
A Theoretical Model Analysis

A.1 Theoretical Proof of Recovering Node and Anchor Graphs from Affinity Matrix R

It is worth noting that a node-anchor affinity matrix R serves as a weighted adjacency matrix of a
bipartite graph B. We hence establish stationary Markov random walks [40] by defining the one-step
transition probabilities as follows,

pp1qpuk|viq “
Rik

řs
k1“1Rik1

, pp1qpvi|ukq “
Rik

řn
i1“1Ri1k

, @vi P V, @uk P U (12)

We can further compute the two-step transition probabilities between nodes as follows,

pp2qpvj |viq “
s

ÿ

k“1

pp1qpvj |ukqp
p1qpuk|viq “

s
ÿ

k“1

Rjk
řn

j1“1Rj1k

Rik
řs

k1“1Rik1

“

s
ÿ

k“1

Rjk

Λkk

Rik

∆ii
(13)

where Λkk “
řn

j1“1Rj1k and ∆ii “
řs

k1“1Rik1 . Therefore, we can recover a row-normalized
adjacency matrix A P Rnˆn for the node graph as Aij “ pp2qpvj |viq, which can be further written in
a compact form A “ ∆´1RΛ´1RJ.

Similarly, we can compute the two-step transition probabilities between anchors as follows,

pp2qpur|ukq “
n

ÿ

i“1

pp1qpur|viqp
p1qpvi|ukq “

n
ÿ

i“1

Rir
řs

r1“1Rir1

Rik
řn

i1“1Ri1k
“

n
ÿ

i“1

Rir

∆ii

Rik

Λkk
(14)

And a row-normalized adjacency matrix B P Rsˆs for the anchor graph Q can be formulated as
Bkr “ pp2qpur|ukq. And we can obtain B “ Λ´1RJ∆´1R.

A.2 Theoretical Convergence Analysis

While it is challenging to theoretically prove the convergence of the proposed iterative learning
procedure due to the arbitrary complexity of the model, here we want to conceptually understand why
it works in practice. Fig. 5 shows the information flow of the learned adjacency matrix A and the
updated node embedding matrix Z during the iterative procedure. For the sake of simplicity, we omit
some other variables such as rA. As we can see, at t-th iteration, Aptq is computed based on Zpt´1q

(Line 9), and Zptq is computed based on rAptq (Line 11) which is computed based on Aptq (Eq. (3)).
We further denote the difference between the adjacency matrices at the t-th iteration and the previous
iteration by δptqA . Similarly, we denote the difference between the node embedding matrices at the t-th
iteration and the previous iteration by δptqZ .

Figure 5: Information flow of iterative learning procedure.

If we assume that δp2qZ ă δ
p1q
Z , then we can expect that δp3qA ă δ

p2q
A because conceptually a more

similar node embedding matrix (i.e., smaller δZ) is supposed to produce a more similar adjacency
matrix (i.e., smaller δA) given the fact that model parameters keep the same through iterations.
Similarly, given that δp3qA ă δ

p2q
A , we can expect that δp3qZ ă δ

p2q
Z . Following this chain of reasoning,

we can easily extend it to later iterations. In order to see why the assumption δp2qZ ă δ
p1q
Z makes sense

in practice, we need to recall the fact that δp1qZ measures the difference between Zp1q and X, which is

14

usually larger than the difference between Zp2q and Zp1q, namely δp2qZ . For example, the raw node
feature matrix X can be quite sparse in practice (e.g., in Cora and Citeseer), whereas Zp1q is typically
a dense matrix.

A.3 Model Complexity Analysis

As for IDGL, the cost of learning an adjacency matrix is Opn2hq for n nodes and data in Rh,
while computing node embeddings costs Opn2h` ndhq, computing task output costs Opn2dq, and
computing the total loss costs Opn2dq where d is the hidden size. We set the maximal number of
iterations to T , hence the overall complexity is OpTnpnh` nd` hdqq. If we assume that d « h and
n " d, the overall time complexity is OpTdn2q.
As for IDGL-ANCH, the cost of learning a node-anchor affinity matrix is Opnshq, while computing
node embeddings costs Opnsh ` ndh ` |E |hq, computing task output costs Opnsd ` |E |dq, and
computing the total loss costs Opns2 ` s2dq where |E | is the number of edges in the initial or
kNN graph G. With the assumption that the initial or kNN graph is usually very sparse in practice,
especially for large graphs, we hence set |E | “ kn where k is a constant denoting the average degree
of the initial or kNN graph. Therefore, we get the overall time complexity OpTnpds` d2 ` s2qq. If
we assume that n " s which usually holds true for large graphs, the overall time complexity is linear
with respect to the numbers of graph nodes n.

As for space complexity, compared to IDGL, IDGL-ANCH reduces it from Opn2q to Opnsq since it
only needs to store the nˆ s affinity matrix.

B Empirical Model Analysis

B.1 Convergence Test

Here, we show the evolution of the learned adjacency matrix and accuracy through iterations in
the iterative learning procedure in the testing phase. As we can see, both the adjacency matrix and
accuracy converge quickly.

Figure 6: Convergence study on Cora (single run results).

Figure 7: Convergence study on Citeseer (single run results).

15

B.2 Stopping Strategy Analysis

Here, we empirically compare the effectiveness of two stopping strategies: i) using a fixed number of
iterations (blue line), and ii) using a stopping criterion to dynamically determine the convergence
(red line). As we can see, dynamically adjusting the number of iterations using the stopping criterion
works better in practice. Compared to using a fixed number of iterations globally, the advantage of
applying this dynamical stopping strategy becomes more clear when we are doing mini-batch training
since we can adjust when to stop dynamically for each example graph in the mini-batch.

Figure 8: Performance comparison (i.e., test accuracy in %) of two different stopping strategies on
Cora.

Figure 9: Performance comparison (i.e., test accuracy in %) of two different stopping strategies on
Citeseer.

B.3 Graph Visualization

Here, we visualize the graph structures (i.e., Aptq) learned by IDGL. As we can see, compared to the
initial graph structures, IDGL mainly forms graph structures within the same class of nodes, which
complement the initial graph structure. This is as expected because Aptq is computed based on the
updated node embeddings that are supposed to capture certain node label information.

B.4 Hyperparameter Analysis

A hyperparameter λ is used to balance the trade-off between using the learned graph structure and
the initial (or kNN) graph structure. In Table 5, we show the results of using different values of λ on
Cora.

We also study the effect of the hyperparameter s (i.e., the number of anchors in IDGL-ANCH). As
shown in Table 6, lower value of s can degrade the performance of IDGL-ANCH whereas after
certain optimal value, further increasing the number of anchors might not help the performance.

16

(a) Initial graph (Ap0q) (b) Learned graph (Aptq)

Figure 10: Visualization of the initial graph and the learned graph on Cora. Colors indicate different
node labels.

(a) kNN graph (Ap0q) (b) Learned graph (Aptq)

Figure 11: Visualization of the kNN graph and the learned graph on Wine. Colors indicate different
node labels.

Table 5: Test scores (˘ standard deviation) with different values of λ on the Cora data.

Methods / λ 0.9 0.8 0.7 0.6 0.5
IDGL 83.6 (0.4) 84.5 (0.3) 83.9 (0.3) 82.4 (0.1) 80.9 (0.2)
IDGL-ANCH 83.2 (0.4) 84.4 (0.2) 83.5 (0.6) 82.9 (0.4) 54.6 (32.3)

Table 6: Test scores (˘ standard deviation) with different values of s for IDGL-ANCH on the Cora
and Pubmed data.

Methods / s 1,600 1,300 1,000 700 400 100
Cora 84.0 (0.4) 84.1 (0.5) 84.4 (0.2) 83.8 (0.2) 58.7 (30.5) 38.3 (25.9)
Pubmed 82.7 (0.2) 83.0 (0.4) 82.7 (0.4) 83.0 (0.2) 82.7 (0.3) 82.4 (0.5)

17

C Details on Experimental Setup

C.1 Data Statistics

Table 7 shows the data statistics of the nine benchmarks used in our experiments.

Table 7: Data statistics. (clf. indicates classification and reg. indicates regression.)
Benchmarks #Nodes #Edges Train/Dev/Test Task Setting
Cora 2,708 (1 graph) 5,429 140/500/1,000 node clf. transductive
Citeseer 3,327 (1 graph) 4,732 120/500/1,000 node clf. transductive
Pubmed 19,717 (1 graph) 44,338 60/500/1,000 node clf. transductive
ogbn-arxiv 169,343 (1 graph) 1,166,243 90,941/29,799/48,603 node clf. transductive
Wine 178 (1 graph) N/A 10/20/158 node clf. transductive
Cancer 569 (1 graph) N/A 10/20/539 node clf. transductive
Digits 1,797 (1 graph) N/A 50/100/1,647 node clf. transductive
20News 317 (18,846 graphs) N/A 7,919/3,395/7,532 graph clf. inductive
MRD 389 (5,006 graphs) N/A 3,003/1,001/1,002 graph reg. inductive

C.2 Model Settings

Table 8: Hyperparameter for IDGL on all benchmarks.

Benchmarks λ η α β γ k ε m δ T
Cora 0.8 0.1 0.2 0.0 0.0 – 0.0 4 4.0e-5 10
Citeseer 0.6 0.5 0.4 0.0 0.2 – 0.3 1.0 1.0e-3 10
Wine 0.8 0.7 0.1 0.1 0.3 20 0.75 1 1.0e-3 10
Cancer 0.25 0.1 0.4 0.2 0.1 40 0.9 1 1.0e-3 10
Digits 0.4 0.1 0.4 0.1 0.0 24 0.65 8 1.0e-4 10
20News 0.1 0.4 0.5 0.01 0.3 950 0.3 12 8.0e-3 10
MRD 0.5 0.9 0.2 0.0 0.1 350 0.4 5 4.0e-2 10

Table 9: Hyperparameter for IDGL-ANCH on all benchmarks.

Benchmarks λ η α β γ k ε m δ T num./ratio of anchors
Cora 0.8 0.1 0.2 0.0 0.1 – 0.0 4 8.5e-5 10 1,000
Citeseer 0.6 0.5 0.5 0.1 0.2 – 0.2 4 2.0e-3 10 1,400
Pubmed 0.7 0.3 0.0 0.03 0.0 – 0.1 6 8.0e-5 10 700
ogbn-arxiv 0.8 0.1 0.2 0.0 0.0 – 0.9 1 1.0e-1 2 300
Wine 0.7 0.7 0.1 0.1 0.3 20 0.75 1 1.0e-3 10 200
Cancer 0.25 0.1 0.0 0.0 0.0 40 0.9 4 8.0e-4 10 100
Digits 0.3 0.3 0.4 0.1 0.0 24 0.65 8 1.0e-4 10 1,500
20News 0.1 0.3 0.4 0.0 0.3 950 0.4 12 1.0e-2 10 0.4
MRD 0.5 0.75 0.2 0.0 0.0 400 0.7 4 3.0e-2 10 0.4

In all our experiments, we apply a dropout ratio of 0.5 after GCN layers except for the output
GCN layer. During the iterative learning procedure, we also apply a dropout ratio of 0.5 after the
intermediate GCN layer, except for Citeseer (no dropout) and Digits (0.3 dropout). For experiments
on text benchmarks, we keep and fix the 300-dim GloVe vectors for words that appear more than 10
times in the dataset. For long documents, for the sake of efficiency, we cut the text length to maximum
1,000 words. We apply a dropout ratio of 0.5 after word embedding layers and BiLSTM layers. The
batch size is set to 16. And the hidden size is set to 128 and 64 for 20News and MRD, respectively.
For all other benchmarks, the hidden size is set to 16 to follow the original GCN paper. For the
text benchmarks, we apply a BiLSTM to a sequence of word embeddings. The concatenation of the
last forward and backward hidden states of the BiLSTM is used as the initial node features. We use
Adam [26] as the optimizer. For the text benchmarks, we set the learning rate to 1e-3. For all other
benchmarks, we set the learning rate to 0.01 and apply L2 norm regularization with weight decay
set to 5e-4. As for IDGL-ANCH, we set the number of anchors as a hyperparameter in transductive
experiments, while in inductive experiments, we set the ratio of anchors (proportional to the graph

18

size) as a hyperparameter. In Table 8 and Table 9, we show the hyperparameters for IDGL and
IDGL-ANCH on all benchmarks, respectively. All hyperparameters are tuned on the development
set.

19

	Introduction
	Iterative Deep Graph Learning Framework
	Problem Formulation
	Graph Learning and Graph Embedding: A Unified Perspective
	Graph Learning as Similarity Metric Learning
	Graph Node Embeddings and Prediction
	Graph Regularization
	Joint Learning with A Hybrid Loss

	Experiments
	Related Work
	Conclusion
	Theoretical Model Analysis
	Theoretical Proof of Recovering Node and Anchor Graphs from Affinity Matrix R
	Theoretical Convergence Analysis
	Model Complexity Analysis

	Empirical Model Analysis
	Convergence Test
	Stopping Strategy Analysis
	Graph Visualization
	Hyperparameter Analysis

	Details on Experimental Setup
	Data Statistics
	Model Settings

