyperparameters. Since the hyperparameters used internally by eureqa are opaque and not tun-
able, here we discuss the parameters used in PySR [25], which are common among many symbolic
regression tools. At a given step of the training, there is a set of active equations in the “population”.
The number of active equations is a tunable hyperparameter, and is related to the diversity of the
discovered equations, as well as the number of compute cores being used. The max size of equations
controls the maximum complexity considered, and can be controlled to prevent the algorithm from
wasting cycles on over-complicated equations. The operators used in the equations depends on the
specific problem considered, and is another hyperparameter specified by the user. Next, there is a set
of tunable probabilities associated with each mutation: how frequently to mutate an operator into
a different operator, add an operator with arguments, replace an operator and its arguments with a
constant, and so on. In some approaches such as with PySR, the best equations found over the course
of training are randomly reintroduced back into the population. The frequency at which this occurs is
controlled by another hyperparameter.

D Video Demonstration and Code

We include a video demonstration of the central ideas of our paper at https://github.com/
MilesCranmer/symbolic_deep_learning. It shows the message components of a graph network
converging to be equal to a linear combination of the force components when L1 regularization is
applied. Time in each clip of the video is correlated with training epoch. In this video, the top left
corner of the fully revealed plot corresponds to a single test simulation that is 300 time steps long.
Four particles of different masses are initiated with random positions and velocities, and evolved
according to the potential of a spring with an equilibrium position of 1: (r − 1)2, where r is the
distance between two particles. The evaluation trajectories are shown on the right, with the gray
particles indicating the true locations. The 15 largest message components in terms of standard
deviation over a test set are represented in a sorted list below the graph network in gray, where
darker color corresponds to a larger standard deviation. Since we apply L1 regularization to the
messages, we expect this list to grow sparser over time, which it does. Of these messages, the two
largest components are extracted, and each is fit to a separate linear combination of the true force
components (bottom left). A better fit to the true force components — indicating that the messages
represent the force — are indicated by dots (each dot is a single message) that lie closer along the
y = x line in the bottom middle two scatter plots.

As can be seen in the video, as the messages grow increasingly sparse, the messages eventually
converge to be almost exactly linear combinations of the true forces. Finally, once the loss is
converged, we also fit symbolic regression to the largest message component. The video was created
using the same training procedure as used in the rest of the paper. The dataset that the L1 model was
trained on is the 4-node Spring-2. Finally, we include the full code required to generate the animated
clips in the above figure. This code contains all of the models and simulators used in the paper, along
with the default training parameters. This code can also be accessed in the drive.

E Cosmological Experiments

For the cosmological data graph network, we do a coarse hyperparameter tuning based on predictions
of δi and select a GN with 500 hidden units, two hidden layers per node function and message
function. We choose 100 message dimensions as before. We keep other hyperparameters the same as
before: L1 regularization with a regularization scale of 10−2.

Remarkably, the vector space discovered by this graph network is 1 dimensional. This is indicated
by the fact that only one message component has standard deviation of about 10−2 and all other 99
components have a standard deviation of under 10−8. This suggests that the δi prediction is a sum
over some function of the center halo and each neighboring halo. Thus, we can rewrite our model as
a sum over a function φe

1 which takes the central halo and each neighboring halo, and passes it to φv

which predicts δi given the central halo properties.

Best-fit parameters. We list best-fit parameters for the discovered models in the paper in table 6.
The functional forms were extracted from the GN by approximating both φe

1 and φv over training data
with a symbolic regression and then analytically composing the expressions. Although the symbolic
regression fits constants itself, this accumulates error from the two levels of approximation (graph net

24

https://github.com/MilesCranmer/symbolic_deep_learning
https://github.com/MilesCranmer/symbolic_deep_learning

Test Formula Summed Component
〈

|δi−δ̂i|
〉

O
ld

Constant δ̂i = C1 N/A 0.421

Simple δ̂i = C1 + (C2 +MiC3)ei ei =
∑|ri−rj|<20

j 6=i Mj 0.121
N

ew

Best, without mass δ̂i = C1 +
ei

C2+C3ei|vi|
ei =

∑

j 6=i

C4+|vi−vj|
C5+(C6|ri−rj|)C7

0.120

Best, with mass δ̂i = C1 +
ei

C2+C3Mi
ei =

∑

j 6=i
C4+Mj

C5+(C6|ri−rj|)C7
0.0882

Test Best-fit Parameters

Simple C1 = 0.415
Traditional C1 = −0.0376, C2 = 0.0529, C3 = 0.000927

Best, without mass
C1 = −0.199, C2 = 1.31, C3 = 0.027,

C4 = 1.54, C5 = 50.165, C6 = 18.94, C7 = 13.21

Best, with mass
C1 = −0.156, C2 = 3.80, C3 = 0.0809,

C4 = 0.438, C5 = 7.06, C6 = 15.5, C7 = 20.3

Best, with mass and cutoff∗
C1 = −0.149, C2 = 3.77, C3 = 0.0789,

C4 = 0.442, C5 = 7.09, C6 = 15.5, C7 = 21.3

Table 6: Best-fit parameters for the functional forms used to estimate the overdensity of dark matter
halos. The functional forms are given in the upper table for reference. ∗Here we use the same formula
as “Best, with mass,” since we found an equivalent formula by only looking at the 80% chunk of the
data. The constants in that functional form are also fit by only training on that fraction of the data.

to data, symbolic regression to graph net). Thus, we take out the functional forms as given in table 6,
and refit the parameters directly to the training data. This results in the parameters given, which are
used to calculate accuracy of the symbolic models.

25

	Model Implementation Details
	Basic Graph Representation
	KL Model
	Constraining Information in the Messages
	Flattened Hamiltonian Graph Network.

	Simulations
	Symbolic Regression Details
	Video Demonstration and Code
	Cosmological Experiments

