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Abstract

We study the task of replicating the functionality of black-box neural models, for
which we only know the output class probabilities provided for a set of input images.
We assume back-propagation through the black-box model is not possible and its
training images are not available, e.g. the model could be exposed only through
an API. In this context, we present a teacher-student framework that can distill
the black-box (teacher) model into a student model with minimal accuracy loss.
To generate useful data samples for training the student, our framework (i) learns
to generate images on a proxy data set (with images and classes different from
those used to train the black-box) and (ii) applies an evolutionary strategy to make
sure that each generated data sample exhibits a high response for a specific class
when given as input to the black box. Our framework is compared with several
baseline and state-of-the-art methods on three benchmark data sets. The empirical
evidence indicates that our model is superior to the considered baselines. Although
our method does not back-propagate through the black-box network, it generally
surpasses state-of-the-art methods that regard the teacher as a glass-box model. Our
code is available at: https://github.com/antoniobarbalau/black-box-ripper.

1 Introduction

In the last couple of years, AI has gained a lot of attention in industry, due to the latest research
developments in the field, e.g. deep learning [21]. Indeed, an increasing amount of companies have
started to integrate neural models into their products [23], which are used by consumers or third-party
developers [11]. In order to protect their intellectual property, companies try to keep information
about the internals (architecture, training data, hyperparameters and so on) of their neural models
confidential, exposing the models only as black boxes: data samples in, predictions out. However,
recent research [17, 30, 31, 32, 35, 36] showed that various aspects of black-box neural models can
be stolen with some effort, including even their functionality.
Studying ways of stealing or copying the functionality of black-box models is of great interest to AI
companies, giving them the opportunity to better protect their models through various mechanisms
[12, 40]. Motivated by this direction of study, we propose a novel generative evolutionary framework
able to effectively steal the functionality of black-box models. The proposed framework is somewhat
related to knowledge distillation with teacher-student networks [2, 10, 22, 39], the main difference
being that access to the training data of the teacher is not permitted to preserve the black-box nature of
the teacher. In this context, we train the student on a proxy data set with images and classes different
from those used to train the black-box, in a setting known as zero-shot or data-free knowledge
distillation [1, 3, 4, 8, 24, 28, 38]. To our knowledge, we are among the few [17, 31] to jointly
consider no access to the training data and to the model’s architecture and hyperparameters, i.e. the
model in question is a complete black-box.
As shown in Figure 1, our framework is comprised of a black-box teacher network, a student network,
a generator and an evolutionary strategy. The teacher is trained independently of the framework,
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Figure 1: Step 1: Generate a set of random samples in the latent space and forward pass them through
the generator and the teacher. Step 2: Optimize the latent space encodings via evolutionary search.
Step 3: Distill the knowledge using the optimized data samples as input and the teacher’s class
probabilities as target. Gradients are propagated only through the student network.

being considered a pre-trained black-box model from our point of view. In order to effectively steal
the functionality of the black box, our framework is based on two training phases. In the first phase,
we train a generative model, e.g. a Variational Auto-Encoder (VAE) [16] or a Generative Adversarial
Network [7], on the proxy data set. In the second training phase, we apply an evolutionary strategy,
modifying the generated data samples such that they exhibit a high response for a certain class when
given as input to the teacher.
To demonstrate the effectiveness of our generative evolutionary framework, we conduct experiments
on three benchmark data sets: CIFAR-10 [18] with CIFAR-100 [18] as proxy, Fashion-MNIST [37]
with CIFAR-10 [18] as proxy and 10 Monkey Species [27] with CelebA-HQ [13] and ImageNet
Cats and Dogs [33] as proxies. We compare our framework with a series of state-of-the-art methods
[1, 28, 31], demonstrating generally superior accuracy rates, while preserving the black-box nature of
the teacher. For example, on CIFAR-10 as true data set and CIFAR-100 with 6 classes as proxy data
set, we surpass the state-of-the-art performance by a significant margin of 10.4%. We also include
ablation results, showing the benefits of adding our novel component: the evolutionary algorithm.
In summary, our contribution is twofold:

• We propose a novel generative evolutionary algorithm for stealing the functionality of
black-box classification models.

• We demonstrate that our framework is significantly better than a state-of-the-art method
[31] trained in similarly adverse conditions (Orekondy et al. [31] consider the teacher as a
black box) and equally or slightly better than a state-of-the-art method [1] trained in relaxed
conditions (Addepalli et al. [1] back-propagate gradients through the teacher network).

2 Related Work

Our work is related to zero-shot knowledge distillation methods [1, 3, 4, 8, 24, 28, 38], with the
difference that we regard the teacher model as a black box, and to model stealing methods [17, 30,
31, 32, 35, 36], with the difference that we focus on accuracy and not on minimizing the number of
API calls to the black box.
Zero-shot knowledge distillation. After researchers introduced methods of distilling information
[2, 10] from large neural networks (teachers) to smaller and faster models (students) with minimal
accuracy loss, a diverse set of methods have been developed to improve the preliminary approaches,
addressing some of their practical limitations for specific tasks. A limitation of interest to us is the
requirement to access the original training data (of the teacher model). Many formulations have been
developed to alleviate this requirement [1, 8, 4, 24, 28], with methods either requiring a small subset
of the original data [3, 4], or none at all [1]. Nayak et al. [28] proposed a method for knowledge
distillation without real training data, using the teacher model to synthesize data impressions via back-
propagation instead. While the generated samples do not resemble natural images, the student is able
to learn from the high response patterns of the teacher, showing reasonable generalization accuracy.
Methods to synthesize samples through back-propagation, e.g. feature visualization methods, have
gained a lot of interest in the area of knowledge distillation. Nguyen et al. [29] showed that, through
network inversion, resulting feature visualizations exhibit a high degree of realism. Further, Yin et

2



al. [38] used the same method to generate samples for training a student network, while employing a
discrepancy loss in the form of Jensen-Shannon entropy between the teacher and the student. While
showing good results, these methods are not considering the teacher model as a black box, since
back-propagation implies knowledge of and access to the model’s weights. Micaelli et al. [24]
developed a method for zero-shot knowledge transfer by jointly training a generative model and the
student, such that the generated samples are easily classified by the teacher, but hard for the student.
In a similar manner to Yin et al. [38], a discrepancy loss is applied in the training process between the
teacher and the student. We take a different approach, as our generative model is trained beforehand,
and we optimize the synthesized samples through evolutionary search to elicit a high response from
the teacher. More closely-related to our work, Addepalli et al. [1] proposed a data-enriching GAN
(DeGAN), that is trained jointly with the student, but on a proxy data set, different from the model’s
inaccessible, true data set. The generative model generates samples such that the teacher model
outputs a confident response, through a loss function promoting diversity of samples and low-entropy
confidence scores. In the context of their framework, by means of back-propagation though the
teacher network, the GAN is able to synthesize samples that help the student approach the teacher’s
accuracy level. Different from their approach, we do not propagate information through the teacher,
as we consider it a black-box model. Moreover, our generative model is fixed, being trained a priori
on a proxy data set, which is not related to the true set. Unlike Addepalli et al. [1] and all previous
works on zero-shot knowledge distillation, we generate artificial samples through evolutionary search,
using these samples to train the student.
Model stealing. While stealing information from deep learning models has been studied in a setting
where the architecture and parameters are available to an attacker, the more realistic setting in which
the model is available through an API, being considered a black box (data samples in, probabilities
out), still remains a difficult problem. Oh et al. [30] proposed a framework to infer meta-information
of a neural network API, in the form of architectural design choices, optimization algorithm and the
type of training data. Wang et al. [36] showed that the hyperparameters of popular machine learning
models deployed in predictive analytics platforms can be inferred by solving a set of hyperparameter
equations, derived through either the model parameters, or through querying the model given the
training data set. Unlike these methods, we aim at stealing the functionality of the black-box model,
reproducing its results as best as possible. Papernot et al. [32] developed a method of estimating
the decision boundary of a black-box API with the goal of crafting adversarial attacks. While their
technique of using Jacobian-based data set augmentation is not aimed at offering high accuracy to
their student model, it is clear that synthetic generation of input samples in the absence of original
training data is a popular method of training substitute models. Instead of manipulating Gaussian
noise, we address the problem of synthetic data generation by employing a proxy data set, which
is agnostic to the real training data used by the model, giving visual and semantic structure to the
synthesized samples. Several methods for model extraction from APIs have been developed in the
past [17, 31, 35], with good results on conventional machine learning models [35], natural language
services [17] based on BERT [5] and computer vision models [31]. Closest to our setting, Orekondy
et al. [31] developed an efficient method of querying a image classification API, to maximize the
accuracy of the model copy while having a minimal amount of consumed resources. However, our
setting is less strict, making fewer assumptions of the operating environment of the black box. Our
data-free approach implies no knowledge of the black-box training data, while showing very good
performance when using a visually and semantically unrelated proxy data set for the generative
model. As such, we are interested in maximizing the accuracy of our student model, regardless of the
number of queries.

3 Method

Problem statement. We approach the task of stealing the functionality of a classification model,
while assuming no access to the model’s weights and hyperparameters and no information about
the training data. With these assumptions, the classification model is a black box. Our problem
formulation is related to zero-shot knowledge distillation [1] and model functionality stealing [31]. In
zero-shot knowledge distillation, a student model is trained to mimic a teacher model, while having
full access to the teacher model, but no information about the training data (the student is trained on
a so-called proxy data set). We consider a restricted setting of zero-shot knowledge distillation, in
which there is no access to the internals (weights, hyperparameters, architecture) of the black box. In
model functionality stealing, the black-box model is only accessible through a paid API, the goal
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being that of maximizing student accuracy while reducing the number of model calls. We consider a
relaxed setting of model functionality stealing, in which the number of model calls is not an issue,
our primary focus being the accuracy level.
Let T be a black-box classification model with parameters θT and S a student classification model
with parameters θS . Our problem statement can be formally expressed as follows:

min
θS
‖S(Z ↓↑, X ′ ↓)− T (X ↓↑, X ′ ↓)‖, (1)

where X is the original (or true) training set, X ′ is the original (or true) test set and Z is the proxy
training set. In our study, we consider the realistic scenario in which X , X ′ and Z are disjoint sets.
The notation M(U ↓↑, W ↓) symbolizes that the model M is trained on a set U and applied on a
set W , i.e. the arrows indicate forward and backward passes through the model on the respective
data set. The goal is to learn the parameters θS on the proxy data set Z in order to reproduce the
output probabilities of the teacher on X ′, as best as possible. We note that the true test set X ′ is not
available during the optimization of θS , being used only for evaluation purposes.
Black-Box Ripper. Noting that the proxy data set Z has no data samples or classes in common to
the true data set X , the task of training the student model directly on the data set Z is very difficult,
especially if Z is small. We therefore propose a generative evolutionary framework, called Black-Box
Ripper, to train the student model towards the optimization problem defined in Equation (1). Our
framework enables us (i) to generate as many examples as required for the complete convergence of
the student and (ii) to evolve the generated samples such that the discrepancy between the proxy data
set and the true data set is minimized.
Our framework relies on a generative model to synthesize realistic samples for the student model.
Although in practice we observed better results when the generator is a GAN [7], in theory, we could
use any generative model, including a GAN or a VAE [16]. Since we assume no knowledge of the
training data of the teacher model, we train our generator on the proxy data set, just as the student
model. Unlike Addepalli et al. [1], we do not train the generator jointly with the student and we do
not back-propagate gradients through the teacher. In our framework, we consider that the generator is
trained in a preliminary step, independently of the student. This allows us to plug-in any generative
model, including pre-trained models.
As shown in Figure 1, our framework is comprised of three steps. The first step is to generate a set of
random samples in the latent space of the generator, passing them through the generator and obtaining
a set of generated data samples Z ′, such that pZ′ ≈ pZ , where pZ′ and pZ are probability densities
of the generated data Z ′ and of the real (proxy) data Z, respectively. Model calls are performed
afterwards in order to obtain a set of class probabilities from the teacher T . These class probabilities
are to be used in the second step based on evolutionary optimization.
Since the generator is trained to model the probability density pZ and pZ 6= pX , the data samples are
likely not representative for any class in the true data set X . Hence, the teacher is likely not going to
produce a high probability for a certain class. The same problem occurs when there is no generator
and the teacher is applied directly on images from Z. To this end, we introduce the second step in
our framework, which is based on an evolutionary strategy to overcome the discrepancy between the
proxy data set and the true data set, searching for samples in the latent space of the generator that
elicit a high response from the teacher model towards a certain class.
Our use of the evolutionary algorithm is motivated by the assumption that the low-dimensional data
manifold modeled by the generator is continuous, even though many data sets lie in disconnected
low-dimensional manifolds of GANs [14], for example. While this is an undesirable property of
GANs, resulting in artifacts at class boundaries, we leverage the continuity assumption to optimally
traverse the latent space. Therefore, when training the student, we randomly select a class label
and traverse the latent space of the generator G, minimizing the difference between the selected
class label y and the teacher’s output ŷ on the generated image. The fitness of a latent space vector
v can be evaluated only after passing it through the generator and the black-box teacher to obtain
the corresponding class probabilities. The optimization process aims at generating images that
are classified in class y with high confidence by the teacher T . Formally, the objective V of our
evolutionary algorithm is the mean squared error between y and ŷ. Hence, we aim to solve:

min
v
V (v, y, T,G) = min

v

n∑
i=1

(T (X ↓↑, G(Z ↓↑, v ↓) ↓)− yi)2 = min
v

n∑
i=1

(ŷi − yi)2, (2)

where v is a latent space vector and n is the number of classes in X , the other notations being
explained above.
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Algorithm 1 Evolutionary Optimization Algorithm
Input: y - desired class label, T - black-box teacher, G - generator trained on Z.
Hyperparameters: K - population size, k - elite size, u - latent space boundary, t - threshold

for stopping criterion.
Output: p∗ - generated data sample with high confidence on desired class y.

1: procedure OPTIMIZE(y, T , G, K, k)
2: Initialize population from a uniform distribution: P ← {U(−u, u)}K
3: Select fittest latent vector: p∗ ← minp∈PV (p, y, T,G)
4: while V (p∗, y, T,G) ≥ t do
5: Select fittest k vectors: Pe ⊂ P
6: Uniformly sample K − k copies from Pe: Pc ← {U(Pe)}K−k
7: Mutate copied vectors with Gaussian noise: Pc ← Pc +N (0, 1)
8: Replace old population with new one: P ← Pe ∪ Pc
9: Select fittest latent vector: p∗ ← minp∈PV (p, y, T,G)

10: return G(Z ↓↑, p∗ ↓)

Our evolutionary training strategy is formally presented in Algorithm 1. Latent space traversal starts
by generating an initial population of K latent space vectors (step 2). Until the value of the objective
V for the fittest latent vector p∗ is lower than a threshold t, we select the k fittest individuals (step 5),
replicate them (step 6), mutating the replicated vectors using random Gaussian noise (step 7). The
algorithm outputs the data sample corresponding to the fittest latent vector p∗ (step 10).
Once we obtain mini-batches of data samples optimized through Algorithm 1, we proceed with our
third and last step. We distill the knowledge of the teacher into the student model by minimizing the
cross-entropy between the class probabilities of the teacher and the class probabilities of the student:

L(θS , Z ′) = −
∑
z′∈Z′

T (X ↓↑, Z ′ ↓) · log(S(Z ′ ↓↑, Z ′ ↓)), (3)

where Z ′ is a set of images generated by our generative evolutionary algorithm from the proxy data
set Z and z′ is a data sample in Z ′, the other notations being explained above.

4 Experiments

4.1 Datasets

We first evaluate our framework on a similar setting to that of Addepalli et al. [1], comparing our
framework to relevant baselines and ablated versions of our own framework. These experiments
include a couple of data set pairs, namely: CIFAR-10 as true data set with CIFAR-100 [18] as proxy
data set, and Fashion-MNIST [37] as true data set with CIFAR-10 [18] as proxy data set. The latter
pair of data sets features high visual discrepancy, given that Fashion-MNIST contains only grayscale
images of 10 classes of fashion items, while CIFAR-10 contains natural objects in context.
Since CIFAR-10, CIFAR-100 and Fashion-MNIST have low resolution images, we also test our
approach in a more realistic scenario with high-resolution images. For this set of experiments, we use
the 10 Monkey Species [27] data set, containing images of 10 species of monkeys in their natural
habitat, as true data set. In this scenario, we independently consider two proxy data sets, namely
CelebA-HQ [13] and ImageNet Cats and Dogs [33]. CelebA-HQ contains high-resolution images of
1024× 1024 pixels. ImageNet Cats and Dogs is composed of 143 species of cats and dogs. For the
latter proxy, we additionally provide qualitative results to showcase our optimization process.

4.2 Baselines

Training on proxy data (Knockoff Nets [31]). Current methods focusing on stealing the function-
ality of black-box models rely on training the student on samples taken directly from the proxy data
set, using labels provided by the teacher as ground-truth for the student. Since the most recent work
in this category is based on Knockoff Nets [31], we include this relevant baseline in the experiments.
For a fair comparison, we allow Knockoff Nets to do as many forward passes as necessary through
the teacher, until the student reaches complete convergence.
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Table 1: Accuracy rates (in %) on CIFAR-10 of various zero-shot knowledge distillation [1, 28]
and model stealing [31] methods versus Black-Box Ripper. For our model, we report the average
accuracy as well as the standard deviation computed over 5 runs. Best results are highlighted in bold.

Proxy Dataset CIFAR-100 CIFAR-100 CIFAR-100 CIFAR-100
90 classes 40 classes 10 classes 6 classes

Teacher Accuracy 82.5 82.5 82.5 82.5
Knockoff Nets [31] 74.5 65.7 46.6 36.4
ZSKD [28] 69.5 69.5 69.5 69.5
DeGAN [1] 80.5 76.3 72.6± 3.3 59.5
Black-Box Ripper (Ours) 79.0± 0.2 76.5± 0.1 77.9± 0.3 69.9± 0.2

Zero-Shot Knowledge Distillation (ZSKD [28]). We include the results of Nayak et al. [28] as one
of the baselines, as their data-free approach is very popular in this area of research. However, the
authors directly synthesize data samples by back-propagating gradients through the teacher, using
data visualization methods. Since they consider a more relaxed setting in which the teacher is a white
box, their approach does not need a proxy data set.
Data-enriching GAN (DeGAN [1]). Even tough our work focuses on knowledge distillation in a
realistic scenario, in which training data, structure and parameters of the teacher are completely
obscured, we aim to compare our method to top white-box approaches in order to perform a more
solid evaluation for Black-Box Ripper. We therefore consider DeGAN [1] as baseline. DeGAN
employs a generative network trained in tandem with the student, while performing back-propagation
through the teacher network, thus requiring complete access to the teacher. DeGAN is a very recent
method, attaining state-of-the-art results in data-free knowledge distillation.
Training on generator samples (GAN, VAE). In order to show the improvement brought by the
evolutionary optimization algorithm, we perform ablation experiments using the same generator
as in Black-Box Ripper, but without applying the evolutionary strategy. Samples are generated by
uniformly sampling from the latent space of the generator. As generative model, we considered two
variants: a GAN and a VAE. Observing that GANs seem more useful for the student, we report results
with VAE in a single experiment, applying the same rule to Black-Box Ripper.

4.3 Results on CIFAR-10

Experimental setup. We conduct experiments following Addepalli et al. [1], thus employing an
AlexNet [19] architecture for the teacher and a half-AlexNet architecture for the student. All models,
including baselines, are trained for 200 epochs using the Adam [15] optimizer. We used mini-batches
of 64 images. In Black-Box Ripper, the images are synthesized by the evolutionary algorithm, using
at most 10 iterations, a population of K = 30 latent vectors sampled within the boundary u = 3,
an elite size of k = 10, halting the optimization if the fittest latent vector gives an objective value
lower than t = 0.02. All other experiments on Fashion-MNIST and 10 Monkey Species use the
same hyperparameters for our evolutionary strategy. Since the 10 classes in CIFAR-10 need to be
removed from CIFAR-100, the maximum number of classes from CIFAR-100 that can be used is 90.
As Addepalli et al. [1], we present results on four different proxies with 6, 10, 40 and 90 classes from
CIFAR-100, respectively. As generators, we employ a Progressively Growing GAN (ProGAN) [13]
for the 6 and 10 classes setup and a Spectral Normalization GAN (SNGAN) [26] for the other two
experiments. Readers are referred to Addepalli et al. [1] for a detailed description of the experimental
setup on CIFAR-10.
Results. We present results on CIFAR-10 as true data set in Table 1. For reference, the teacher’s
accuracy is 82.5%, this being the upper bound for Black-Box Ripper and other methods [1, 28, 31].
Even though we consider the teacher as a black box, our model manages to outperform the white-box
DeGAN [1] in three out of four cases, while achieving a close result in the unfavorable case. These
results indicate that our method does not need full access to the teacher in order to achieve state-
of-the-art results in zero-shot knowledge distillation. The results also show that our optimization
procedure brings more and more value (the improvements with respect to the baselines are higher) as
the number of classes in the proxy data set gets smaller. We note that the CIFAR-100 proxies with
less classes also contain classes that are more distant from the CIFAR-10 classes. When the generator
does not benefit from a large variation of the proxy data set and the discrepancy between the proxy

6



Table 2: Accuracy rates (in %) of various zero-shot knowledge distillation [1, 28] and model stealing
[31] methods versus Black-Box Ripper on Fashion-MNIST as true data set and CIFAR-10 as proxy
data set. Ablation results with two generators, a VAE and a SNGAN [26], are also included. Best
results are highlighted in bold.

Architectures VGG-16 LeNet→ Half LeNet
Teacher Accuracy 94.2 89.9
Knockoff Nets [31] 82.9 77.8
ZSKD [28] - 79.6
DeGAN [1] - 83.7
VAE (no evolutionary optimization) 78.3 73.1
SNGAN (no evolutionary optimization) 87.6 80.0
Black-Box Ripper with VAE (Ours) 86.1 78.8
Black-Box Ripper with SNGAN (Ours) 90.0 82.2

and the true data set is larger, our evolutionary algorithm can help to close the distribution gap. This
explains why Black-Box Ripper is 10.4% over DeGAN on CIFAR-100 with 6 classes and 5.3% over
DeGAN on CIFAR-100 with 10 classes. Considering the small standard deviations computed over 5
runs, we conclude that our evolutionary strategy provides very stable results. We therefore report
results for a single run in the subsequent experiments, just as Addepalli et al. [1].

4.4 Results on Fashion-MNIST

Experimental setup. Using Fashion-MNIST as a true data set and CIFAR-10 as proxy data set, we
evaluate our framework in comparison to a set of relevant baselines, some being also considered
by Addepalli et al. [1]. On Fashion-MNIST, we report results with two alternative generators in
Black-Box Ripper, a VAE with the same architectural design as in [13] and a SNGAN [26]. We
also present ablation results with these generators, eliminating the evolutionary strategy from the
pipeline. For the teacher and the student, we consider two architectural choices: VGG-16 [34] for
both networks, and LeNet [20] and half-LeNet for the teacher and student, respectively.
Results. We show results on Fashion-MNIST as true data set in Table 2. First, we note that using a
deeper architecture (VGG-16 versus half-LeNet) plays an important role in reducing the accuracy gap
with respect to the corresponding teacher. We surpass all baselines for the VGG-16 architecture, and
report the second best result (just 1.5% below DeGAN [1]) for LeNet. The ablations results with VAE
versus Black-Box Ripper with VAE indicate that the evolutionary algorithm brings improvements of
over 5%. Meanwhile, the differences between SNGAN and Black-Box Ripper with SNGAN are just
over 2%. In both cases, there is a clear advantage in employing our evolutionary strategy.

4.5 Results on 10 Monkey Species

Experimental setup. As generators, we employed a pre-trained ProGAN [13] on CelebA-HQ and a
pre-trained cGAN with projection discriminator [25] on ImageNet Cats and Dogs. As in the previous
experiment, we include ablation results with GANs, excluding the evolutionary search from our
pipeline. The teacher and the students are ResNet-18 [9] models. The teacher is trained for 30 epochs
and the students are trained for 200 epochs using the same mini-batch size as the teacher.
Results. We present the results on 10 Monkey Species in Table 3. Our method yields a great
performance improvement over Knockoff Nets [31] on CelebA-HQ as proxy, amounting to 14.7%.
With respect to the student trained on images generated by ProGAN, the student trained with Black-
Box Ripper (with ProGAN as generator) has a significant improvement of 12.1%.
Qualitative Results. We illustrate qualitative results of our evolutionary optimization process in
Figure 2. In the top row of Figure 2, we show a selected evolutionary search process for the common
squirrel monkey class in the 10 Monkey Species data set. The majority of common squirrel monkey
instances in the data set often depict the monkey on tree branches. Meanwhile, the GAN is trained on
images of cats and dogs, which appear in a different contextual environment. We therefore observe
that the optimization process converges to an image of a cat with leaves and tree branches around it.
The teacher gives a high response for this generated image (the confidence score for common squirrel
monkey is 99.37%). In the bottom row of Figure 2, we show an example of evolutionary search for
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Table 3: Accuracy rates (in %) of a state-of-the-art model stealing method [31] versus Black-Box
Ripper on 10 Monkey Species as true data set and CelebA-HQ and ImageNet Cats and Dogs as proxy
data sets. Ablation results with GANs are also included. Best results are highlighted in bold.

Proxy Dataset CelebA-HQ ImageNet Cats and Dogs
Teacher Accuracy 77.4 77.4
Knockoff Nets [31] 54.7 -
GAN (no evolutionary optimization) 57.3 65.0
Black-Box Ripper (Ours) 69.4 71.6

Figure 2: Top row: Evolutionary optimization progression from a cat from the proxy data set into a
squirrel monkey class from the true data set. Bottom row: Progression from a dog from the proxy
data set into a bald uakari from the true data set. Only the best specimen from the population at each
iteration is shown.

the bald uakari monkey species. This species can be generally described as presenting orange fur
and bald head with a red face. We note that our final (converged) image does not really resemble
a monkey, but the teacher gives a very high response for the target class (the confidence score is
99.98%). The evolutionary search produces an image with close texture resemblance and coarse
semantic resemblance. For example, the dog’s snout is transformed into a red stain which is supposed
to be the monkey’s face. This observation is consistent with the properties of CNNs uncovered by
Geirhos et al. [6], indicating that CNNs tend to recognize objects mostly based on texture patterns.
We note that the images generated from the proxy data set distribution and aligned using evolutionary
search contain sufficient high-level information for the student to copy the functionality of the teacher,
although the generated images are visually different than the real images found in the true data set.

5 Conclusion

We proposed a novel black-box functionality stealing framework able to achieve state-of-the-art
results in zero-shot knowledge distillation scenarios. We have tested our method on Fashion-MNIST,
CIFAR-10 and 10 Monkey Species, using multiple proxy data sets and settings. We compared our
framework with state-of-the-art data-free knowledge distillation [1, 28] and model stealing [31]
methods. Our approach was able to surpass these baselines in most scenarios, even though some
baselines [1, 28] have complete access to the teacher. We also showed ablation results indicating
that our evolutionary algorithm is helpful in reducing the distribution gap between the proxy and the
true data set. In future work, we would like to turn our attention towards (i) reducing the number of
black-box model calls instead of increasing accuracy and (ii) designing preventive solutions, as one
of our most important goals is to raise awareness around model stealing, contributing to AI security.
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6 Broader Impact

Our work has shown that, in the current state of machine learning, it is possible to obtain state-
of-the-art results in model functionality replication without knowledge of the internal structure or
parameters of the targeted model. With our work, we wish to raise awareness in the domain of AI
security, to expose and better understand the exposure and vulnerabilities of public machine learning
APIs. Currently, we were able to replicate functionality in a black-box scenario without having
knowledge of the training data, reporting a gap of 3.2% between the original model and the replica
in one scenario, achieving similar or better results than glass-box approaches. As such, we show
that the boundary between glass-box and black-box models is thin and public black-box APIs are
as exposed as glass-box models. Our inquiry is that no, or very few models are safe in the current
context. We assume that replicas can be analyzed in order to find vulnerabilities in the original
model and profit from them. We believe our work represents a solid building block for research in AI
security, towards detecting, understanding and preventing any sort of AI vulnerabilities. By exposing
techniques such as Black-Box Ripper, we aim to get a head start in designing preventive solutions.
Our aim is to stimulate future research in detecting functionality stealing attacks. In the current
scenario, for example, the optimization process can be proactively detected based on the API call
patterns and stopped. The process can also be impeded by limiting access to prediction confidence
scores. Finally, and maybe one of the most important aspects, such model stealing processes can be
impeded by designing neural networks that do not focus on textures, but rather on semantics. Our
work helps to further push development in this area, which will make deep learning models safer and
more robust. Having knowledge of the current work, public APIs can implement such techniques and
keep their models in a much safer and desired state, which is the improvement we want to bring to
the community. We hope further research on this subject will follow, as we, ourselves, will continue
to do so.
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