
A Background on Survival Analysis and Related Work

Survival analysis models the probability distribution of a time-until-event. The event is often called a
failure time. For example, we may model time until onset of coronary heart disease given a patient’s
current health status [Wilson et al., 1998, Vasan et al., 2008].

Survival analysis differs from standard probabilistic regression problems in that data may be censored.
For example, a patient may leave a study before developing the studied condition, or may not develop
the condition before the study ends. In these cases, the time that a patient leaves or the study ends is
called the censoring time. These are cases of right-censoring, where it is only known that the failure
time is greater than the observed censoring time.

We review key definitions in survival analysis. See George et al. [2014] for a review. For textbooks,
see Andersen et al. [2012], Kalbfleisch and Prentice [2002], and Lawless [2011].

A.1 Notation

Let t be a continuous random variable denoting the failure time with CDF F and density f . The
survival function F is defined as 1 minus the CDF: F = 1 − F . Censoring times are considered
random variables c with CDF G, survival function G, and density g. In general these distributions
may be conditional on covariates x.

For datapoints i, let ti be failure times and ci be censoring times. Let us focus on right-censoring
where ui = min(ti, ci), δi = 1 [ti < ci] and the observed data consists of (xi, ui, δi). In general we
cannot throw away censored points, since p(t | x, t < c) 6= p(t | x) and we would therefore biasedly
estimate the failure distribution F .

A.2 Assumptions About Censoring

It may seem that we need to model c to estimate the parameters of f , but under certain assumptions,
we can write the likelihood (with respect to f ’s parameters) for a dataset with censoring without
estimating the censoring distribution. In this work, we assume:
Assumption. Censoring-at-random. t is distributed marginally or conditionally on x. c is either
a constant, distributed marginally, or distributed conditionally on x. In any case, it must hold that
t ⊥⊥ c | x.
Assumption. Non-informative Censoring. The censoring time c’s distribution parameters θc are
distinct from parameters θt of t’s distribution.

A.3 Likelihoods

Under the two censoring assumptions, the log-likelihood can be derived to be

L(θt) =
∑
i

δi log fθt(ti | xi) + (1− δi) logF θt(ti|xi) (12)

and can be maximized to learn parameters θt of f without an estimate of G. This can be interpreted
as follows: an uncensored individual has δi = 1, meaning ui = ti. This point contributes through
the failure density f(ui) = f(ti), as in standard regression likelihoods. Censored points contribute
through failure survival function F = 1− F because there failure time is known to be greater than
ui. Full discussions of survival likelihoods can be found in Kalbfleisch and Prentice [2002], Lawless
[2011], Andersen et al. [2012].

A.4 Testing Calibration

Classical goodness-of-fit tests [Lemeshow and Hosmer Jr, 1982, Grønnesby and Borgan, 1996,
D’agostino and Nam, 2003] and their recent modifications [Demler et al., 2015] assess calibration of
survival analysis models for a particular time of interest t∗. These take the following steps:

1. pick a time t? at which to measure calibration
2. evaluate model probability pi = pθ(t < t? | xi) of failing by time t?

13



Figure 1: Sub-optimal calibration curves that result in optimal calibration slope.

3. sort pi into K groups gk defined by quantiles (e.g. K = 2 corresponds to partitioning the
data into a low-risk group and high-risk group)

4. compute the observed # of events using e.g. (1−KMk[t∗])|gk|where KMk the Kaplan-Meier
estimate [Kaplan and Meier, 1958] of the survival function just on data in gk’s

5. compute the expected #, Ek =
∑
i∈gk pi

6. let pk = 1
|gk|

∑
i∈gk pi

7.
∑
k

(Ok−Ek)
2

|gk|pk(1−pk)
gives a χ2 test statistic

8. small p-value→ model not calibrated

Demler et al. [2015] review these tests and propose some modifications when there are not enough
individuals assigned to each bin. These tests are limited in two ways: they answer calibration in a
rigid yes/no fashion with hypothesis testing, and it is not clear how to combine calibration assessments
over the entire range of possible time predictions.

A.5 Calibration Slope

Calibration Slope Recent publications in machine learning [Avati et al., 2019] and in medicine
[Besseling et al., 2017] use the calibration slope to evaluate calibration [Stevens and Poppe, 2020].
First, a calibration curve is computed by plotting, for each quantile ρ ∈ [0, 1], the fraction of observed
samples with a failure time smaller than that quantile’s time t(ρ) = F−1θ (ρ | x). Then, report the
slope of the best-fit line to this curve. When a model is well-calibrated, the true and predicted
densities are close and the best fit line has slope 1.0. However, slope can be 1.0 (with intercept 0.0)
even when the model is not well-calibrated.

Here, we construct two possible calibration curves that cannot result from well-calibrated models.
However, the resulting calibration slope is close to 1.0. Avati et al. [2019] use a line of best fit with
non-zero intercept. We plot hypothetical calibration curves in Figure 1 such that the corresponding
best fit line has slope 1.0, with and without intercept terms. Stevens and Poppe [2020] make a related
observation about calibration slope: a near-zero intercept of the line of best fit, or other evidence of
calibration, should always be reported alongside near-1 slope when claiming a model is calibrated.
However, we demonstrate here that even slope 1 and intercept 0 can result from poorly calibrated
models. The interested reader should see Stevens and Poppe [2020] for an assessment of recent
publications in medicine that report only slope and for the history of slope-only as a “measure of
spread" [Cox, 1958].

B Survival CRPS

S-CRPS is proposed by Avati et al. [2019]:

SCRPS(F̂ , (y, c)) =

∫ y

0

F̂ (z)2dz + (1− c)
∫ ∞
y

(1− F̂ (z))2dz,
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where y is the event time, c is an indicator for censorship and F̂ is the CDF from the model. See Avati
et al. [2019] Appendix B for a detailed derivation of S-CRPS objective for a log-normal model.

C CDF of Survival Time is Uniform for Censored Patient

Consider the data distribution P (t, c | x) and using the conditional P (t | x) of this distribution to
evaluate D-CALIBRATION on this data. For a point that is censored at time c, P (t | x) would simply
condition on the event t > c for constant c, yielding P (t | t > c, x). However, the true failure
distribution for such a point is P (t | t > c, c = c, x). Under censoring-at-random,

t ⊥⊥ c | x =⇒ P (t | t > c, x) = P (t | t > c, c = c, x). (13)

Let F be the failure CDF. Let pt be the density of t | x. Apply transformation z = F (t|x). To
compute z’s density, we need:

d

dz
F−1(z|x) =

1

pt(F−1(z | x))
=

1

pt(t)
.

Applying change of variable to compute z’s density:

pt(F
−1(z|x))

d

dz
F−1(z|x) = pt(t)

1

pt(t)
= 1

Therefore, z is uniform distributed over [0,1]. So conditioning on set (t > c, x) = (z > F (c|x), x)
gives the result:

z | (t > c, x) ∼ Unif(F (c | x), 1).

The CDF value of the unobserved time for a censored datapoint is uniform above the failure CDF
applied to the censoring time. Haider et al. [2020] (Appendix B) give an alternate proof in terms of
expected counts.

D Extra Data Details

D.1 Data Details for Simulation Study

For the gamma simulation, we draw x from a D = 32 multivariate Normal with 0 mean and diagonal
covariance with σ2 = 10.0. We draw failure times t conditionally on x from a gamma distribution
with mean µ log-linear in x. The weights of the linear function are drawn uniformly. The gamma
distribution has constant variance 1e-3. This is achieved by setting α = µ2

i /1e-3 and β = µi/1e-3.

xi ∼ N (0, σ2I), wd ∼ Unif(−0.1, 0.1), µi = exp[w>xi], ti ∼ Gamma(α, β).

Censoring times are drawn like failure times but with a different set of weights for the linear function.
This means t ⊥⊥ c | x.

D.2 Data Details for MNIST

As described in the main text, we follow Pölsterl [2019] to simulate a survival dataset conditionally
on the MNIST dataset [LeCun et al., 2010]. Each MNIST label gets a deterministic risk score, with
labels loosely grouped together by risk groups. See Table 5 for an example of the risk groups and risk
scores for the MNIST classes.

Datapoint image xi with label yi has time ti drawn from a Gamma whose mean is the risk score and
whose variance is constant 1e-3. Therefore ti is independent of xi given yi and times for datapoints
that share an MNIST class are identically drawn.

µi = risk(yi) v = 1e-3 α = µ2
i /v, β = µi/v, ti ∼ Gamma(α, β)

For each split of the data (e.g. training set), we draw censoring times uniformly between the minimum
failure time in that split and the 90th percentile time, which, due to the particular failure distributions,
resulted in about 50% censoring.
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Table 5: Risk scores for digit classes.
Digit 0 1 2 3 4 5 6 7 8 9

Risk Group most least lower lower lower higher least most least most
Risk Score 11.25 2.25 5.25 5.0 4.75 8.0 2.0 11.0 1.75 10.75

Table 6: The 17 selected clinical variables. The second column shows the source table(s) of a variable
from MIMIC-III database. The third column lists the “normal” values used in the imputation step.
Table reproduced from Harutyunyan et al. [2017].

Variable table Impute value Modeled as

Capillary refill rate 0.0 categorical
Diastolic blood pressure 59.0 continuous
Fraction inspired oxygen 0.21 continuous
Glascow coma scale eye opening 4 spontaneously categorical
Glascow coma scale motor response 6 obeys commands categorical
Glascow coma scale total 15 categorical
Glascow coma scale verbal response 5 oriented categorical
Glucose 128.0 continuous
Heart Rate 86 continuous
Height 170.0 continuous
Mean blood pressure 77.0 continuous
Oxygen saturation 98.0 continuous
Respiratory rate 19 continuous
Systolic blood pressure 118.0 continuous
Temperature 36.6 continuous
Weight 81.0 continuous
pH 7.4 continuous

D.3 Data Details for MIMIC-III

We show the 17 physiological variables we use in Table 6. The table is reproduced from Harutyunyan
et al. [2017]. This dataset differs from other MIMIC-III length of stay datasets because one stay in
the ICU of a single patient produces many datapoints: remaining time at each hour after admission.
After excluding ICU transfers and patients under 18, there are 2, 925, 434 and 525, 912 instances in
the training and test sets. We split the training set in half for train and validation.

D.4 Data Details for The Cancer Genome Atlas Glioma Data

We use the glioma (a type of brain cancer) data5 collected as part of the TCGA program and studied
in [Network, 2015]. TCGA comprises clinical data and molecular from 11,000 patients being treated
for a diverse set of cancer types. We focus on predicting time until death from the clinical data, which
includes:

• tumor tissue site

• time of initial pathologic diagnosis

• radiation therapy

• Karnofsky performance score

• histological type

• demographic information

5https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/studied-
cancers/glioma
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Censoring means they did not pass away. The train/validation/test sets are made of 552/276/277
datapoints respectively, of which 235/129/126 are censored, respectively.

To download this data, use the firebrowse. tool, select the Glioma (GBMLGG) cohort, and then click
the blue clinical features bar on the right hand side. Select the “Clinical Pick Tier 1" file.

We standardized the features and then clamped their maximum absolute value at 5.0. This is in part
because we were working with the Weibull AFT model, which is very sensitive to large variance in
covariates.

E Model Descriptions

We describe the models we use in the experiments. For all models, the parameterization as a function
of x varies in complexity (e.g. linear or deep) depending on task.

Log-normal model When log T is Normal with mean µ and variance σ2, we say that T is log-
normal with location µ and scale σ. We parameterize µ and σ as functions of x (small ReLU networks
with 1 to 3 hidden layers, depending on experiment).

Weibull Model The Weibull Accelerated Failure Times (AFT) model sets log T = β0+β>X+σW
where σ is a scale parameter and W is Gumbel. It follows that T ∼ Weibull(λ, k) with scale
λ = exp[β>X] and concentration k = σ−1 [Liu, 2018]. We constrain k ∈ (1, 2).

Interpolation for Discrete Models The next two models predict for a finite set of times and
therefore have a discontiuous CDF. These models have a lower-bound ` > 0 on D-CALIBRATION
because the CDF values will not be Unif(0, 1) distributed. However, ` decreases to 0 as the number
of discrete times increases. For any fixed number of times, minimizing D-CALIBRATION will still
improve calibration, which we observe in our experiments.

We optionally use linear interpolation to calculate the CDF. Suppose a time t falls into bin k which
covers time interval (ta, tb). If we do not use interpolation, then the CDF value P (T ≤ t) we calculate
is the sum of the probabilities of bins whose indices are smaller than or equal to k. If we use linear
interpolation, we replace the probability of bin k, P (k), in the summation by:

t− ta
tb − ta

P (k)

Categorical Model We parameterize a categorical distribution over discrete times by using a neural
network function of x with a size B output. Interpreted ordinally, this can approximate continuous
survival distributions as B → ∞ [Lee et al., 2018, Miscouridou et al., 2018]. The time for each
bin is set to training data percentiles so that each next bin captures the range of times for the next
(100/B)th percentile of training data, using only uncensored times.

Multi-Task Logistic Regression (mtlr) MTLR differs from the Categorical Model because there
is some relationship between the probability of the bins. Assume we have K bins. In the linear case
Yu et al. [2011], suppose our input is x and parameters Θ = (θ1, . . . , θK−1). The probability for bin
k < K is:

exp(
∑K−1
j=k θTj x)

1 +
∑K−1
i=1 exp(

∑K−1
j=i θTj x)

,

and the probability for bin K is :
1

1 +
∑K−1
i=1 exp(

∑K−1
j=i θTj x)

.

F Experimental Details

F.1 Gamma Simulation

We use a 4-layer neural network of hidden-layer sizes 128, 64, 64 units, with ReLU activations to
parameterize the categorical and log-normal distributions. For categorical we use another linear

17

http://firebrowse.org/


transformation to map to 50 output dimensions. For the log-normal model, two copies of the above
neural network are used, one to output the location and the other to output the log of the log-normal
scale parameter. For MTLR, we use a linear transformation from covariates to 50 dimensions and use
a softmax layer to output the probability for the 50 bins. We use 0 dropout, 0 weight decay, learning
rate 1e-3 and batch size 1000 for 100 epochs in this experiment.

F.2 Survial MNIST

The model does not see the MNIST class and learns a distribution over times given pixels xi. We use
a convolutional neural network. We use several layers of 2D convolutions with a kernel of size 2 and
stride of size 1. The sequence of channel numbers is 32, 64, 128, 256 with the last layer containing
scalars. After each convolution, we use ReLU, then dropout, then size 2 max pooling.

For categorical and log-normal models, this CNN output is mapped through a three-hidden-layer
ReLU neural network with hidden sizes 512, 1024, 1024. Between the fully connected layers, we use
ReLU then dropout. Again, with the log-normal, separate networks are used to output the location and
log-scale. For MTLR, the CNN output is linearly mapped to the 50 bins. For categorical, we use 0.2
dropout for uncensored and 0.1 for censored. In MTLR, we use dropout 0.2. In lognormal, we use
dropout 0.1. We use weight decay 1e-4, learning rate 1e-3, and batch size 5000 for 200 epochs.

F.3 MIMIC-III

The input is high-dimensional (about 1400) because it is a concatenated time series and because
missingness masks are used. We use a 4-layer neural network of hidden-layer sizes 2048, 1024, 1024
units with ReLU activations. For the categorical model, we use B = 20 categorical output bins. For
the log-normal model, we use one three-hidden neural network of hidden-layer sizes 128, 64, 64
units and an independent copy to output the location and log-scale parameters. We use dropout 0.15,
learning rate 1e-3 and weight decay 1e-4 for 200 epochs at batch size 5000.

F.4 The Cancer Genome Atlas, Glioma

The Weibull model has parameters scale and concentration. The scale is set to exp[β>x] for regression
parameters β, plus a constant 1.0 for numerical stability. We optimize the concentration parameter in
(1, 2). The log-normal model is as described in the simulated gamma experiment, except that it has
two instead of three hidden layers, due to small data sample size. The categorical and MTLR models
are also as described in the simulated gamma experiment, except that they have 20 instead of 50 bins,
and are linear, again due to small data sample size.

We standardize this data and then clamp all covariates at absolute value 5.0. For all models, we train
for 10,000 epochs at learning rate 1e-2 with full data batch size 1201. We use 10 D-CALIBRATION
bins for this experiment as studied in Haider et al. [2020], rather than the 20 bins used in all other
experiments.

G Exploring Choice of γ soft-indicator parameter

There is a trade-off in setting the soft membership parameter γ. Larger values approximate the
indicator function better, but can have worse gradients because the values lie in the flat region of
the sigmoid. See Figure 2 for an example of how gamma changes the soft indicator for a given set
I = [0.45, 0.55]. We choose γ = 10000 in all of the experiments and find that it allows us to minimize
exact d-cal (D-CAL). We explore other choices in Table 7. We see the expected improvement in
approximation as γ increases. Then, as γ gets too large, exact D-CAL stops improving as a function
of λ.

H Exploring Slack due to Jensen’s Inequality

We trained the Categorical model on the gamma simulation data with γ = 10, 000 and batch size
10, 000 for all λ. The trained models are evaluated on the training set (size 100, 000) with two
different test batch sizes, 500 and 1000. Table 8 demonstrates that the upper-bounds for both batch
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Figure 2: Left: the sigmoid function. Right: choice of hyper-parameter gamma in soft indicator
function for set I = [0.45, 0.55].

Table 7: Exact D-Cal, Soft-Dcal, and NLL at end of training, evaluated on training data for models
trained with λ = 10 and batch size 1, 000. Approximation improves as γ increases. Gradients vanish
when γ gets too large. All experiments are better in calibration than the λ = 0 MLE model, which
has exact D-cal 0.09.

γ 10 102 103 104 105 106 107 5× 107

Exact D-Cal 0.2337 0.0095 0.0079 0.0039 0.0025 0.0014 0.0015 0.0048

Soft D-Cal 0.4599 0.0604 0.0074 0.0039 0.0025 0.0014 0.0015 0.0048

NLL 2.1180 1.1362 1.0793 1.2508 1.6993 2.3873 2.6940 3.4377

sizes preserve model ordering with respect to exact D-CALIBRATION. The bound for batch size
10, 000 is quite close to the exact D-CALIBRATION.

I Modification of soft indicator for the first and the last interval

In our soft indicator,

ζγ(u; I) = Sigmoid(γ(u− a)(b− u)) = (1 + exp(−γ(u− a)(b− u)))
−1

is a differentiable approximation for 1 [u ∈ [a, b]]. When b is the upper boundary of all the u values,
for example, 1 for CDF values, the b in the soft indicator can be replaced by any value that is greater
than b. We use 2 to replace 1 for the upper boundary when b = 1 in our experiments. Similarly we
use a = −1 to replace a = 0 for the lower boundary when a = 0.
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Table 8: Slack in the upper-bound preserves modeling ordering with respect to exact D-CALIBRATION

λ Batch Size Exact D-Cal Upper-bound

0 500 0.05883 0.0605
10000 ” 0.0589

1 500 0.02204 0.0238
10000 ” 0.0221

5 500 0.00963 0.0114
10000 ” 0.0097

10 500 0.00482 0.0066
10000 ” 0.0048

50 500 0.00040 0.0021
10000 ” 0.0004

100 500 0.00022 0.0021
10000 ” 0.0003

500 500 0.00015 0.0020
10000 ” 0.0002

1000 500 0.00006 0.0019
10000 ” 0.0001

Consider the term in our upper-bound (eq. (6)) for the last interval I = [a, b], where b = 1,(
1
M

∑
i ζγ(ui; I)− |I|

)2
. The gradient of this term with respect to one CDF value ui is:

d

dui

(
1

M

∑
i

ζγ(ui; I)− |I|

)2

=
d

dui

(
1

M

∑
i

Sigmoid(γ(ui − a)(b− ui))− |I|

)2

[
let A := 2/M ∗

(
1

M

∑
i

Sigmoid(γ(ui − a)(b− ui))− |I|

)]

=A
d

dui
Sigmoid(γ(ui − a)(b− ui))

=A ∗ − exp(−γ(ui − a)(b− ui))
(1 + exp(−γ(ui − a)(b− ui)))2

d

dui
(−γ(ui − a)(b− ui))

=A ∗ exp(−γ(ui − a)(b− ui))
(1 + exp(−γ(ui − a)(b− ui)))2

∗ γ ∗ (a+ b− 2ui)

If
1

M

∑
i

ζγ(ui; I)− |I| > 0,

then the fraction of points in the interval is larger than the size of the interval. We want to move the
points out of the interval. In the last interval, in order to move points out of the interval, we can only
make the values smaller, which means we want the gradient with respect to u to be positive. (recall
that we are moving in the direction of the negative gradient to minimize the objective). However, for
points that are greater than (a+ b)/2, the above gradient will be negative because term (a+ b− 2ui)
is negative. This is not ideal. Changing the value b from 1 to 2 can resolve the issue. Since CDF
values are all smaller than 1, (a + b)/2 will always be greater than u if we use b = 2 for the last
interval. The above optimization issue only applies on the first and last interval because for intervals
in the middle, we can move the points either to left or right to lower the fraction of points in the
interval.
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J Full Results: More Models and Choices of Lambda

Table 9: Gamma simulation, uncensored (full results)
λ 0 1 5 10 50 100 500 1000

Log-Norm NLL 0.381 0.423 0.507 0.580 0.763 0.809 0.870 0.882
NLL D-CAL 0.271 0.060 0.021 0.011 0.001 4e-4 1e-4 7e-5

CONC 0.982 0.955 0.931 0.908 0.841 0.835 0.809 0.802

Log-Norm NLL 0.455 0.614 0.730 0.781 0.837 0.848 0.869 0.965
S-CRPS D-CAL 0.055 0.014 0.004 0.002 2e-4 1e-4 1e-4 1e-4

CONC 0.979 0.975 0.968 0.959 0.940 0.931 0.864 0.811

Cat-NI NLL 0.998 1.042 1.129 1.197 1.788 2.098 3.148 3.688
D-CAL 0.074 0.023 0.008 0.005 4e-4 4e-4 2e-4 1e-4
CONC 0.986 0.986 0.985 0.985 0.973 0.960 0.877 0.748

Cat-I NLL 0.997 1.001 1.029 1.083 1.763 2.083 3.167 3.788
D-CAL 0.002 0.002 0.001 0.002 5e-4 5e-4 1e-4 1e-4
CONC 0.986 0.986 0.986 0.985 0.972 0.960 0.874 0.699

MTLR-NI NLL 1.287 1.409 1.589 1.612 2.356 2.590 3.267 3.509
D-CAL 0.027 0.027 0.015 0.008 5e-4 2e-4 2e-4 2e-4
CONC 0.986 0.986 0.983 0.981 0.952 0.940 0.909 0.899

MTLR-I NLL 1.392 1.419 1.616 1.823 2.165 2.612 2.982 3.184
D-CAL 0.048 0.034 0.017 0.009 7e-4 2e-4 1e-4 1e-4
CONC 0.986 0.986 0.982 0.980 0.958 0.934 0.918 0.917

Table 10: Gamma simulation, censored (full results). For categorical model with interpolation, the
D-CAL is already very low at λ = 0 so it is hard to optimize this one further.

λ 0 1 5 10 50 100 500 1000

Log-Norm NLL -0.059 -0.049 -0.022 0.004 0.099 0.138 0.191 0.215
NLL D-CAL 0.029 0.020 0.008 0.005 7e-4 2e-4 6e-5 7e-5

CONC 0.981 0.969 0.950 0.942 0.927 0.916 0.914 0.897

Log-Norm NLL 0.038 0.084 0.119 0.143 0.185 0.201 0.343 0.436
S-CRPS D-CAL 0.017 0.007 0.003 0.001 1e-4 1e-4 5e-5 8e-5

CONC 0.982 0.978 0.971 0.963 0.952 0.950 0.850 0.855

Cat-NI NLL 0.797 0.799 0.805 0.822 1.023 1.149 1.665 1.920
D-CAL 0.009 0.006 0.003 0.002 3e-4 2e-4 6e-5 6e-5
CONC 0.987 0.987 0.987 0.987 0.982 0.976 0.922 0.861

Cat-I NLL 0.783 0.782 0.788 0.795 0.948 1.124 1.686 1.994
D-CAL 7e-5 1e-4 6e-5 8e-5 2e-4 2e-4 4e-5 6e-5
CONC 0.987 0.987 0.987 0.987 0.983 0.976 0.933 0.847

MTLR-NI NLL 0.873 0.875 0.875 0.977 1.271 1.412 1.747 1.900
D-CAL 0.004 0.004 0.003 0.004 4e-4 2e-4 2e-4 2e-4
CONC 0.987 0.987 0.987 0.985 0.973 0.965 0.951 0.943

MTLR-I NLL 0.829 0.830 0.866 0.981 1.266 1.414 1.762 1.912
D-CAL 0.004 0.004 0.004 0.004 5e-4 1e-4 6e-5 7e-5
CONC 0.988 0.988 0.987 0.985 0.971 0.963 0.947 0.939
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Table 11: Survival-MNIST, uncensored (full results)
λ 0 1 5 10 50 100 500 1000

Log-Norm NLL 4.344 4.407 4.530 4.508 4.549 4.571 5.265 5.417
NLL D-CAL 0.328 0.104 0.018 0.020 0.011 0.010 0.005 0.005

CONC 0.886 0.867 0.754 0.759 0.725 0.713 0.541 0.509

Log-Norm NLL 4.983 4.940 4.853 4.759 4.714 4.673 4.852 5.118
S-CRPS D-CAL 0.212 0.132 0.081 0.059 0.020 0.007 0.003 0.003

CONC 0.889 0.878 0.866 0.861 0.873 0.873 0.820 0.798

Cat-NI NLL 1.726 1.730 1.737 1.755 1.824 1.860 2.076 3.073
D-CAL 0.019 0.013 0.008 0.005 9e-4 9e-4 6e-4 3e-4
CONC 0.945 0.945 0.945 0.937 0.921 0.916 0.854 0.690

Cat-I NLL 1.726 1.731 1.735 1.741 1.782 1.809 1.953 2.157
D-CAL 0.007 0.005 0.003 0.002 6e-4 3e-4 4e-4 3e-4
CONC 0.945 0.945 0.945 0.945 0.940 0.937 0.897 0.830

MTLR-NI NLL 1.747 1.745 1.749 1.772 1.832 1.850 2.075 2.419
D-CAL 0.018 0.014 0.008 0.004 0.001 0.001 8e-4 0.002
CONC 0.944 0.945 0.945 0.944 0.934 0.934 0.870 0.808

MTLR-I NLL 1.746 1.746 1.752 1.756 1.779 1.802 1.975 2.560
D-CAL 0.005 0.004 0.003 0.002 5e-4 4e-4 8e-4 0.001
CONC 0.944 0.944 0.945 0.944 0.941 0.936 0.886 0.806

Table 12: Survival-MNIST, censored (full results)
λ 0 1 5 10 50 100 500 1000

Log-Norm NLL 4.337 4.377 4.433 4.483 4.602 4.682 4.914 5.151
NLL D-CAL 0.392 0.074 0.033 0.020 0.008 0.005 0.005 0.007

CONC 0.902 0.873 0.829 0.794 0.728 0.696 0.628 0.573

Log-Norm NLL 4.950 4.929 4.873 4.859 4.672 4.749 4.786 4.877
S-CRPS D-CAL 0.215 0.122 0.071 0.051 0.018 0.010 0.002 9e-4

CONC 0.891 0.881 0.871 0.874 0.866 0.868 0.839 0.815

Cat-NI NLL 1.733 1.734 1.738 1.765 1.827 1.861 2.074 3.030
D-CAL 0.018 0.014 0.008 0.004 8e-4 5e-4 5e-4 4e-4
CONC 0.945 0.945 0.944 0.927 0.920 0.919 0.862 0.713

Cat-I NLL 1.731 1.731 1.741 1.750 1.779 1.805 1.955 2.113
D-CAL 0.007 0.006 0.003 0.002 3e-4 4e-4 4e-4 3e-4
CONC 0.945 0.944 0.945 0.945 0.942 0.938 0.901 0.843

MTLR-NI NLL 1.126 1.118 1.125 1.136 1.174 1.193 1.350 1.482
D-CAL 0.021 0.017 0.012 0.009 0.006 0.006 0.006 0.007
CONC 0.958 0.960 0.961 0.960 0.949 0.943 0.897 0.880

MTLR-I NLL 1.126 1.118 1.125 1.136 1.174 1.193 1.350 1.482
D-CAL 0.021 0.017 0.012 0.009 0.006 0.006 0.006 0.007
CONC 0.958 0.960 0.961 0.960 0.949 0.943 0.897 0.880
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Table 13: MIMIC-III length of stay (full results)
λ 0 1 5 10 50 100 500 1000

Log-Norm D-CAL 0.860 0.639 0.210 0.155 0.066 0.046 0.009 0.005
S-CRPS CONC 0.625 0.639 0.577 0.575 0.558 0.555 0.528 0.506

Cat-NI NLL 3.142 3.177 3.101 3.167 3.086 3.088 3.448 3.665
D-CAL 0.002 0.002 0.002 0.001 3e-4 2e-4 1e-4 1e-4
CONC 0.702 0.700 0.701 0.699 0.695 0.690 0.642 0.627

Cat-I NLL 3.142 3.075 3.157 3.073 3.002 3.073 3.364 3.708
D-CAL 4-e4 3e-4 3e-4 3e-4 4e-4 1e-4 5e-5 4e-5
CONC 0.702 0.702 0.701 0.702 0.698 0.695 0.638 0.627

Table 14: The Cancer Genome Atlas, glioma (full results)
λ 0 1 5 10 50 100 500 1000

Weibull NLL 4.436 4.390 4.313 4.292 4.441 4.498 4.475 4.528
D-CAL 0.035 0.028 0.014 0.009 0.003 0.003 0.004 0.007
CONC 0.788 0.785 0.781 0.777 0.731 0.702 0.608 0.575

Log-Norm NLL 14.187 6.585 4.841 4.639 4.181 4.181 4.403 4.510
NLL D-CAL 0.059 0.024 0.012 0.010 0.003 0.003 0.002 0.004

CONC 0.657 0.632 0.673 0.703 0.778 0.805 0.474 0.387

Log-Norm NLL 5.784 5.801 5.731 5.698 5.047 4.892 4.750 4.712
S-CRPS D-CAL 0.258 0.2585 0.257 0.252 0.100 0.0702 0.044 0.025

CONC 0.798 0.798 0.798 0.810 0.568 0.507 0.420 0.363

Cat-NI NLL 1.718 1.742 1.746 1.758 1.800 1.799 1.810 1.826
D-CAL 0.008 0.003 0.002 0.002 0.003 0.003 0.003 0.002
CONC 0.781 0.771 0.775 0.775 0.765 0.765 0.758 0.748

Cat-I NLL 1.711 1.718 1.733 1.726 1.743 1.787 1.781 1.789
D-CAL 0.003 0.001 8e-4 0.001 0.002 0.002 0.002 0.002
CONC 0.778 0.779 0.780 0.798 0.804 0.803 0.806 0.802

MTLR-NI NLL 1.624 1.620 1.636 1.636 1.666 1.658 1.748 1.758
D-CAL 0.009 0.007 0.007 0.005 0.003 0.003 0.002 0.002
CONC 0.828 0.829 0.822 0.824 0.814 0.818 0.788 0.763

MTLR-I NLL 1.616 1.626 1.612 1.612 1.632 1.640 1.636 1.753
D-CAL 0.003 0.003 0.002 0.001 0.001 0.001 9e-4 0.001
CONC 0.827 0.825 0.831 0.829 0.824 0.823 0.825 0.783
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