
We thank all reviewers for their thoughtful and constructive feedback. We are encouraged that the reviewers find our1

idea of making pruning aware of robust training objectives intuitive (R1), our experiments well-informed (R1) and2

extensive (R2,R5), and success of our method, across different robust training objectives, datasets, architectures, and3

pruning ratios, an accomplishment (R2,R3,R4). We are pleased that R1 finds our observation on the existence of4

robust sub-networks timely and that R2 finds our extensive supplementary material impressive.5

Two major concerns were 1) additional insights on why proposed initialization is highly effective (R2,R3,R4) and 2)6

additional comparison with Adv-ADMM baseline (R3,R5). We address both, along with other comments, below and7

will incorporate all feedback in the updated version of the paper.8

[R2, R3, R4] Why is the proposed initialization effective? Why do random initializations not work so well?9

We show in Fig. 1 (left) that with proposed initialization SGD converges faster and to a better pruned network, in10

comparison to widely used random initializations. This is because with our initialization SGD enjoys much higher11

magnitude gradients throughout the optimization in the pruning step (Fig. 1 right). We will add in-depth analysis of it12

in the main paper. [R2] What other initializations were tried? We now compare with two more initializations, based13

on Dirac delta function and orthogonal matrices, along with four other widely used initializations.14

[R3, R5] More comparison with Adv-ADMM: Following reviewers’ suggestion, we now provide a comparison along15

six more recent architectures (Table 1). Our method achieves better accuracy and robustness, simultaneously, across all16

of them. Furthermore, when Adv-ADMM fails to even converge for MobileNet, a highly compact network, we achieve17

non-trivial performance. We already provide comparison at different pruning ratios in Table 2 of the main paper. [R3]18

Verified robustness? We use existing techniques IBP, Mixtrain, randomized smoothing to compute verified robustness.19
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Figure 1: We compare proposed initialization with six other widely used
initializations. With proposed initialization in the pruning step, SGD
converges faster and to a better architecture (left), since it enjoys higher
magnitude gradients throughout (right). (CIFAR10, 99% pruning)

Network Adv-ADMM Ours ∆

ResNet-18 58.7/36.1 69.0/41.6 +10.3/+5.5
ResNet-34 68.8/41.5 71.8/44.4 +3.0/+2.9
ResNet-50 69.1/42.2 73.9/45.3 +4.8/+3.1
WRN-28-2 48.3/30.9 54.2/34.1 +5.9/+3.2
GoogleNet 53.4/33.8 66.7/40.1 +13.3/+6.3

MobileNet-v2 10.0/10.0 39.7/26.4 +29.7/+16.4

Table 1: Comparing test accuracy/robustness
(era) with Adv-ADMM (CIFAR10 dataset,
99% pruning). Our approach outperforms
Adv-ADMM across all network architectures.

20

[R5] Comparison with other pruning strategies: Following reviewer’s suggestion, we now provide comparison with21

techniques from each of three pruning paradigms, i.e., pruning before training (SNIP), pruning with training (STR), and22

pruning followed by re-training (Adv-LWM, Adv-ADMM – these were already covered in the paper). We find that it is23

not always the case that an existing pruning strategy will also be successful with robust training. For example, SNIP24

performs equivalent to random pruning, i.e., scratch in Table-1 of main paper, when tested with adversarial training (era25

for SNIP=27.2%, scratch=24.6% at 99% pruning ratio). Similarly, STR with adversarial training achieves only 33.2%26

era, where our approach achieves 41.6% era at 99% pruning ratio for the ResNet-18 network and CIFAR10 dataset.27

[R5] Better architectures like Wide-ResNet, MobileNet: We already use Wide-ResNet-28-4 in major experiments28

(Table-3 in the paper). Following reviewer’s suggestion, we demonstrate the success of our method with recent29

architectures in Table 1. We achieve SOTA robustness in the context of highly compressed networks across multiple30

architectures. [R5] Authors use Lbenign in most of their pruning experiments: We think that this comment is a31

misunderstanding as we use Ladv or Lver in most experiments (L146). We thank the reviewer for providing additional32

suggestions on related work and clarity, which we will incorporate.33

[R5] As long as models are compressed properly, resulting models are robust . . . compare with RIGL, STR: We34

find that it is critical for the pruning step to be aware of the robustness objective. However, techniques like RIGL/STR,35

don’t account for the robustness objective while pruning. As suggested by the reviewer, we experimented with their36

pre-trained checkpoints and observed 0-0.5% robust accuracy. This further validates the importance of our approach.37

[R4] More experiments on ImageNet: Following reviewer’s suggestion, we also demonstrate success with provable38

robustness on ImageNet. Our approach achieves 47% provable robustness, while pre-trained nets has 49% and Adv-39

LWM achieves 44%, at ||ε||2 = 0.5, 90% pruning, using randomized smoothing. Note that this is the first work to40

demonstrate the success of pruning with robust training on the scale of ImageNet. Earlier works [14, 44] only perform41

experiments with CIFAR10/SVHN. We hope that the reviewer sees this as a strength, not a weakness of our paper.42

[R1] Combination of two existing ideas? We clarify that this combination is in itself novel, and that our proposed43

initialization is a key driver for success. This insight allows us to achieve SOTA accuracy and robustness, for compressed44

networks, across different pruning ratios, architectures, and datasets (including provable robustness at ImageNet scale).45


