
We thank the reviewers for their very helpful comments and suggestions. We will first address the primary concerns1

about real-world experiments and deep density models and then answer detailed comments and questions.2

More experiments on real world data (R1). We present more experiments on both the UCI energy dataset and a UCI3

gas sensor dataset. Given the complexities of data with strong time dependencies, we walk through a few new real data4

experiments using a time-dependent bootstrap and a shuffled time axis (see Table A). First, we provide results for our5

unknown sensor experiment (the submission only contained results for a fixed single sensor) via the original bootstrap6

(denoted “MB-SM, Unshuffled”). The 100% recall but very poor precision (i.e., it always predicts a shift) is expected7

because the real data exhibits strong time dependencies, and thus natural (or “benign”) distribution shifts exist across8

time. This highlights the inherent difficulty of detecting adversarial shifts in the presence of natural shifts: it is difficult9

(if not impossible in certain cases) to determine if a shift is benign or adversarial without further assumptions. As a10

first attempt to overcome this issue, we modify our bootstrapping method to account for natural shifts; specifically, we11

sample chunks of time jointly together (rather than completely random time points) from a held-out clean dataset. This12

causes our detection threshold to be much higher, and thus our time-dependent bootstrap method (“Time-Boot”) rarely13

detects (very low recall) the adversarial shifts because they are hidden among natural shifts. Fundamentally, this is14

because our current density models assume no time dependency. One possible solution is to estimate time-dependent15

density models (e.g., autoregressive time models); however, exploration of time-dependent density models is outside16

the scope of this paper which focuses on the localization aspect. Thus, as a final experiment, we shuffle the dataset17

along the time axis so that all time dependencies are broken; this creates a semi-synthetic dataset because it retains the18

feature dependencies but removes time dependencies. In this semi-synthetic setting (denoted “Shuffled”), our method19

performs much better and similar to the simulation results. We hope these results and discussion bring insight into the20

challenges of time series data and encourage further work in this area.21

Experiments with deep density models (R1, R2, R3, R4). In this experiment, we demonstrate that using a deep22

density model can improve the performance of our method. We fit a normalizing flow using iterative Gaussianization123

which is fast and stable because it only requires iteratively estimating a PCA projections and univariate histograms and24

thus can be carefully controlled to help avoid overfitting. While recall is slightly reduced, our deep density method25

(“Deep-SM”) significantly improves the precision of both detection and localization compared to the Gaussian-based26

method (“MB-SM”) even when the time axis is unshuffled. Clearly, other deep density models including more general27

normalizing flows or autoregressive models could be used but we leave extensive comparisons to future work.28

Table A: Unknown single sensor experiment with UCI appliance energy dataset (left) and UCI gas sensor dataset (right).
Time Axis MB-SM MB-SM-Time-Boot Deep-SM-Time-Boot MB-SM MB-SM-Time-Boot Deep-SM-Time-Boot

Prec Recall Prec Recall Prec Recall Prec Recall Prec Recall Prec Recall
Feature shift detection (1st stage)

Unshuffled 50.00% 100% 16.67% 8.86% 55.00% 62.62% 50.00% 100% 11.11% 2.27% 22.22% 4.55%
Shuffled 74.57% 97.74% 75.25% 96.20% 77.89% 93.67% 97.30% 100% 75.86% 100% 97.78% 100%

Feature shift localization (2nd stage)
Unshuffled 1.92% 100% 2.38% 1.27% 3.00% 3.80% 8.85% 100% 11.11% 2.27% 11.11% 2.27%
Shuffled 2.87% 97.74% 75.25% 96.20% 64.21% 77.22% 4.52% 100% 56.90% 75.00% 68.90% 70.45%

R1. Table 1 clarifications. There was a typo and the first column should match that of the Table 2 which represents29

the difficulty of the attack based on mutual information between variables, see L232 - L245 on “Attack Strength and30

Difficulty”. Marginal-KS is very bad because the attack model is very strong, i.e., it mimics the marginal distribution of31

the sensor. Thus, marginal KS will naturally fail—highlighting the limitation of prior work for this adversarial attack.32

R2. For bootstrapping, does the model need to be fit multiple times? Yes, we refit the model for every bootstrap33

iteration. For Gaussian, this is fairly simple. For deep density models, we could train one model on all the data first, and34

then update the model slightly (1-2 epochs) for each bootstrap (similar to transfer learning). How does bootstrapping35

perform at controlling the False Discovery Rate? For the detection stage, the FDR was controlled below 0.05 in all36

but the hardest cases, see Table 1 (note that FDR is 1 - Precision). See also Table 6 and 7 in appendix. For the more37

challenging localization stage, we do not explicitly control the FDR.38

R3. Deep density with limited samples. Thanks for the comment. Our results above demonstrate that deep models can39

indeed be helpful though we will add some discussion regarding this challenge. Choice of window size. Thanks for the40

comment. We highlight that the choice of window size is a trade-off between the delay in detecting a shift (Table 4) and41

the error of the sensor localization (Table 3). Also, the particular application may have resource constraints.42

R4. Motivation for KNN approach. We wanted a method that could compute a “conditional” KS statistic since the43

marginal KS statistic is well-known for detecting 1D shifts. We are unsure what is meant by “K-D trees”; could you44

point to a reference for this? Neural-kernelized and other conditional density estimation. Thanks for the pointers. We45

note that using conditional density estimation would require estimating a different conditional density models for every46

feature. In contrast, a single joint density model can be used to compute all conditional statistics via the score function.47

1[1] V. Laparra, G. Camps-Valls, and J. Malo. Iterative Gaussianization: From ICA to random rotations. IEEE Tran. on Neural
Networks, 2011. [2] D. I. Inouye and P. Ravikumar. Deep density destructors. In ICML, 2018.


