
We thank all reviewers for their encouraging and constructive feedback and respond to each in turn.1

(R1) SSD advantages: The chief advantages of SSDs are that they require orders of magnitude less computation than2

SDs (while still determining convergence), can be deployed when exact SDs are simply infeasible (e.g., in the settings3

motivating many approximate MCMC methods), and, for a fixed computational budget, typically yield more accurate4

posterior approximations than exact SVGD.5

(R1) Gaussian kernel: Thm. 6 of [22] showed that (non-stochastic) KSDs based on the Gaussian kernel fail to detect6

non-convergence (and thus often have terrible power in practice) even for simple target distributions like multivariate7

Gaussians; for the same reason SSDs based on the same kernel fail to detect non-convergence. We focused on the8

inverse multiquadric kernel (which has very different properties from a polynomial kernel), because its KSD detects9

non-convergence in great generality. Our results apply to other kernels, such as the inverse log kernel of [9, Thm. 3].10

(R1) Thm. 4: We apologize for the confusion: the text preceding Thm. 4 is the contrapositive of (and hence equivalent11

to) the statement in Thm. 4. We will reword Thm. 4 to improve clarity and note here that Thm. 4 does not prove that12

S(νn)→ 0 but rather that νn ⇒ P if S(νn)→ 0 and νn is tight. We will also provide a roadmap at the start of Sec.13

4.2 to clarify how the results fit together: we show that SSDs detect non-convergence (Thm. 6) in a series of steps: (a)14

by Thm. 4, if Qn 6⇒ P then either a bounded SD 6→ 0 or Qn is not tight; (b) by Thm. 3, if a bounded SD 6→ 0 then its15

SSD 6→ 0 w.p. 1; (c) by Prop. 5, if Qn is not tight, then the SSD 6→ 0 surely. Here, the new result on bounded SD16

non-convergence (Thm. 4) is an important stepping stone to establishing SSD non-convergence (Thm. 6).17

(R2) Minibatches: In the revision, we will clarify that a separate minibatch per sample point is standard in the SD18

context: it is used in the original SVGD paper [32] and each of the cited uses of SSDs [2, 40]. A separate minibatch per19

sample point is also standard in each of the approximate MCMC algorithms discussed [8, 14], including stochastic20

gradient Langevin dynamics [48] and SGFS [1]. We will also highlight the substantial advantage of using separate21

minibatches over a single minibatch. If P is the target and P̃ is the posterior induced by a single minibatch of data, then22

the separate minibatch SSD is guaranteed to detect convergence and non-convergence to P for any minibatch size (by23

our Thms. 2 & 6), but a single minibatch SSD cannot correctly discriminate between P and P̃ (it will incorrectly24

declare that samples from P̃ are converging to P and incorrectly declare that samples from P are not converging to P ).25

(R2) App. E: Thank you for pointing out this inadvertent omission. The revision will reflect that, exactly as in the26

proof of Thm. 4, the other two cases follow as their Stein sets contain a scaled copy of the kernel Stein set.27

(R2) App. F: Thank you for flagging this error. We have corrected the statement usingH = {h : ‖h‖∞+Lip(h) < 1}:2829

Lemma 1. If two sequences of random measures (νn)∞n=1 and (ν̃n)
∞
n=1 on Rd satisfy νn(hIBR

)− ν̃n(hIBR
)
a.s.→ 0 for30

each h ∈ Cb and some BR , {‖x‖2 ≤ R} with R ≥ S for all S > 0, then suph∈H |νn(hIBR
)− ν̃n(hIBR

)| a.s.→ 0 for31

each R > 0. If, in addition, f0 is almost surely uniformly νn-integrable and uniformly ν̃n-integrable, and f0, f1 are32

bounded on compact sets, then suph∈Hf
|νn(h)− ν̃n(h)|

a.s.→ 0 forHf = {h : |h| ≤ f0, |h(x)−h(y)|‖x−y‖2 ≤ f1(x),∀x, y}.33

Proof Fix R, ε > 0, and let K = BR. By the Arzelà–Ascoli theorem, there exists a finite ε/2 subcover of the set of34

K-restrictions {h|K : h ∈ H}, extendable to Cb functions (hk)mk=1 on Rd. The union bound and our assumption now35

give P(suph∈H |νn(hIK)− ν̃n(hIK)| > ε i.o.) ≤ P(max1≤k≤m |νn(hkIK)− ν̃n(hkIK)| > ε/2 i.o.)36

≤
∑m
k=1 P(|νn(hkIK)− ν̃n(hkIK)| > ε/2 i.o.) = 0. AsHf is uniformly bounded-Lipschitz on BR, the second claim37

follows as in the submission withHf andH replacing C(Rd) : |h| ≤ |f | and C(Rd) and Kε = BR for suitable R.38

For any target P , there exists a sequence of radii (Rj)∞j=1 with Rj →∞ such that EP (‖X‖2 = Rj) = 0 so that BRj
is39

a continuity set under P . SinceQn ⇒ P , we haveQn(hIBRj
)→ P (hIBRj

) for each j and h ∈ Cb by the Portmanteau40

theorem. Thm. 2 now follows assuming supg∈Gn,y ‖Tlg(x)− Tlg(y)‖2/‖x− y‖2 bounded on compact sets (which41

holds for the pairings in [21-23]), and Thm. 7 and Lem. 11 follow assuming supl∈[L],z∈Rd ‖∇x(∇ log pl(x)k(x, z))‖242

bounded on compact sets (which holds for∇ log pl in C1 and bounded-Lipschitz k).43

(R3) Subsampling: Prior work, like the finite set SD of [28] and the random feature SDs of [27] address the n244

complexity of SDs by introducing alternative SDs with O(n) complexity. We will clarify that our work addresses the45

complementary problem of an expensive Stein operator and should not be viewed as an alternative to O(n)-time SDs.46

Rather, datapoint subsampling can be directly applied to O(n) SDs to obtain O(n) SSDs with additional speed-ups.47

(R3) Discrete: In the revision, we will clarify that while we develop the most extensive theory for the popular Langevin48

Stein operator, our results on detecting convergence (Thm. 2), enforcing tightness (Prop. 5), and detecting bounded49

non-convergence (Thm. 3) apply to any Stein operator and to both discrete and continuous targets.50

(R3) Coordinate kernels: Thank you for these references. In the revision, we will highlight that both works can be51

viewed as deploying exact SDs with special Stein sets featuring coordinate-dependent kernels. Since every coordinate52

is still updated on each SVGD step, this is somewhat different from, for example, subsampling coordinate operators for53

computational benefit (in which case certain coordinates would not be updated at all on each SVGD step). However,54

these SDs can be combined with datapoint subsampling to obtain substantial speed-ups.55


