
A Scaled-Extension-Based Structural Decomposition for V

A.1 Triangle-Freeness

Lemma 2. Consider a triangle-free game, let (σ1, σ2) ∈ Σ1 ./Σ2, and let I1
 I2 be such that
σ(I1) = σ1, σ(I2) = σ2. Then, at most one between the σ1-rank of I2 and the σ2-rank of I1 is strictly
larger than 1.

Proof. The results follows almost immediately from the definition of triangle-freeness. We prove the
statement by contradiction. Let (σ1, σ2) ∈ Σ1 ./Σ2 be a relevant sequence pair, and let information
sets I1 ∈ I1, I2 ∈ I2 be such that σ(I1) = σ1, σ(I2) = σ2. Furthermore, assume that the σ1-rank
of I2 is greater than 1, and at the same time the σ2-rank of I1 is greater than 1. Since the σ2-rank
of I1 is greater than 1, there exists an information set I ′2 ∈ I2, σ(I ′2) = σ2, distinct from I2, such
that I1
 I ′2. Similarly, because the σ1-rank of I2 is greater than 1, there exists an information
set I ′1 ∈ I1, σ(I ′1) = σ1, distinct from I1, such that I ′1
 I2. But then, we have found I1, I ′1 ∈ I1
and I ′2, I2 ∈ I2 such that σ(I1) = σ(I2) = σ1, σ(I ′2) = σ(I2) = σ2 such that I1
 I ′2, I

′
1
 I2, and

I1
 I2. So, the game is not triangle-free, contradiction.

Theorem 1. A two-player extensive-form game with public chance moves is triangle-free.

Proof. For contradiction, let I1, I2 be two distinct information sets for Player 1 such that σ(I1) =
σ(I2), let J1, J2 be two distinct information sets for Player 2 such that σ(J1) = σ(J2), and assume
that I1
 J1, I2
 J2, I1
 J2. By definition of connectedness, there exist nodes u ∈ I1, v ∈ J1 such
that v is on the path from the root to u, or vice versa. Similarly, there exist nodes u′ ∈ I2, v′ ∈ J2

such that u′ is on the path from the root to v′, or vice versa. Let w be the lowest common ancestor of
u and u′. It is not possible that w = u or w = u′, because otherwise the parent sequences of I1 and I2
would be different. So w must be a strict ancestor of both u and u′, and u and u′ must be reached
using different edges at w. Therefore, node w cannot belongs to Player 1, or otherwise it again would
not be true that σ(I1) = σ(I2). So, there are only two possible cases: either w belongs to Player 2, or
it belongs to the chance player. We break the analysis accordingly.

• First case: w belongs to Player 2. From above, we know that u and u′ are reached by following
different branches at w. So, if both v and v′ were strict descendants of w, they would need to be
on two different branches of w (because they are connected to u and u′ respectively), violating
the condition σ(J1) = σ(J2). So, at least one between v and v′ is on the path from the root to w
(inclusive). But then either v is an ancestor of v′, or vice versa. Either case violates the hypothesis
that σ(J1) = σ(J2).

• Second case: w belongs to the chance player. If any between v and v′ is an ancestor of w, then
necessarily either v is an ancestor of v′, or v′ is an ancestor of v. Either case violates the condition
σ(J1) = σ(J2). So, both v and v′ must be descendants of w. Because v is on the path from the
root to u (or vice versa), and v′ is on the path from the root to u′ (or vice versa), then necessarily
u, v and u′, v′ are on two different branches of the chance node w. To fix names, call a the action
at w that must be taken to (eventually) reach u and v, and let b be the action that must be taken
to (eventually) reach u′ and v′. Now, we use the hypothesis that I1
 J2, that is, there exists
u′′ ∈ I1, v′′ ∈ J2 such that u′′ is on the path from the root to v′′ or vice versa. Assume that u′′ is
on the path from the root to v′′. Since u′′ belongs to the same information set as u (that is, I1), and
since chance is public by hypothesis, then Player 1, when acting at u and u′′, must have observed
action a at w. In other words, the path from the root to u′′ must pass through action a at w. But
then, using the fact that u′′ is on the path from the root to v′′, this means that the path from the
root to v′′ passes through action a. However, the path from the root to v′ passes through action b.
Since chance is public, nodes v′ and v′′ cannot be in the same information set, because Player 2 is
able to distinguish them by means of the observed chance outcome. We reached a contradiction.
The symmetric case where v′′ is on the path from the root to u′′ is analogous.

A.2 Decomposition Algorithm

In this section, we provide pseudocode for the algorithm presented in Section 3.2. We will use the
following conventions:

• Given a player i ∈ {1, 2}, we let −i denote the opponent.

12

• We use the symbol t to denote disjoint union.
• Given two infosets I, I ′ ∈ Ii, we write I � I ′ if σ(I ′) � σ(I). We say that we iterate over a set
I ⊆ Ii in top-down order if, given any two I, I ′ ∈ I such that I � I ′, I appears before I ′ in the
iteration.

• We use the observation that for all I ∈ I1 and σ2 ∈ Σ2, I ./ σ2 if and only if (I, a) ./ σ2 ∀a ∈ AI .
(A symmetric statement holds for I ∈ I2 and σ1 ∈ Σ1.)

A.2.1 Two Useful Subroutines

We start by presenting two simple subroutines that capture fill-in step 4 of Figure 2 or equivalently
Step 4(d) of Section 3.2. The two subroutines are symmetric and have the role of filling rows and
columns of the correlation plans.

Algorithm 1: FILLOUTROW((σ1, σ2), I1,S,D)

Preconditions :(σ1, σ2) ∈ Σ1 ./Σ2, I1 ∈ I1, σ(I1) = σ1, (σ1, σ2) ∈ S
1 for I2 such that σ(I2) = σ2 and σ1 ./ I2 do
2 if I1
 I2 then
3 for σ′2 ∈ {(I2, a) : a ∈ AI2} do

. Fill (σ1, σ
′
2) by summing up all entries {v[(I1, a

′), σ′2] : a′ ∈ AI1} in accordance with the
von Stengel-Forges constraints

4 S ← S t {(σ1, σ
′
2)}

5 D ← D / h{1} where h : v 7→∑
a′∈AI1

v[(I1, a
′), σ′2]

6 else
. Fill all {v[σ1, (I2, a)] : a ∈ AI2} by splitting v[σ1, σ2] accordance with the von Stengel-Forges

constraints
7 S ← S t {(σ1, (I2, a)) : a ∈ AI2}
8 D ← D / h ∆|AI2

| where h : v 7→ v[σ1, σ2]
9 for σ′2 ∈ {(I2, a) : a ∈ AI2} do

10 FILLOUTROW((σ1, σ
′
2), I1)

11 return (S,D)

Algorithm 2: FILLOUTCOLUMN((σ1, σ2), I2,S,D)

Preconditions :(σ1, σ2) ∈ Σ1 ./Σ2, I2 ∈ I2, σ(I2) = σ2, (σ1, σ2) ∈ S
1 for I1 such that σ(I1) = σ1 and σ2 ./ I1 do
2 if I1
 I2 then
3 for σ′ ∈ {(I1, a) : a ∈ AI1} do

. Fill (σ′1, σ2) by summing up all entries {v[σ′1, (I2, a
′)] : a′ ∈ AI2} in accordance with the

von Stengel-Forges constraints
4 S ← S t {(σ′1, σ2)}
5 D ← D / h{1} where h : v 7→∑

a′∈AI2
v[σ′1, (I2, a

′)]

6 else
. Fill all {v[(I1, a), σ2] : a ∈ AI1} by splitting v[σ1, σ2] accordance with the von Stengel-Forges

constraints
7 S ← S t {((I1, a), σ2) : a ∈ AI1}
8 D ← D / h ∆|AI1

| where h : v 7→ v[σ1, σ2]
9 for σ′ ∈ {(I1, a) : a ∈ AI1} do

10 FILLOUTCOLUMN((σ′1, σ2), I2)
11 return (S,D)

The following inductive contract will be important for the full algortihm.

Lemma 3 (Inductive contract for FILLOUTROW). Suppose that the following preconditions hold
when FILLOUTROW((σ1, σ2), I1,S,D)) is called:

(Pre1) (σ1, σ2) ∈ Σ1 ./Σ2;
(Pre2) I1 ∈ I1 is such that σ(I1) = σ;
(Pre3) S contains only relevant sequence pairs and D consists of vectors indexed by exactly the

indices in S;
(Pre4) (σ1, σ2) ∈ S, but (σ1, σ

′
2) /∈ S for all σ′2 � σ2;

13

(Pre5) For all a ∈ I1 and σ′2 � σ2 such that I1 ./ σ′2, ((I1, a), σ′2) ∈ S;
(Pre6) If I1 ./ σ2, all v ∈ D satisfy the von Stengel-Forges constraint v[σ1, σ2] =∑

a∈I1 v[(I1, a), σ2];
(Pre7) All v ∈ D satisfy the von Stengel-Forges constraints

v[(I, a), σ(I2)] =
∑

a′∈AI2

v[(I, a), (I2, a
′)] ∀a ∈ I1, and I2 ∈ I2 : I1 ./ I2, σ(I2) � σ2.

Then, the sets (S′,D′) returned by the call are such that

(Post1) S′ contains only relevant sequence pairs and D′ consists of vectors indexed by exactly the
indices in S′;

(Post2) S′ = S t {(σ1, σ
′
2) : σ′2 � σ2, σ ./ σ

′
2};

(Post3) All v ∈ D′ satisfy the von Stengel-Forges constraints

v[σ1, σ(I2)] =
∑

a′∈AI2

v[σ1, (I2, a
′)] ∀I2 ∈ I2 : σ ./ I2, σ(I2) � σ2

and all von Stengel-Forges constraints

v[σ1, σ
′
2] =

∑

a∈AI1

v[(I, a), σ′2] ∀σ′2 ∈ Σ2 : σ′2 ./ I1, σ
′
2 � σ2.

Proof. By induction.

• Base case. The base case corresponds to σ2 ∈ Σ2 such that no information set I2 ∈ I2 : σ(I2) =
σ2 ∧ σ1 ./ I2 exists. In that case, Algorithm 1 returns immediately, so (Post1) holds trivially from
(Pre3). Since no I2 such that σ(I2) = σ2 ∧ σ1 ./ I2 exists, no σ′2 � σ2 such that σ1 ./ σ

′
2 exists, so

(Post2) holds as well. The first set of constraints of (Post3) is empty, and the second set reduces
to (Pre6).

• Inductive step. Suppose that the inductive hypothesis holds when σ′2 � σ2. We will show that it
holds when σ′2 = σ2 as well. In order to use the inductive hypothesis, we first need to check that
the preconditions are preserved at the time of the recursive call on Line 10. (Pre1) holds since
σ1 ./ I2. (Pre2) holds trivially since σ does not chance. (Pre3) holds since we are updating S and
D in tandem on lines 4, 5 and 7, 8. (Pre4) holds since by the time of the recursive call we have
only filled in entries (σ1, σ

′
2) where σ′2 is an immediate successor of σ2. (Pre5) at Line 10 holds

trivially, since it refers to a subset of the entries for which the condition held at the beginning of
the call. (Pre6) holds because I1 ./ σ′2 ⇐⇒ I1
 I2. Hence, if I1 ./ σ′2 then Lines 4 and 5 must
have run. (Pre7) at Line 10 holds trivially, since it refers to a subset of the constraints for which
the condition held at the beginning of the call. Using the inductive hypothesis, (Post1), (Post2),
and the second set of constraints in (Post3) follow immediately. The only constraints that are left
to be verified are

v[σ1, σ2] =
∑

a′∈AI2

v[σ1, (I2, a
′)] ∀I2 ∈ I2 : σ ./ I2, σ(I2) = σ2. (3)

That constraint is guaranteed by Lines 7 and 8 for all I2 6
 I1. So, we need to verify that it holds
for all those I2 such that σ(I2) = σ2, σ ./ I2 and I1
 I2. Let I2 be one such information set.
Then, from Lines 4 and 5 we have that

v[σ1, (I2, a)] =
∑

a′∈AI1

v[(I, a′), (I2, a)] ∀a ∈ AI2 .

Summing the above equations across all a ∈ AI2 and using (Pre7) yields
∑

a∈AI2

v[σ1, (I2, a)] =
∑

a∈AI2

∑

a′∈AI1

v[(I, a′), (I2, a)]

=
∑

a′∈AI1

∑

a∈AI2

v[(I, a′), (I2, a)]

=
∑

a′∈AI1

v[(I, a′), σ(I2)]

=
∑

a′∈AI1

v[(I, a′), σ2],

14

where we used the hypothesis that σ(I2) = σ2 in the last equality. Finally, since I1
 I2 and
σ(I2) = σ2, it must be I1 ./ σ2 and so, using (Pre6), we obtain that

∑

a∈AI2

v[σ1, (I2, a)] = v[σ1, σ2],

completing the proof of Equation (3). So, (Post3) holds as well and the proof of the inductive step
is complete.

The inductive contract for FILLOUTCOLUMN is symmetric and we omit it.

A.2.2 The Full Algorithm

Algorithm 3: DECOMPOSE((σ1, σ2),S,D)

Preconditions :(σ1, σ2) ∈ Σ1 ./Σ2, (σ1, σ2) ∈ S
1 B ← ∅
2 for all i ∈ {1, 2}, I ∈ Ii, σ(I) = σi, σ−i ./ I do
3 if the σ−i-rank of I is 0 then
4 B ← B t I
5 for (I1, I2) ∈ I1 × I2 such that σ(I1) = σ1, σ(I2) = σ2, I1
 I2 do
6 if the σ2-rank of I1 is ≥ the σ1-rank of I2 then
7 B ← B t I1
8 else
9 B ← B t I2

10 for I ∈ B do
11 if I ∈ I1 then

. Fill all {v[(I, a), σ2] : a ∈ AI} by splitting v[σ1, σ2] accordance with the von Stengel-Forges
constraints

12 S ← S t {((I, a), σ2) : a ∈ AI}
13 D ← D / h ∆|AI | where h : v 7→ v[σ1, σ2]

. Recursive call
14 for σ′1 ∈ {(I, a) : a ∈ AI} do
15 DECOMPOSE((σ′1, σ2),S,D)

. Fill a portion of the row for σ1

16 for I2 ∈ I2 : σ1 ./ I2, σ(I2) = σ2 do
17 for σ′2 ∈ {(I2, a′) : a′ ∈ AI2} do

. Fill (σ1, σ
′
2) by summing up all entries {v[(I, a′), σ′2] : a′ ∈ AI} in accordance with

the von Stengel-Forges constraints
18 S ← S t {(σ1, σ

′
2)}

19 D ← D / h{1} where h : v 7→∑
a′∈AI

v[(I, a′), σ′2]

20 FILLOUTROW((σ1, σ
′
2), I)

21 else
. Fill all {v[σ1, (I, a)] : a ∈ AI} by splitting v[σ1, σ2] accordance with the von Stengel-Forges

constraints
22 S ← S t {(σ1, (I, a)) : a ∈ AI}
23 D ← D / h ∆|AI | where h : v 7→ v[σ1, σ2]

. Recursive call
24 for σ′2 ∈ {(I, a) : a ∈ AI} do
25 DECOMPOSE((σ1, σ

′
2),S,D)

. Fill a portion of the column for σ2

26 for I1 ∈ I1 : σ2 ./ I1, σ(I1) = σ1 do
27 for σ′1 ∈ {(I1, a′) : a′ ∈ AI1} do

. Fill (σ′1, σ2) by summing up all entries {v[σ′1, (I, a
′)] : a′ ∈ AI} in accordance with

the von Stengel-Forges constraints
28 S ← S t {(σ′1, σ2)}
29 D ← D / h{1} where h : v 7→∑

a′∈AI
v[σ′1, (I, a

′)]

30 FILLOUTCOLUMN((σ′1, σ2), I)
31 return (S,D)

15

Lemma 4 (Inductive contract for DECOMPOSE). Assume that at the beginning of each call to
DECOMPOSE((σ1, σ2),S,D) the following conditions hold

(Pre1) S contains only relevant sequence pairs and D consists of vectors indexed by exactly the
indices in S.

(Pre2) S does not contain any relevant sequence pairs which are descendants of (σ1, σ2), with
the only exception of (σ1, σ2) itself. In formulas,

S ∩ {(σ′1, σ′2) ∈ Σ1 × Σ2 : σ′1 � σ1, σ
′
2 � σ2} = {(σ1, σ2)}.

Then, at the end of the call, the returned sets (S′,D′) are such that

(Post1) S′ contains only relevant sequence pairs and D′ consists of vectors v indexed by exactly
the indices in S′.

(Post2) The call has filled in exactly all relevant sequence pair indices that are descendants of
(σ1, σ2) (except for (σ1, σ2) itself, which was already filled in). In formulas,

S′ = S t {(σ′1, σ′2) ∈ Σ1 × Σ2 : σ′1 � σ1, σ
′
2 � σ2, (σ

′
1, σ
′
2) 6= (σ1, σ2), σ′1 ./ σ

′
2}.

(Post3) D′ satisfies the subset of von Stengel-Forges constraints
∑

a∈AI

v[(I, a), σ′2] = v[σ(I), σ′2] ∀σ′2 � σ2, I ∈ I1 s.t. σ′2 ./ I, σ(I) � σ1

∑

a∈AJ

v[σ′1, (J, a)] = v[σ′1, σ(J)] ∀σ′1 � σ1, J ∈ I2 s.t. σ′1 ./ J, σ(J) � σ2.

Proof. By induction.

• Base case. The base case is any (σ1, σ2) such that there is no σ′1 � σ1, σ
′
2 � σ2, σ′1 ./ σ

′
2. In that

case, the set B is empty, so the algorithm terminates immediately without modifying the sets S
and D. Consequently, (Post1) and (Post2) hold trivially from (Pre1) and (Pre2). (Post3) reduces
to an empty set of constraints, so (Post3) holds as well.

• Inductive step. In order to use the inductive hypothesis, we will need to prove that the precon-
ditions for DECOMPOSE hold on Lines 15 and 25. We will focus on Line 15 (I ∈ I1), as the
analysis for the other case (I ∈ I2) is symmetric. (Pre1) clearly holds, since we always update
S and D in tandem. Since all iterations of the for loop on Line 10 touch different information
sets, at the time of the recursive call on Line 15, and given (Post2) for all previous recursive calls,
the only relevant sequence pairs (σ′′1 , σ

′′
2) such that σ′′1 � σ′1, σ′′2 � σ2 that have been filled are the

ones on Lines 12 and 13. So, (Pre2) holds.
We now check that the preconditions for FILLOUTROW hold at Line 20. (Pre1), (Pre2), (Pre3),
and (Pre4) are trivial. (Pre5) and (Pre7) are guaranteed by (Post2) and (Post3) of DECOMPOSE
applied to Line 15. (Pre6) holds because of Lines 18 and 19.
Using the inductive contracts of FILLOUTROW, FILLOUTCOLUMN and DECOMPOSE for the
recursive calls, we now show that all postconditions hold at the end of the call. (Post1) is trivial
since we always update S and D together. (Post2) holds by keeping track of what entries are
filled in Lines 12, 13, 18, 19, 22, 23, 28, 29, as well as those filled in the calls to FILLOUTROW,
FILLOUTCOLUMN and DECOMPOSE, as regulated by postcondition (Post2) in the inductive
contracts of the functions. In order to verify (Post3), we need to verify that the constraints that are
not already guaranteed by the recursive calls hold. In particular, we need to verify that

A
∑

a∈AI

v[(I, a), σ2] = v[σ1, σ2] ∀I ∈ I1 s.t. σ2 ./ I, σ(I) = σ1, I /∈ B

B
∑

a∈AJ

v[σ1, (J, a)] = v[σ1, σ2] ∀J ∈ I2 s.t. σ1 ./ J, σ(J) = σ2, J /∈ B.

We will show that constraints A hold; the proof for B is symmetric. Using Lemma 2 together
with the definition of B (Lines 1-9), any information set I ∈ Ii : σ(I) = σi, σ−i ./ I that is not in
B must have σ−i-rank exactly 1. Let I ∈ I1 be such that σ2 ./ I, σ(I) = σ1, I /∈ B, as required in
A . Since the σ2-rank of I is 1, let J be the only information set in I2 such that I
 J, σ(J) = σ2.
Note that J ∈ B. The entries v[(I, a), σ2] : a ∈ AI were filled in Lines 28 and 29 when the for
loop picked up J ∈ B. So, in particular,

v[(I, a), σ2] =
∑

a′∈AJ

v[(I, a), (J, a′)] ∀a ∈ AI .

16

Summing the above equations across a ∈ AI , we obtain∑

a∈AI

v[(I, a), σ2] =
∑

a∈AI

∑

a′∈AJ

v[(I, a), (J, a′)]

=
∑

a′∈AJ

∑

a∈AI

v[(I, a), (J, a′)]

=
∑

a′∈AJ

v[σ1, (J, a
′)]

= v[σ1, σ2],

where the last equation follows from the way the entries v[σ1, (J, a
′)] : a′ ∈ AJ were filled in

(Lines 22 and 23). This shows that the set of constraints A hold.

Theorem 2. The von Stengel-Forges polytope V of a two-player perfect-recall triangle-free EFG can
be expressed via a sequence of scaled extensions with simplexes and singleton sets:

V = {1} h1
/ X1

h2
/ X2

h3
/ · · · hn

/ Xn, (2)
where, for i = 1, . . . , n, either Xi = ∆si for some simplex dimension si ∈ N, or Xi = {1}, and hi is a
linear function. Furthermore, an exact algorithm exists to compute such expression in linear time in
the dimensionality of V, and so, in time at most quadratic in the size of the game.

Proof. The correctness of the algorithm follow from (Post3) in the inductive contract. Every time the
set of partially-filled-in vectors D gets extended, it is extended with either the singleton set {1} or
a simplex. In either case the nonnegative affine functions h used are linear. So, the decomposition
structure is as in the statement. Finally, since the overhead of each call (on top of the recursive calls)
is linear in the number of relevant sequence pairs (σ, τ) ∈ Σ1 ./Σ2 that are filled, and each relevant
sequence pair is filled only once, the complexity of the algorithm is linear in the number of relevant
sequence pairs.

B Relationship Between V and Ξ

B.1 Preliminaries: Definition of the Polytope of Correlation Plans

Let Πi(σ) denote the subset of reduced-normal-form plans Πi for Player i prescribe all actions of
Player i on the path from the root of the game down to the information set-action pair σ (if σ =, assign
Πi(∅) = Πi). The transformation from a correlated distribution µ to its correlation plan representation
is achieved using a linear function

f : ∆|Π1×Π2| → R|Σ1 ./Σ2|
≥0 .

Specifically, f takes a generic distribution µ over Π1 ×Π2 and maps to the vector ξ = f(µ), called a
correlation plan, whose components are

ξ[σ1, σ2] :=
∑

π1∈Π1(σ1)

∑

π2∈Π2(σ2)

µ(π1, π2) ∀(σ1, σ2) ∈ Σ1 ./Σ2. (4)

The set of all valid correlation plans, Ξ, is defined as the image Im f of f as the distribution µ takes
any possible value in ∆|Π1×Π2|.
Remark 2. Since f sums up distinct entries from the distribution µ, all entries in ξ = f(µ) are in the
range [0, 1].

B.2 Proofs

Lemma 5. Let 1(π1,π2) ∈ ∆|Π1×Π2| denote the distribution over Π1 ×Π2 that assigns mass 1 to the
pair (π1, π2), and mass 0 to any other pair of reduced-normal-form plans. Then,

Ξ = co{f(1(π1,π2)) : π1 ∈ Π1, π2 ∈ Π2}.

Proof. The “deterministic” distributions 1(π1,π2) are the vertices of ∆|Π1×Π2|, so, in particular,

∆|Π1×Π2| = co{1(π1,π2) : π1 ∈ Π1, π2 ∈ Π2}.
Since by definition Ξ = Im f , and f is a linear function, the images (under f) of the 1(π1,π2) are a
convex basis for Ξ, which is exactly the statement.

17

Lemma 6. Let v ∈ V . For all σ1 ∈ Σ1 such that v[σ1,∅] = 0, v[σ1, σ2] = 0 for all σ2 ./ σ1. Similarly,
for all σ2 ∈ Σ2 such that v[∅, σ2] = 0, v[σ1, σ2] = 0 for all σ1 ./ σ2.

Proof. We prove the theorem by induction on the depth of the sequences σ1 and σ2. The depth
depth(σ) of a generic sequence σ = (I, a) ∈ Σi of Player i is defined as the number of actions that
Player i plays on the path from the root of the tree down to action a at information set I included.
Conventionally, we let the depth of the empty sequence be 0.

Take σ1 ∈ Σ1 such that v[σ1,∅] = 0. For σ2 of depth 0 (that is, σ2 = ∅), clearly v[σ1, σ2] = 0. For
the inductive step, suppose that v[σ1, σ2] = 0 for all σ2 ∈ Σ2, σ1 ./ σ2 such that depth(σ2) ≤ d2. We
will show that v[σ2, σ2] = 0 for depth(σ2) ≤ d2 + 1. Indeed, let (I, a′) = σ2 ./ σ1 of depth d2 + 1.
Since v ∈ V, in particular the von Stengel-Forges constraint

∑
a∈AI

v[σ1, (I, a)] = v[σ1, σ(I)] must
hold. The depth of σ(I) is d2, so by the inductive hypothesis, it must be v[σ1, σ(I)] = 0, and therefore∑
a∈AI

v[σ1, (I, a)] = 0. But all entries of v are nonnegative, so it must be v[σ1, (I, a)] = 0 for all
a ∈ AI , and in particular for (I, a′) = σ2. This completes the proof by induction.

The proof for the second part is analogous.

Lemma 7. Let v ∈ V have integer {0, 1} coordinates. Then, for all (σ1, σ2) ∈ Σ1 ./Σ2, it holds that

v[σ1, σ2] = v[σ1,∅] · v[∅, σ2].

Proof. We prove the theorem by induction on the depth of the sequences, similarly to Lemma 6.

The base case for the induction proof corresponds to the case where σ1 and σ2 both have depth 0,
that is, σ1 = σ2 = ∅. In that case, the theorem is clearly true, because v[∅,∅] = 1 as part of the von
Stengel-Forges constraints (1).

Now, suppose that the statement holds as long as depth(σ1),depth(σ2) ≤ d. We will show that
the statement will hold for any (σ1, σ2) ∈ Σ1 ./Σ2 such that depth(σ1),depth(σ2) ≤ d+ 1. Indeed,
consider (σ1, σ2) ∈ Σ1 ./Σ2 such that depth(σ1), depth(σ2) ≤ d+ 1. If any of the sequences is the
empty sequence, the statements holds trivially, so assume that neither is the empty sequence and in
particular σ1 = (I, a), σ2 = (J, b). If v[σ1,∅] = 0, then from Lemma 6 v[σ1, σ2] = 0 and the statement
holds. Similarly, if v[∅, σ2] = 0, then v[σ1, σ2] = 0, and the statement holds. Hence, the only
remaining case given the integrality assumption on the coordinates of v is v[σ1,∅] = v[∅, σ2] = 1.

From the von Stengel-Forges constraints, v[σ(I),∅] =
∑
a′∈AI

v[(I, a′),∅] = 1 +∑
a′∈AI ,a′ 6=a v[(I, a′),∅] ≥ 1. Hence, because all entries of v are in {0, 1}, it must be v[σ(I),∅] = 1

and v[(I, a′),∅] = 0 for all a′ ∈ AI , a
′ 6= a. With a similar argument we conclude that

v[∅, σ(J)] = 1 and v[∅, (J, b′)] = 0 for all b′ ∈ AJ , b 6= b′. Using the inductive hypothesis,
v[σ(I), σ(J)] = v[σ(I),∅] · v[∅, σ(J)] = 1.

Now, using the von Stengel-Forges constraints together with the equality v[σ(I), σ(J)] = 1 we just
proved, we conclude that ∑

a′∈AI

∑

b′∈AJ

v[(I, a′), (J, b′)] = 1. (5)

On the other hand, since v[(I, a′),∅] = 0 for all a′ ∈ AI , a
′ 6= a and v[∅, (J, b′)] = 0 for all

b′ ∈ AJ , b′ 6= b, from Lemma 6 we have that

a′ 6= a ∨ b′ 6= b =⇒ v[(I, a′), (J, b′)] = 0. (6)

From (6) and (5), we conclude that v[(I, a), (J, b)] = v[σ1, σ2] = 1 = v[σ1,∅] · v[∅, σ2], as we wanted
to show.

Theorem 3. Let Γ be a two-player perfect-recall extensive-form game, let V be its von Stengel-Forges
polytope, and let Ξ be its polytope of correlation plans. Then, Ξ = V if and only if all vertices of V
have integer {0, 1} coordinates.

Proof. We prove the two implications separately.

(⇒) We start by proving that if Ξ = V, then all vertices of V have integer {0, 1} coordinates. Since
V = Ξ by hypothesis, from 5 we can write

V = co{f(1(π1,π2)) : π1 ∈ Π1, π2 ∈ Π2}.

18

So, to prove this direction it is enough to show that f(1(π1,π2)) has integer {0, 1} coordinates
for all (π1, π2) ∈ Π1×Π2. To see that, we use the definition (4): each entry in f(1(π1,π2)) is the
sum of distinct entries of 1(π1,π2). Given that by definition 1(π1,π2) has exactly one entry with
value 1 and |Π1 ×Π2| − 1 entries with value 0, we conclude that all coordinates of f(1(π1,π2))
are in {0, 1}.

(⇐) We now show that if all vertices of V have integer {0, 1} coordinates, then V ⊆ Ξ. This is
enough, since the reverse inclusion, V ⊇ Ξ, is trivial and already known [26]. Let {v1, . . . ,vn}
be the vertices of V . To conclude that V ⊆ Ξ, we will prove that vi ∈ Ξ for all i = 1, . . . , n. This
will be sufficient since both V and Ξ are convex.
Let v ∈ {v1, . . . ,vn} be any vertex of V. By hypothesis, v[σ1, σ2] ∈ {0, 1} for all (σ1, σ2) ∈
Σ1 ./Σ2. Because v satisfies the von Stengel-Forges constraints and furthermore v has {0, 1}
entries by hypothesis, the two vectors q1, q2 defined according to q1[σ1] = v[σ1,∅] (σ1 ∈ Σ1)
and q2[σ2] = v[∅, σ2] (σ2 ∈ Σ2) are pure sequence-form strategies. Now, let π∗1 and π∗2 be
the reduced-normal form plans corresponding to q1 and q2, respectively. We will show that
v = f(1(π∗1 ,π

∗
2)), which will immediately imply that v ∈ Ξ using Lemma 5.

Since 1(π∗1 ,π
∗
2) has exactly one positive entry with value 1 in the position corresponding to

(π∗1 , π
∗
2), by definition of the linear map f , for any (σ1, σ2) ∈ Σ1 ./Σ2,

f(1(π∗1 ,π
∗
2))[σ1, σ2] = 1[σ1 ∈ Π1(σ1)] · 1[σ2 ∈ Π2(σ2)]. (7)

So, using the known properties of pure sequence-form strategies, we obtain
f(1(π∗1 ,π

∗
2))[σ1, σ2] = q1[σ1] · q2[σ2] = v[σ1,∅] · v[∅, σ2] = v[σ1, σ2],

where the last equality follows from Lemma 7. Since the equality holds for any (σ1, σ2) ∈
Σ1 ./Σ2, we have that v = f(1(π∗1 ,π

∗
2)).

Lemma 1. Let X ,Y , and h be as in Definition 1. If X is a convex polytope with vertices {x1, . . . ,xn},
and Y is a convex polytope with vertices {y1, . . . ,ym}, then X / h Y is a convex polytope whose
vertices are a nonempty subset of {(xi, h(xi)yj) : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.

Proof. Take any point z ∈ X / h Y. By definition of scaled, extension, there exist x ∈ X ,y ∈
Y such that z = (x, h(x)y). Since {x1, . . . ,xn} are the vertices of X , x can be written as a
convex combination x =

∑n
i=1 λixi where (λ1, . . . , λn) ∈ ∆n. Similarly, y =

∑m
i=1 µiyi for some

(µ1, . . . , µm) ∈ ∆m. Hence, using the hypothesis that h is affine, we can write
z = (x, h(x)y)

=




n∑

i=1

λixi, h

(
n∑

i=1

λixi

)
m∑

j=1

µjyj




=




n∑

i=1

λixi,

(
n∑

i=1

λih(xi)

)
m∑

j=1

µjyj




=
n∑

i=1

m∑

j=1

λiµj(xi, h(xi)yj).

Since λiµj ≥ 0 for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and
∑n
i=1

∑m
j=1 λiµj = (

∑n
i=1 λi)(

∑m
j=1 µj) =

1, we conclude that z ∈ co{(xi, h(xi)yj) : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}. On the other hand,
(xi, h(xi)yj) ∈ X / h Y, so

X h
/ Y = co{(xi, h(xi)yj) : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.

Since the vertices of a (nonempty) polytope are a (nonempty) subset of any convex basis for the
polytope, the vertices of X / h Y must be a nonempty subset of {(xi, h(xi)yj) : i ∈ {1, . . . , n}, j ∈
{1, . . . ,m}}, which is the statement.

Theorem 4. Let V be the von Stengel-Forges polytope of a two-player triangle-free game (Defini-
tion 3). All vertices of V have integer {0, 1} coordinates.

Proof. We prove the statement by induction over the scaled-extension-based decomposition

V = {1} h1
/ X1

h2
/ · · · hn

/ Xn.

19

In particular, we will show that for all k = 0, . . . , n, the coordinates of the vertices of the polytope

Vk = {1} h1
/ · · · hk

/ Xk
constructed by considering only the first k scaled extensions in the decomposition are all integer.
Since V ⊆ [0, 1]|Σ1 ./Σ2| (Remark 2), this immediately implies that each coordinate is in {0, 1}.

• Base case: k = 0. In this case, V0 = {1}. The only vertex is {1}, which is integer. So, base case
trivially holds.

• Inductive step. Suppose that the polytope Vk (k < n) has integer vertices. We will show that
the same holds for Vk+1. Clearly, Vk+1 = Vk / hk+1 Xk+1. From the properties of the structural
decomposition, we know that Kk+1 is either the singleton {1}, or a probability simplex ∆sk+1 for
some appropriate dimension sk+1. We break the analysis accordingly.

– If Xk+1 = {1}, the scaled extension represents filling in a linearly-dependent entry in v ∈ V
by summing already-filled-in entries. So, hk+1 takes a partially-filled-in vector from Vk and
sums up some of its coordinates. Let v1, . . . ,vn be the vertices of Vk. Using Lemma 1, the
vertices of Vk+1 are a subset of

{(vi, h(vi) · 1) : i = 1, . . . , n}. (8)
Since by inductive hypothesis vi have integer coordinates, and h sums up some of them,
h(v)i is integer for all i = 1, . . . , n. So, all of the vectors in (8) have integer coordinates, and
in particular this must be true of the vertices of Vk+1.

– If Xk+1 = ∆sk+1 , the scaled extension represents the operation of partitioning an already-
filled-in entry v[σ, τ] of Vk into si non-negative real values. The affine function hk+1 extracts
the entry v[σ, τ] from each vector v ∈ Vk. Let v1, . . . ,vn be the vertices of Vk. The vertices
of ∆sk+1 are the canonical basis vectors {e1, . . . , esk+1}. From Lemma 1, the vertices of
Vk+1 are a subset of

{(vi, h(vi)ej) : i = 1, . . . , n, j = 1, . . . , sk+1}
= {(vi, vi[σ, τ]ej) : i = 1, . . . , n, j = 1, . . . , sk+1}. (9)

Since by inductive hypothesis the vertices vi have integer coordinates, vi[σ, τ] is an integer.
Since the canonical basis vector only have entries in {0, 1}, all of the vectors in (9) have
integer coordinates. So, in particular, this must be true of the vertices of Vk+1.

C Additional Experimental Results

In this section we present additional computational results. Specifically, we present results on how
well algorithms can solve for EFCE (and thus also EFCCE and NFCCE since they are supsets
of EFCE) after our new scaled-extension-based structural decomposition has been computed for
the polytope of correlation plans using the algorithm that we presented in the body. The speed
of that algorithm for computing the decomposition is extremely fast, as shown in the body both
theoretically and experimentally. Here we report the performance of two leading algorithms for
finding an approximate optimal EFCE after the decomposition algorithm has completed. Specifically,
we compare the performance of the regret-minimization method of Farina et al. [14] to that of the
barrier algorithm for linear programming implemented by the Gurobi commercial linear programming
solver, as described in the body of the paper. (On these problems, any linear programming solver
could be used in principle, but simplex and dual simplex methods—even the ones in Gurobi—are
prohibitively slow. Similarly, the subgradient descent method of Farina et al. [13] is known to be
dominated by the regret-minimization method of Farina et al. [14].)

Both algorithms are used to converge to a feasible EFCE—that is, no objective function was set—in
the largest Goofspiel instance (k = 5). Our implementation of the regret minimization method is
single-threaded, while we allow Gurobi to use 30 threads. All experiments were conducted on a
machine with 64 cores and 500GB of memory. Gurobi required roughly 200GB of memory, while
the memory footprint of the regret-minimization algorithm was less than 2GB.

At all times, the regret-minimization algorithm produces feasible correlation plans, that is, points that
belong to Ξ = V. So, that algorithm’s iterates’ infeasibility is defined as how incentive-incompatible
the computed correlation plan is, measured as the difference in value that each player would gain by
optimally deviating from any recommendation at any information set in the game. In contrast, the
barrier method does not guarantee that the correlation plan is primal feasible, that is, the correlation

20

plans produced by the barrier algorithm might not be in Ξ = V. Therefore, for Gurobi, we measure
infeasibility as the maximum between (i) the (maximum) violation of the constraints that define V,
and (ii) the incentive-incompatibility of the iterate.

Figure 4 shows the results. The regret minimization algorithm works better as an anytime algorithm
and leads to lower infeasibility for most of the run. The barrier method needs significant time to
preprocess before even the first iterates are found. After that it converges rapidly.

102 103 104

Time [s]

10−8

10−6

10−4

10−2

100

102

In
fe

as
ib

ili
ty

Regret minimization (1 thread)
Gurobi (30 threads)

Goofspiel (k = 5 ranks)

Figure 4: Performance of the regret minimization method of Farina et al. [14] compared to Gurobi’s
barrier method in the largest Goofspiel game (k = 5).

21

