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Abstract

We develop a novel generative model for zero-shot learning to recognize fine-
grained unseen classes without training samples. Our observation is that generating
holistic features of unseen classes fails to capture every attribute needed to dis-
tinguish small differences among classes. We propose a feature composition
framework that learns to extract attribute-based features from training samples
and combines them to construct fine-grained features for unseen classes. Feature
composition allows us to not only selectively compose features of unseen classes
from only relevant training samples, but also obtain diversity among composed
features via changing samples used for composition. In addition, instead of build-
ing a global feature of an unseen class, we use all attribute-based features to form
a dense representation consisting of fine-grained attribute details. To recognize
unseen classes, we propose a novel training scheme that uses a discriminative
model to construct features that are subsequently used to train itself. Therefore,
we directly train the discriminative model on composed features without learning
separate generative models. We conduct experiments on four popular datasets
of DeepFashion, AWA?2, CUB, and SUN, showing that our method significantly
improves the state of the art.

1 Introduction

Zero-shot learning is the important yet challenging task of recognizing unseen class without training
samples from samples of seen classes. This setting often arises when dealing with fine-grained
recognition problems where some classes have a few or no training samples due to their scarcity [ 1],
such as identifying new fashion trends [2, 3, 4, 5] or endangered species [0, 7, 8, 9, 10, 1 1]. We argue
that classes exhibit compositional structures [12, 13, 14] in which we only need to recognize basic
attributes such as color, shape, or material to recognize a large number of classes expressible in terms
of these attributes. We propose a zero-shot learning method that reuses attributes of seen classes to
construct features of unseen classes for training.

To address the lack of training samples, recent zero-shot works rely upon generative models [15,

, 17,18, 19, 20] to synthesize features of unseen classes. These works infer features of unseen
classes from features of seen classes. However, methods based on Generative Adversarial Networks
[19, 15, 16] suffer from low diversity in generated features. On the other hand, likelihood-based
methods [21, 16, 17, 18, 22] promote diversity among generated features, but their generated features
are often non-discriminative. These issues are most severe for unseen classes as the feature generation
process cannot be regulated without training samples.

Leveraging the remarkable performance of Convolutional Neural Networks [23, 24], most works
extract image features by pooling local information from image regions into holistic representations
[15, 25,17, 18,26, 11]. Although holistic features encode discriminative information among classes,
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Figure 1: Left: Conventional generative models synthesize holistic features from random codes lacking fine-
grained details. Right: Our compositional model constructs dense attribute-based features from training samples.
By selecting different relevant samples for composition, our method builds diverse features for unseen classes.

they are not trained to capture attribute details needed for alignment between visual and semantic
spaces. Therefore, generating holistic features cannot describe fine-grained details of unseen classes.

Few works have explored learning compositional structures in the few-shot setting [12, 13, 27, 28].
[12, 13] enforce decomposition of representation that requires at least a few samples per class and
cannot generalize to unseen classes. Although [28, 29] can compose classifiers for novel concepts,
they produce holistic features which fail to preserve attribute details.

Contributions: We develop a novel framework that addresses the limitations of aforementioned
methods. Instead of generating holistic features as in Figure 1 (left), we extract attribute-based features
from seen classes and learn to combine them to effectively construct features of unseen classes, see
Figure 1 (right). We augment a discriminative model with a prior distribution to construct features of
unseen classes based on class predictions and use these features to update the discriminative model.
Our method has several advantages over the state of the art:

— Our framework selectively composes features of unseen classes from semantically related training
samples. It also allows specifying different sample sets used for composition that leads to the diversity
of composed features. Therefore, we can control the composition process by constraining the samples
that are used to build attribute-based features of unseen classes.

— Instead of generating holistic features, which lack fine-grained details, we build a dense feature
consisting of attribute-based features that scales to hundreds of attributes.

— Instead of using a generative model to first build features and then train a discriminative model, we
use a discriminative model to compose features of unseen classes in order to train itself. This makes
the learning process efficient by removing the need for learning additional generative models.

2 Related Works

Early works on zero-shot learning focus on learning joint embedding spaces for visual features and
class semantics [26, 30, 31, 32, 11]. On the other hand, [33, 34, 35, 36] transfer knowledge from
seen to unseen classes via knowledge graphs which encode richer structures than class semantics.
However, the predictions of these methods are often biased towards seen classes due to the lack of
training samples for unseen classes [37, 38]. To overcome this issue, [39, 40] propose to reduce
the probability of seen classes on samples that are out of training distribution, while [4 1] directly
calibrates predictions to favor unseen classes by adding a fixed margin to prediction scores. More
recent work [2, 42] propose calibration losses allowing the model to adjust prediction probabilities
for unseen classes. However, these works only regularize predictions to prevent bias towards seen
classes without effectively transferring knowledge to unseen classes.

To mitigate the differences between training and testing distributions [38, 43], recent zero-shot
learning methods [37, 15, 16, 17, 18, 19, 20] use generative models to augment a training set
with synthesized features of unseen classes, hence, casting zero-shot learning as a fully supervised
learning problem. [37, 44] employ Generative Adversarial Networks (GAN) whose generated
features often lack diversity due to mode collapse [45, 46, 47] and lack generalization ability due
to memorization of training data [48, 49]. On the other hand, [21, 16, 17, 22] propose to use
Variational Autoencoders (VAE) that optimize the likelihood of every training sample to enforce
diversity. However, these methods suffer from posterior collapse [50, 51, 52], which results in
generating generic non-discriminative features. To address these issues, [16] combines VAE and



GAN, while [18] directly learns a feature generator without any encoder or discriminator. However,
these improvements are only effective for seen classes with training samples. Although cycle
consistency losses [ 15, 19, 53] directly regulate the generated features of unseen classes, they often
collapse these features together to align them with semantic vectors of their classes, which results in
lack of visual diversity among features.

Most works on zero-shot learning [15, 16, 17, 18, 19, 20, 26, 11, 25] rely on holistic image features,
which cannot capture local discriminative information from attributes. [54, 7] localize distinct visual
parts, which require costly bounding-box annotations. [55, 56, 57, 58] employ attention mechanism

to localize discriminative regions in a weakly-supervised setting, however, they cannot capture every
attribute due to the limited number of attention models. To overcome this issue, [2] extracts a
feature for every attribute by leveraging semantic vectors of attributes. However, it lacks an effective
mechanism for transferring attribute knowledge obtained from seen classes to unseen classes.

Decomposing concepts into common components is a natural and simple technique for knowledge
sharing [59, 60, 61, 62]. [12, 13] learn compositional representations that generalize to classes with
few samples. On the other hand, [27, 63] learn to combine samples for data augmentation. However,
these works cannot generalize to unseen classes as they require training samples for every class.
While [28, 29, 64, 65] combine attribute classifiers to recognize novel combination of attributes,
they build upon holistic features, which cannot capture fine-grained attribute details. Recently, by
examining various zero-shot methods, [ 14] shows that zero-shot generalization depends on the ability
to capture attribute information in addition to compositional structure of features.

3 Background

We first discuss the problem settings for zero-shot learning. Given that our framework uses attribute-
based features as inputs, we then review the recent work in [2], which addresses extracting dense
attention features for attributes.

3.1 Zero-Shot Learning Problem Setting

We assume that there are two disjoint sets of classes Cs and C,, where Cs denotes seen classes with
training images and C,, denotes unseen classes without any training image. Let (I1,y1),- .., (In,yn)
be N training samples, where I; denotes the ¢-th training image and y; € C, corresponds to its class.

Zero-shot learning aims to recognize both seen and unseen classes given only training images of seen
classes. In order to generalize to unseen classes, similar to [16, 17, 18], we assume access to class
semantic vectors of all classes {z°}.cc.uc, at training time. More specifically, z2¢ = [2,...,25]"
where z; encodes the strength of attribute a appearing in class c. We normalize each z€ to have unit
norm to prevent prediction bias toward classes with many attributes. Notice that we also use the
semantic vector of each attribute {v,}2_, as the average of GloVe representation [66] of each word
in attribute names to guide the extraction of attribute-based features [2].

3.2 Dense Attention Review

The recent work on Dense-Attention Zero-shot Learning (DAZLE) [2] localizes all attributes in an
image and extracts attribute-based features using a dense attention mechanism. Let { f} } 2| be the
region features of the image I; by dividing the image into R equal regions. For the a-th attribute,
DAZLE computes the attribute-based feature h{ as the weighted sum of all region features,

exp(vaTWa )
S exp(vIWofl)

where W, denotes a learnable matrix measuring the compatibility between attribute semantic vectors
and the region features, a( f; , v,) denotes the importance of a region to an attribute. For an image I;,
we define its dense feature matrix H; = [k}, ... k] as the collection of all A attribute-based

features. DAZLE uses an artribute embedding mechanism to compute the prediction score s(H ;, z°)
as the sum over scores of each attribute,
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Figure 2: Overview of our compositional zero-shot learning framework. Given a set of samples .S, we extract
dense attribute-based features H ; from each sample 7 € S. For an unseen class u with a semantic vector z*, we
generate candidate combinations by sampling from p(H |z") and use a discriminative model p(y|H, 2*) to
select the best combination in order to train itself.

where W is a learnable matrix capturing the compatibility between attribute-based features and
semantic vectors, s(hy, z$) is an attribute score measuring the strength of the attribute a in the image

1. Finally, the model is trained to minimize the cross-entropy loss between the prediction probability
and the ground-truth labels,

exp(s(H, 27"))
S exp(s(Hyz7) @
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where p(y;|H ;, z¥7) is the prediction probability calculated by applying softmax normalization on
the score s(H ;, z¥¢). In our framework, we use the dense features from training images { H;}1¥ ; as
building blocks for our feature composition model. Notice that DAZLE cannot generate features for
unseen classes since it only produces classification scores.

The main contribution of our paper is to propose a novel formulation that transforms any discriminative
model into a generative model capable of combining attribute-based features from training samples
to construct dense features for unseen classes.

4 Compositional Zero-Shot Learning via Dense Feature Composition

In this section, we discuss our proposed method

for generating dense features, containing all fine- Algorithm 1 Composing Dense Features

grained features, of unseen classes. Our frame-  Input: Training set D, pretrained p(y|H, z) on seen
work first samples a set of candidate feature classes

combinations from which we select the most fori =1,..., Niteration do

probable combination having the largest predic- > Construct features for unseen classes

Sample aset S C D

Extract dense features { H; };c s via (1)
Construct Q. (S) for u € C,, via (8)

Compose H,, (S) from Q. (S), {H; }ics via (10)
> Update the zero-shot classifier

tion score p(u|H , z*) for each unseen class u.
We develop a unified framework that alternates
between constructing features and updating a
discriminative model p(y|H, z) by increasing
its confidence on the features of unseen classes. Increase p(u] Hu(S), z) via (11)
Algorithm | summarizes the steps of our method. end for wAED

We start by defining the compositional property Output: Optimal p(y|H, z)

of dense features and propose a framework that
generates dense features of unseen classes by
leveraging this compositional property.

4.1 Leveraging Compositionality of Dense Features

Our goal is to generate dense features H for a class y with semantic vector z. Instead of directly
learning and maximizing p(H |y, z), which is prone to mode/posterior collapse and cannot scale to
a large number of attributes and dense features, our insight is to transform a discriminative model
p(y|H, z), which is easier to train, into a generative model via application of the Bayes rule,

argmax g p(H |y, z) = argmax gy p(y|H, z)p(H|z), ()]

where the feature prior p(H |z) captures the data manifold by assigning high probability to re-
gions containing attribute-based features and small or zero probability otherwise. Due to the high



dimensions of features in H, estimating p(H |z) is intractable. To overcome this, we propose a
compositional assumption on attribute-based features where only features h; from various samples
can be combined into a valid H. This makes the solution-space more tractable since the number of
combinations is finite, yet combinatorial. To enforce this assumption, let S be a subset of training
sample indices from which we construct new features (this is the minibatch used during training). We
denote by U(.S) the set of all possible combinations of attribute-based features from samples in S,
ie.,

uws) £ {ln;, ..., hf:]|iaeSVa}. (5)
We limit the support of the feature prior to only feature combinations in ¢/(.5), i.e.,
p(H|z) =0, H ¢U(S). (6)

Selecting features from () is equivalent to combining attribute-based features across samples in
S to describe novel classes, e.g., if S contains samples of a ‘blue head, white belly bird’ and a ‘red
bird’, U(S) can describe a variety of birds such as a ‘blue head, red belly bird’ or a ‘red head, white
belly bird’ (see Figure 2). Thus, we can rewrite (4) as searching for the best feature composition from
U(S) by maximizing

axgmax g p(Hly, z) ~ argmax g sy p(yl H, 2)p(H|2). )

Remark 1 Notice that we use class probability predictions as the criteria for selecting feature
combinations. Thus, our framework is robust against missing attributes, where some attributes
needed to describe a target class are absent from images in S, by resorting to the most probable
feature combination available in U(S).

Next, we discuss an efficient way to solve (7) via sampling. We propose to train the discriminative
model directly on the composed features, leading to an efficient framework that does not need to
learn a separate generative model.

4.2 Composing Dense Features for Unseen Classes

Since optimizing (7) requires an expensive combinatorial search in 2/(.S), we propose to significantly
reduce the search space by avoiding irrelevant combinations. To do so, we impose that H should
only be composed from attribute-based features of semantically related samples in .S with respect to a
target unseen class u. We define related samples as the ones whose semantic vectors best reconstruct
the class semantic vector z%. Let Q. (S) be the set set of related samples to unseen class v from S,

Qu(S) £ argming, g (min B E zi'yi||§) s.t. >0vies, |S<k (8
= B!
ies’

where S denotes any subset of S, z* denotes the ground-truth class semantic vector of the sample i, 7;
denotes the reconstruction weight, and k is the number of related samples to select. The nonnegative
constraint on the combination weights ~;’s ensures that the semantic meaning of each sample does
not change due to the reconstruction. We solve (8) using Nonnegative Orthogonal Matching Pursuit
[67], which greedily adds samples into Q,,(.5) to decrease its loss until no further improvement can
be made (see the supplementary materials for more details).

Given the set of related samples Q,,(.5), we construct a prior for attribute-based features such that the
more related a sample is to the target semantic vector, the more probable its attribute-based features
will be used for composition,

A exp ((zj’“,z“>><T) L

u a u a U . ) lf Za e Qu S )

p(H|z") 2 [ p(he 12", phe1=") 2 { oo o (=m0 27) (5)
a=1 0, otherwise,

9

where 2z’ is the ground-truth class semantic vector of sample i, used to compose attribute a, 7'
is a non-negative scalar that controls the probability of using attribute-based features from related
samples. When T" > 0, the prior would mostly include attribute-based features from the most related
sample and when 7" = 0, it would uniformly sample attribute-based features from all related samples.
Notice that we measure the relatedness as the cosine similarity between the sample semantic z% and
the target semantic z. The prior also assigns zero probability to combinations of samples outside
the related sample set Q, (.S) to exclude these combinations. For simplicity, in (9), we assume the



independence of attribute-based features given the semantic vector. However, more general models
could be used, which we leave to future work. Indeed, the prior allows us to sample a set of candidate
features to find the most probable feature, thus we avoid searching through all combinations in
U(S). Specifically, we first samples a set of candidate combinations M, (.S) from which we seek the
combination that maximizes the product of an unseen class probability and the prior,

H,(S) £ argmax gy, () p(ulH, 2")p(H|2"), M,(S) = {H|H ~p(H|z")},  (10)

where H,,(S) is the most probable dense feature of class u and M, (S) is constructed by sampling b
candidate combinations according to p(H|z%)'.

Having the composed features of unseen classes { H,(S) }vec, , we train the discriminative model
by increasing its prediction confidence on these features as unseen classes while maintaining the
confidence on seen class samples via the following cross-entropy loss,

1
min [Eg [ — |C—|

we (vl S yilog p(uil H . 2) -

i€S

1 Z ulogp(u|Hu(S),z“)]. (11)
|5

uUEC,,

Here, we transfer knowledge from seen to unseen classes by recognizing novel combinations of
features as unseen classes. Thus, the discriminative model learns the existence of unseen classes to
avoid seen class bias. We alternate between composing features (10) and minimizing the loss (11)
on a random sample set S in each iteration until convergence. By randomizing the sample set .S,
we effectively ensure the diversity among composed features by enforcing them to be built from
various sets of samples. Although any classification model can be used as the discriminative model,
for simplicity, we reuse DAZLE, pre-trained to extract dense features, as our discriminative model.

For inference, we recognize a test image by finding the most probable class according to the
discriminative model: ¢* = argmax .cc_ ¢, P(c|H, 2°).

5 Experiments

We demonstrate the effectiveness of our framework, referred to as Composer, on four popular datasets:
DeepFashion [4], AWA2 [68], CUB [69], SUN [70]. We first discuss the datasets, evaluation metrics,
implementation details and baselines. We then present the zero-shot and generalized zero-shot
performances in pre-trained and fine-tuned feature extractor settings. Finally, we show comparisons
between compositional models and current generative models, effects of hyper-parameters, and an
ablation study on the challenging DeepFashion dataset.

5.1 Experimental Setup

Datasets: We conduct experiments on different visual recognition datasets: DeepFashion [4], AWA2
[68], CUB [69], and SUN [70] having different data statistics. DeepFashion [4] contains images of
fine-grained clothing categories with 36 seen classes and 10 unseen classes. Due to the redundancy
among attributes, we only select top 300 most discriminative attributes by ranking the entropy of
each attribute distribution across classes according to [2]. AWA2 [68] is a coarse-grained dataset of
animal images with 40 seen classes and 10 unseen classes described by 85 attributes. CUB [09] is a
fine-grained bird dataset with 47 images per class for 150 seen classes and 50 unseen classes. Each
class is carefully annotated with 312 attributes which can be grounded in images. Finally, SUN [70]
is a visual scene dataset with 645 seen classes and 72 unseen classes. However, each class only has
16 images. We follow the data splits of [2] for DeepFashion and of [68] for AWA2, CUB, and SUN.

Evaluation Metrics: Similar to [68], we measure the top-1 accuracy on two settings: i) zero-
shot learning (v — u) where testing images are from unseen classes thus the model only need to
distinguish among unseen classes and ii) generalized zero-shot learning where testing images comes
from both seen and unseen classes. In the latter setting, we measure the accuracy when recognizing
seen classes (a — s) and unseen classes (a — u). We compute the harmonic mean (H ) between seen
and unseen class accuracy to measure the trade-off between these performances.

"Notice that a class can be described by different semantic vectors which reflects its visual variations. For
simplicity, we use a single semantic vector per class.



‘ DFashion (5691 images/class) ‘ AWA?2 (588 images/class) ‘ CUB (47 images/class) ‘ SUN (16 images/class)

Method ‘u—)u‘a—)s a—u H ‘u—)u‘a—)s a—u H‘u—)u‘a—)s a—u H ‘u—>u‘a—>s a—u H
Pre-trained Setting

MLSE [34] - - - - 67.8 | 832 238 37.0| 642 | 71.6 223 340 | 628 | 364 207 264

cve [71] - - - - 71.1 | 814 564 66.7| 544 | 476 474 475 | 626 | 363 428 393
TripletLoss [72] - - - - 679 | 832 485 613 638 | 523 558 53.0 | 63.8 | 304 479 368
£-VAEGAN-d2 [16] - - - - 71.1 706  57.6 63.5| 61.0% | 60.1*% 48.4* 53.6%| 64.7 | 38.0 451 413
CADA-VAE [17] - - - - - 75.0 558 64.0 - 535 51,6 525 - 357 472 407
f-Translator [18] | 40.7 | 30.5 239 268 | 704 | 72.6 553 626 585 | 548 47.0 50.6 | 61.5 | 368 453 40.6
DAZLE [2]| 384 | 381 215 275| 679 | 757 603 67.1| 659 | 59.6 567 58.1 | 60.7 | 243 523 332

Composer (Ours) | 43.0 | 329 312 32.0| 715 | 773 621 68.8| 694 | 564 638 599 | 626 | 220 551 314
Fine-tuned Setting

SMA [54] - - - - 68.8 | 87.1 37.6 525| 71.0 | 71.3 36.7 485 - - - -
LFGAA+SA  [73] - - - - 68.1 903 500 644) 676 | 79.6 433 644 | 615 | 349 208 26.1
f-VAEGAN-d2 [16] - - - - 703 | 76.1  57.1 65.2| 72.9*% | 75.6%* 63.2* 68.9% | 65.6 | 37.8 50.1 43.1
AREN+CS  [560] | 41.0 | 363 275 313 | 679 | 79.1 547 647| 718 | 69.0 632 66.0 | 60.6 | 323 403 359
DAZLE [2]] 44.1 413 265 323| 667 | 72.1 617 66.5| 69.7 | 554 641 594 | 595 | 250 515 337

Composer (Ours) | 47.3 | 423 328 369 | 754 | 761 622 685| 740 | 61.6 663 639 | 610 | 247 534 338

Table 1: Performances on DeepFashion, AWA2, CUB and SUN. We report zero-shot accuracy (v — u) in
the zero-shot setting and seen class accuracy (a — ), unseen class accuracy (a — w), harmonic mean (H) in
generalized zero-shot setting. * indicates the usage of extra supervision from human captions.

AWA2 CUB DeepFashion
Method }u%u\a%s a—u H }u,%u\a*)s a—u H Method Py a_)])s a—>u H
N R I R I BT o Comp Mo 2 26 30
f-VAEGAN-d2 [16] | 711 | 70.6 576 635| 610 | 60.1 484 536 Rand(ﬁ Comp 49 | 404 301 345
CADA-VAE [17] | - 750 558 640 | - 535 516 525 p(H|z) 439 | 369 371 365
Attribute GANs | 651 | 752 581 656 | - - - - Comp

Compositional models p(ylH, z‘)p(H|z) 46.9 44.7 26.9 33.6

Random Comp 655 | 767 566 651 673 | 644 512 570 Comp (fixed 5)
Composer (Qurs) | 715 ‘ 773 621 688 | 69.4 ‘ 564 638 599 | [ Composer (Ours) | 47.3 | 423 328 369

Table 2: Left: Comparison between generative models and compositional models on AWA2 and CUB in the
pre-trained setting. Right: Ablation study on DeepFashion in the fine-tuned setting.

Baselines: We compare our method with 3 main approaches in zero-shot learning: generating
features of unseen classes, learning transferable visual representations, and learning compatibility
functions. £-VAEGAN-d2 [16] and CADA-VAE [17] generate features of unseen classes using GANs
or VAEs while f-Translator [18] directly optimize training data likelihood to learn a feature
generator. On the other hand, CVC [71] generates classifiers of unseen classes. To learn visual
representation, SMA [54] and AREN+CS [56] use a few attention channels to capture discriminative
class features while MLSE [34] learns latent class representations via semantic graphs. DAZLE [2]
uses a calibration loss to prevent seen class bias in addition to extract individual attribute-based
features. Finally, TripletLoss [72] learns a compatibility function between visual and semantic
information by accounting for the semantic similarity among classes. LFGAA+SA [73] proposes a
dynamic compatibility function that adapts to attributes appearing in an image. On DeepFashion, we
run each baseline using their released codes with their default settings. On the remaining datasets, we
use the performances reported in their papers to ensure their best performances.

Implementation Details: Following [25], we resize images to 224 x 224 and extract features using
the ResNet101 backbone [24] for our method. Our setting is comparable with the above baselines
except for SMA using VGG19 and LFGAA combining VGG19, GoogleNet, and ResNet101. We use
the feature map of the last convolutional layer whose size is 7 x 7 x 2048 and treat it as features from
7 x 7 = 49 regions. We implement our framework in PyTorch and optimize it using RMSprop[74]
with the default setting, learning rate of 0.0001 and batch size of 50 having an equal number of
samples per class. We pre-train DAZLE on seen classes and use it to compose dense features for at
most 2000 and 4000 iterations, respectively, on a NVIDIA V100 GPU. To prevent seen class bias, we
add a margin of 1 to unseen class scores and —1 to seen class scores, which reduces the dominance
of seen classes similar to [2]. We experiment in two settings: i) using pre-trained ImageNet features
(pre-trained setting) and ii) fine-tuning the ResNet backbone on each dataset (fine-tuned setting).
To measure the robustness of our method, we fix the hyperparameters at ' = 5,k = 5,b = 50
(T =10,k = 10,b = 50) for the pretrained (fine-tuned) setting on all datasets.

5.2 Experimental Results

Zero-Shot Learning: Table 1 shows the zero-shot accuracy (v — u) across different datasets.
In the pre-trained setting, our method significantly outperforms other methods by at least 2.3%
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Figure 3: Effects of hyperparameters on harmonic mean (H) and zero-shot accuracy (v — u) on DeepFashion
in fine-tuned setting.

and 3.5% on DeepFashion and CUB, respectively while having comparable performance with the
state-of-the-art method on AWA2. In the fine-tuned setting, we improve at least 3.2%, 5.1%, and
2.2% on DeepFashion, AWA?2, and CUB respectively. Although we do not uses human captions
as extra supervision in CUB, our method significantly surpasses f-VAEGAN-d2 by 8.4% (1.1%) on
pre-trained (fine-tuned) settings. Our strong performances demonstrate that dense feature composition
can effectively describe fine-grained attribute details of unseen classes. Having only 16 samples
per class in SUN does not allow to effectively train dense attention model, which results in low
performances.

Generalized Zero-Shot Learning: Table | also shows generalized zero-shot performances. We
observe that methods using dense features, DAZLE and ours, surpass other methods on the majority of
datasets. Specifically, we improve the harmonic mean by at least 4.5%, 1.7%, 1.8% on DeepFashion,
AWA?2, CUB, respectively, in pre-trained setting and at least 4.6%, 2.0% on DeepFashion, AWA?2,
respectively, in fine-tuned setting. Our method achieves high accuracy of seen classes and significantly
improves accuracy of unseen classes by 7.3%,1.8%, 6.1% in pre-trained setting on DeepFashion,
AWA?2, CUB, respectively. Notice that fine-tuning on CUB, SUN with small number of samples
overfits to training data due to the high capacity of dense attention.

Benefits of Dense Feature Composition: We compare recent generative methods and Attribute
GANs, where we learn a separate GANs per attribute, with random composition which uniformly sam-
ples combinations from /(.S and our methods in Table 2 (left). Random composition significantly
outperforms recent methods by at least 1.1% and 3.4% harmonic mean on AWA?2 and CUB, respec-
tively while performing comparably with Attribute GANs. We believe this is due to the strong
regularization effect of dense feature composition which prevents overfitting on feature combinations
from training samples while retaining the ability to recognize fine-grained details obtained from seen
classes. Notice that Attribute GANs cannot scale to 312 attributes in CUB dataset due to its large
memory consumption for training hundreds of GANs, thus we do not report its performance. Our
method surpasses random composition by 3.7% (6.0%), 2.9% (2.1%) in harmonic mean (zero-shot
accuracy) on AWA?2 and CUB, respectively.

Effect of Hyperparameters: Figure 3 shows the zero-shot and generalized zero-shot performances
on DeepFashion in the fine-tuned setting as functions of b, k and 7. We vary the value of one hyper-
parameter while fixing the remaining hyper-parameters and measure the improvement with respect to
the lowest value in each hyperparmeter range. By increasing the search budget for most probable
combination via the number of candidate combinations b, we improve both zero-shot and generalized
zero-shot performances compared to random composition (b = 0). The performances stabilize
across a wide range of b as probable samples according to p(H |z) often have high p(y|H, z)p(H |z)
probability. Increasing 7" increases the similarity between composed features and features of related
samples, thus our method constructs “hard” features being closer to the decision boundary of seen
classes. The harmonic mean improves with 7" and degrades for large values of 7', as the composed
features become too similar to training features. When increasing the size of the related samples via
k, we improve zero-shot accuracy the most, as composed features have richer attribute details by
using more samples. Notice that our method only uses at most £ = 20 related samples, as additional
samples are not selected since they do not improve the semantic reconstruction loss (8), thus the
performances remain the same for larger k.

Ablation Study: We report the effectiveness of different components in our method on DeepFashion
in Table 2 (right). We observe that the discriminative model, trained only on seen classes, fails to
generalize to unseen classes. Although training on random composed features improves the harmonic
mean, this does not significantly improve zero-shot accuracy due to the lack of meaningful knowledge
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Figure 4: Attention visualization of attribute-based features used for dense feature composition of unseen
classes. Our method selects relevant attributes from related samples to describe unseen classes.

in composed features. Using only prior p(H|z) improves the harmonic mean by 2.0% but not
zero-shot accuracy, as maximizing the prior is equivalent to using features from the most related
sample without modifications for unseen classes. We achieve the best performance when combining
the classification knowledge p(y|H, z) and the prior knowledge p(H |z). Notice without varying
the sample set .S, the harmonic mean drops by 3.3%, showing the importance of feature diversity for
zero-shot learning.

Qualitative Results The generated features of unseen classes can be interpreted by visualizing
the attention map of their attribute-based features selected across related samples as shown in
Figure 4. We observe that dense attention successfully localizes fine-grained details of attributes in
images. Hence, our method selects relevant attributes from related samples to describe unseen classes.
Moreover, our method chooses samples with dominant desired attributes for composition such as a
white bird for “white belly” or a striped bird for “breast pattern striped”.

6 Conclusions

We proposed a dense feature composition framework that extracts attribute-based features from
training samples and recombines them to construct features of unseen classes. Our framework
selectively composes features of unseen classes from only related training samples and alternates
between different samples used for composition to improve the diversity among composed features.
We employ a novel training scheme where a discriminative model composes features to train itself.
By extensive experiments on four popular datasets, we show the effectiveness of our method.

Broader Impacts

This work addresses the problem of learning without labeled samples, which has fundamental societal,
environmental, privacy and technological impacts. Depending less on large-scale annotated data
facilitates the process of democratizing machine learning for resource-constrained communities and
entities that lack high computational powers or data collection capacity [75]. We also reduce the
need for collecting and learning from personal data [76]. Learning without labeled data enables
recognition of endangered animal species and plants, and subsequently taking protective measures.

As with any technologies, it is important to study the potential misuses of our method. Since semantic
descriptions are often given by humans, methods such as ours could reinforce biases encoded in the
semantic information. To prevent biases in predictions, it is important to establish guidelines for
regulating and examining the semantic descriptions used for training.
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