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Abstract

This paper proposes a theoretical analysis of recommendation systems in an online
setting, where items are sequentially recommended to users over time. In each
round, a user, randomly picked from a population of m users, requests a recommen-
dation. The decision-maker observes the user and selects an item from a catalogue
of n items. Importantly, an item cannot be recommended twice to the same user.
The probabilities that a user likes each item are unknown. The performance of
the recommendation algorithm is captured through its regret, considering as a
reference an Oracle algorithm aware of these probabilities. We investigate various
structural assumptions on these probabilities: we derive for each structure regret
lower bounds, and devise algorithms achieving these limits. Interestingly, our
analysis reveals the relative weights of the different components of regret: the
component due to the constraint of not presenting the same item twice to the same
user, that due to learning the chances users like items, and finally that arising when
learning the underlying structure.

1 Introduction

Recommendation systems [28] have over the last two decades triggered important research efforts
(see, e.g., [9, 10, 21, 3] for recent works and references therein), mainly focused towards the design
and analysis of algorithms with improved efficiency. These algorithms are, to some extent, all
based on the principle of collaborative filtering: similar items should yield similar user responses,
and similar users have similar probabilities of liking or disliking a given item. In turn, efficient
recommendation algorithms need to learn and exploit the underlying structure tying the responses of
the users to the various items together.

Most recommendation systems operate in an online setting, where items are sequentially recom-
mended to users over time. We investigate recommendation algorithms in this setting. More precisely,
we consider a system of n items and m users, where m ≥ n (as this is typically the case in practice).
In each round, the algorithm needs to recommend an item to a known user, picked randomly among
the m users. The response of the user is noisy: the user likes the recommended item with an a
priori unknown probability depending on the (item, user) pair. In practice, it does not make sense to
recommend an item twice to the same user (why should we recommend an item to a user who already
considered or even bought the item?). We restrict our attention to algorithms that do not recommend
an item twice to the same user, a constraint referred to as the no-repetition constraint. The objective
is to devise algorithms maximizing the expected number of successful recommendations over a time
horizon of T rounds.
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We investigate different system structures. Specifically, we first consider the case of clustered items
and statistically identical users – the probability that a user likes an item depends on the item cluster
only. We then study the case of unclustered items and statistically identical users – the probability
that a user likes an item depends on the item only. The third investigated structure exhibits clustered
items and clustered users – the probability that a user likes an item depends on the item and user
clusters only. In all cases, the structure (e.g., the clusters) is initially unknown and has to be learnt to
some extent. This paper aims at answering the question: How can the structure be optimally learnt
and exploited?

To this aim, we study the regret of online recommendation algorithms, defined as the difference
between their expected number of successful recommendations to that obtained under an Oracle
algorithm aware of the structure and of the success rates of each (item, user) pair. We are interested in
regimes where n,m, and T grow large simultaneously, and T = o(mn) (see §3 for details). For the
aforementioned structures, we first derive non-asymptotic and problem-specific regret lower bounds
satisfied by any algorithm.
(i) For clustered items and statistically identical users, as T (and hence m) grows large, the minimal
regret scales as K max{ log(m)

log(
m log(m)

T )
, T

∆m}, where K is the number of item clusters, and ∆ denotes

the minimum difference between the success rates of items from the optimal and sub-optimal clusters.
(ii) For unclustered items and statistically identical users, the minimal satisficing regret1 scales as
max{ log(m)

log(
m log(m)

T )
, Tmε}, where ε denotes the threshold defining the satisficing regret (recommending

an item in the top ε percents of the items is assumed to generate no regret).
(iii) For clustered items and users, the minimal regret scales as m

∆ or as m
∆ log(T/m), depending on

the values of the success rate probabilities.
We also devise algorithms that provably achieve these limits (up to logarithmic factors), and whose
regret exhibits the right scaling in ∆ or ε. We illustrate the performance of our algorithms through
experiments presented in the appendix.

Our analysis reveals the relative weights of the different components of regret. For example, we can
explicitly identify the regret induced by the no-repetition constraint (this constraint imposes us to
select unrecommended items and induces an important learning price). We may also characterize the
regret generated by the fact that the item or user clusters are initially unknown. Specifically, fully
exploiting the item clusters induces a regret scaling as K T

∆m . Whereas exploiting user clusters has a
much higher regret cost scaling as least as m

∆ .

In our setting, deriving regret lower bounds and devising optimal algorithms cannot be tackled using
existing techniques from the abundant bandit literature. This is mainly due to the no-repetition
constraint, to the hidden structure, and to the specificities introduced by the random arrivals of
users. Getting tight lower bounds is particularly challenging because of the non-asymptotic nature
of the problem (items cannot be recommended infinitely often, and new items have to be assessed
continuously). To derive these bounds, we introduce novel techniques that could be useful in other
online optimization problems. The design and analysis of efficient algorithms also present many
challenges. Indeed, such algorithms must include both clustering and bandit techniques, that should
be jointly tuned.

Due to space constraints, we present the pseudo-codes of our algorithms, all proofs, numerical
experiments, as well as some insightful discussions in the appendix.

2 Related Work

The design of recommendation systems has been framed into structured bandit problems in the past.
Most of the work there consider a linear reward structure (in the spirit of the matrix factorization
approach), see e.g. [9], [10], [22], [20], [21], [11]. These papers ignore the no-repetition constraint (a
usual assumption there is that when a user arrives, a set of fresh items can be recommended). In [24],
the authors try to include this constraint but do not present any analytical result. Furthermore, notice
that the structures we impose in our models are different than that considered in the low-rank matrix
factorization approach.

1For this unstructured scenario, we will justify why considering the satisficing regret is needed.
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Our work also relates to the literature on clustered bandits. Again the no-repetition constraint is
not modeled. In addition, most often, only the user clusters [6], [23] or only the item clusters are
considered [18], [14]. Low-rank bandits extend clustered bandits by modeling the (item, user) success
rates as a low-rank matrix, see [15], [25], still without accounting for the no-repetition constraint,
and without a complete analysis (no precise regret lower bounds).

One may think of other types of bandits to model recommendation systems. However, none of them
captures the essential features of our problem. For example, if we think of contextual bandits (see,
e.g., [12] and references therein), where the context would be the user, it is hard to model the fact
that when the same context appears several times, the set of available arms (here items) changes
depending on the previous arms selected for this context. Budgeted and sleeping bandits [7], [17]
model scenarios where the set of available arms changes over time, but in our problem, this set
changes in a very specific way not covered by these papers. In addition, studies on budgeted and
sleeping bandits do not account for any structure.

The closest related work can be found in [4] and [13]. There, the authors explicitly model the
no-repetition constraint but consider user clusters only, and do not provide regret lower bounds. [3]
extends the analysis to account for item clusters as well but studies a model where users in the same
cluster deterministically give the same answers to items in the same cluster.

3 Models and Preliminaries

We consider a system consisting of a set I = [n] := {1, . . . , n} of items and a set U = [m] of
users. In each round, a user, chosen uniformly at random from U , needs a recommendation. The
decision-maker observes the user id and selects an item to be presented to the user. Importantly an
item cannot be recommended twice to a user. The user immediately rates the recommended item +1
if she likes it or 0 otherwise. This rating is observed by the decision-maker, which helps subsequent
item selections.

Formally, in round t, the user ut ∼ unif(U) requires a recommendation. If item i is recommended,
the user ut = u likes the item with probability ρiu. We introduce the binary r.v. Xiu to indicate
whether the user likes the item, Xiu ∼ Ber(ρiu). Let π denote a sequential item selection strategy
or algorithm. Under π, the item iπt is presented to the t-th user. The choice iπt depends on the
past observations and on the identity of the t-th user, namely, iπt is Fπt−1-measurable, with Fπt−1 =
σ(ut, (us, i

π
s , Xiπs us

), s ≤ t− 1) (σ(Z) denotes the σ-algebra generated by the r.v. Z). Denote by Π
the set of such possible algorithms. The reward of an algorithm π is defined as the expected number
of positive ratings received over T rounds: E[

∑T
t=1 ρiπt ut ]. We aim at devising an algorithm with

maximum reward.

We are mostly interested in scenarios where (m,n, T ) grow large under the constraints (i) m ≥ n
(this is typically the case in recommendation systems), (ii) T = o(mn), and (iii) log(m) = o(n).
Condition (ii) complies with the no-repetition constraint and allows some freedom in the item
selection process. (iii) is w.l.o.g. as explained in [4], and is just imposed to simplify our definitions of
regret (refer to Appendix C for a detailed discussion).

3.1 Problem structures and regrets

We investigate three types of systems depending on the structural assumptions made on the success
rates ρ = (ρiu)i∈I,u∈U .

Model A. Clustered items and statistically identical users. In this case, ρiu depends on the item
i only. Items are classified into K clusters I1, . . . IK . When the algorithm recommends an item
i for the first time, i is assigned to cluster Ik with probability αk, independently of the cluster
assignments of the other items. When i ∈ Ik, then ρi = pk. We assume that both α = (αk)k∈[K]

and p = (pk)k∈[K] do not depend on (n,m, T ), but are initially unknown. W.l.o.g. assume that
p1 > p2 ≥ p3 ≥ . . . ≥ pK . To define the regret of an algorithm π ∈ Π, we compare its reward to that
of an Oracle algorithm aware of the item clusters and of the parameters p. The latter would mostly
recommend items from cluster I1. Due to the randomness in the user arrivals and the cluster sizes,
recommending items not in I1 may be necessary. However, we define regret as if recommending
items from I1 was always possible. Using our assumptions T = o(mn) and log(m) = o(n), we can
show that the difference between our regret and the true regret (accounting for the possible need to
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recommend items outside I1) is always negligible. Refer to Appendix C for a formal justification. In
summary, the regret of π ∈ Π is defined as: Rπ(T ) = Tp1 −

∑T
t=1 E

[∑K
k=1 1{iπt ∈Ik}pk

]
.

Model B. Unclustered items and statistically identical users. Again here, ρiu depends on the item
i only. when a new item i is recommended for the first time, its success rate ρi is drawn according to
some distribution ζ over [0, 1], independently of the success rates of the other items. ζ is arbitrary and
initially unknown, but for simplicity assumed to be absolutely continuous w.r.t. Lebesgue measure.
To represent ζ, we also use its inverse distribution function: for any x ∈ [0, 1], µx := inf{γ ∈
[0, 1] : P[ρi ≤ γ] ≥ x}. We say that an item i is within the ε-best items if ρi ≥ µ1−ε. We adopt
the following notion of regret: for a given ε > 0, Rπε (T ) =

∑T
t=1 E

[
max{0, µ1−ε − ρiπt }

]
. Hence,

we assume that recommending items within the ε-best items does not generate any regret. We also
assume, as in Model A, that an Oracle policy can always recommend such items (refer to Appendix
C). This notion of satisficing regret [29] has been used in the bandit literature to study problems
with a very large number of arms (we have a large number of items). For such problems, identifying
the best arm is very unlikely, and relaxing the regret definition is a necessity. Satisficing regret is
all the more relevant in our problem that even if one would be able to identify the best item, we
cannot recommend it (play it) more than m times (due to the no-repetition constraint), and we are
actually forced to recommend sub-optimal items. A similar notion of regret is used in [4] to study
recommendation systems in a setting similar to our Model B.

Model C. Clustered items and clustered users. We consider the case where both items and users
are clustered. Specifically, users are classified into L clusters U1, . . . ,UL, and when a user arrives
to the system the first time, she is assigned to cluster U` with probability β`, independently of the
other users. There are K item clusters I1, . . . IK . When the algorithm recommends an item i for
the first time, it is assigned to cluster Ik with probability αk as in Model A. Now ρiu = pk` when
i ∈ Ik and u ∈ U`. Again, we assume that p = (pk`)k,`, α = (αk)k∈[K] and β = (β`)`∈[L] do
not depend on (n,m, T ). For any `, let k∗` = arg maxk pk` be the best item cluster for users in
U`. We assume that k∗` is unique. In this scenario, we assume that an Oracle algorithm, aware
of the item and user clusters and of the parameters p, would only recommend items from cluster
k∗` to a user in U` (refer to Appendix C). The regret of an algorithm π ∈ Π is hence defined as:

Rπ(T ) = T
∑
` β`pk∗` ` −

∑T
t=1 E

[∑
k,` 1{ut∈U`,iπt ∈Ik}pk`

]
.

3.2 Preliminaries – User arrival process

The user arrival process is out of the decision maker’s control and strongly impacts the performance
of the recommendation algorithms. To analyze the regret of our algorithms, we will leverage the
following results. Let Nu(T ) denote the number of requests of user u up to round T . From the
literature on "Balls and Bins process", see e.g. [27], we know that if n := E[maxu∈U Nu(T )], then

n =


log(m)

log(
m log(m)

T )
(1 + o(1)) if T = o(m log(m)),

log(m)(dc + o(1)) if T = cm log(m),

T
m (1 + o(1)) if T = ω(m log(m)),

where dc is a constant depending on c only. We also establish the following concentration result
controlling the tail of the distribution of Nu(T ) (refer to Appendix B):

Lemma 1. Define N = 4 log(m)

log(
m log(m)

T +e)
+ e2T

m . Then, ∀u ∈ U , E[max{0, Nu(T )−N}] ≤ 1
(e−1)m .

The quantities n and N play an important role in our regret analysis.

4 Regret Lower Bounds

In this section, we derive regret lower bounds for the three envisioned structures. Interestingly,
we are able to quantify the minimal regret induced by the specific features of the problem: (i) the
no-repetition constraint, (ii) the unknown success probabilities, (iii) the unknown item clusters, (iv)
the unknown user clusters. The proofs of the lower bounds are presented in Appendices D-E-F.
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4.1 Clustered items and statistically identical users

We denote by ∆k = p1 − pk the gap between the success rates of items from the best cluster
and of items from cluster Ik, and introduce the function: φ(k,m, p) = 1−e−mγ(p1,pk)

8(1−e−γ(p1,pk))
, where

γ(p, q) = kl(p, q) + kl(q, p) and kl(p, q) = p log p
q + (1− p) log 1−p

1−q . Using the fact that kl(p, q) ≤
(p− q)2/q(1− q), we can easily show that as m grows large, φ(k,m, p) scales as η/(16∆2

k) when
∆k is small, where η := mink pk(1− pk).

We derive problem-specific regret lower bounds, and as in the classical stochastic bandit literature, we
introduce the notion of uniformly good algorithm. π is uniformly good if its expected regret Rπ(T )

is O(max{
√
T , log(m)

log(
m log(m)

T +e)
}) for all possible system parameters (p, α) when T,m, n grow large

with T = o(nm) and m ≥ n. As shown in the next section, uniformly good algorithms exist.
Theorem 1. Let π ∈ Π be an arbitrary algorithm. The regret of π satisfies: for all T ≥ 1 such that
m ≥ c/∆2

2 (for some constant c large enough),Rπ(T ) ≥ max{Rnr(T ), Ric(T )}, whereRnr(T ) and
Ric(T ), the regrets due to the no-repetition constraint and to the unknown item clusters, respectively,
are defined by Rnr(T ) := n

∑
k 6=1 αk∆k and Ric(T ) := T

m

∑
k 6=1 αkφ(k,m, p)∆k.

Assume that π is uniformly good, then we have2: Rπ(T ) & Rsp(T ) := log(T )
∑
k 6=1

∆k

2kl(pk,p1) ,

where Rsp(T ) refers to the regret due to the unknown success probabilities.

From the above theorem, analyzing the way Rnr(T ), Ric(T ), and Rsp(T ) scale, we can deduce that:
(i) When T = o(m log(m)), the regret arises mainly due to either the no-repetition constraint or the
need to learn the success probabilities, and it scales at least as max{ log(m)

log(
m log(m)

T )
, log(T )}.

(ii) When T = cm log(m), the three components of the regret lower bound scales in the same way,
and the regret scales at least as log(T ).
(iii) When T = ω(m log(m)), the regret arises mainly due to either the no-repetition constraint or
the need to learn the item clusters, and it scales at least as T

m .

4.2 Unclustered items and statistically identical users

In this scenario, the regret is induced by the no-repetition constraint, and by the fact the success rate
of an item when it is first selected and the distribution ζ are unknown. These two sources of regret
lead to the terms Rnr(T ) and Ri(T ), respectively, in our regret lower bound.
Theorem 2. Assume that the density of ζ satisfies, for some C > 0, ζ(µ) ≤ C for all µ ∈ [0, 1].
Let π ∈ Π be an arbitrary algorithm. Then its satisficing regret satisfies: for all T ≥ 1 such
that m ≥ c/ε2 (for some constant c ≥ 1 large enough), Rπε (T ) ≥ max{Rnr(T ), Ri(T )}, where

Rnr(T ) := n
∫ µ1−ε

0
(µ1−ε − µ)ζ(µ)dµ and Ri(T ) := T

m

(1−ε)2
2C (1− εC

1−ε )
2

min{1,(1+C)ε}+1/m .

4.3 Clustered items and clustered users

To state regret lower bounds in this scenario, we introduce the following notations. For any ` ∈ [L],
let ∆k` = pk∗` ` − pk` be the gap between the success rates of items from the best cluster Ik∗` and
of items from cluster Ik. We also denote by R` = {r ∈ [L] : k∗` 6= k∗r} . We further introduce the
functions:

φ(k, `,m, p) =
1− e−mγ(pk∗

`
`,pk`)

8
(

1− e−γ(pk∗
`
`,pk`)

) and ψ(`, k, T,m, p) =
1− e−

T
mγ(pk∗

`
`,pk`)

8
(

1− e−γ(pk∗
`
`,pk`)

) .
Compared to the case of clustered items and statistically identical users, this scenario requires the
algorithm to actually learn the user clusters. To discuss how this induces additional regret, assume
that the success probabilities p are known. Define L⊥ = {(`, `′) ∈ [L]2 : pk∗` ` 6= pk∗

`′`
′}, the set of

pairs of user clusters whose best item clusters differ. If L⊥ 6= ∅, then there isn’t a single optimal item
cluster for all users, and when a user u first arrives, we need to learn its cluster. If p is known, this
classification generates at least a constant regret (per user) – corresponding to the term Ruc(T ) in the

2We write a & b if lim infT→∞ a/b ≥ 1.

5



theorem below. For specific values of p, we show that this classification can even generate a regret
scaling as log(T/m) (per user). This happens when L⊥(`) = {`′ 6= ` : k∗` 6= k∗`′ , pk∗` ` = pk∗` `′} is
not empty – refer to Appendix F for examples. In this case, we cannot distinguish users from U` and
U`′ by just presenting items from Ik∗` (the greedy choice for users in U`). The corresponding regret
term in the theorem below is R′uc(T ). To formalize this last regret component, we define uniformly
good algorithms as follows. An algorithm is uniformly good if for any user u, Rπu(N) = o(Nα) as
N grows large for all α > 0, where Rπu(N) denotes the accumulated expected regret under π for user
u when the latter has arrived N times.
Theorem 3. Let π ∈ Π be an arbitrary algorithm. Then its regret satisfies: for all T ≥ 2m such that
m ≥ c/mink,` ∆2

k` (for some constant c large enough), Rπ(T ) ≥ max{Rnr(T ), Ric(T ), Ruc(T )},
where Rnr(T ), Ric(T ), and Ruc(T ) are regrets due to the no-repetition constraint, to the unknown
item clusters, and to the unknown user clusters respectively, defined by:

Rnr(T ) := n
∑
` β`

∑
k 6=k∗`

αk∆k`,

Ric(T ) := T
m

∑
` β`

∑
k 6=k∗`

αkφ(k, `,m, p)∆k`,

Ruc(T ) := m
∑
`∈[L] β`

∑
k∈R`

∆k`ψ(`,k,T,m,p)

K .

In addition, when T = ω(m), if π is uniformly good, Rπ(T ) & R′uc(T ) := c(β, p)m log(T/m)
where c(β, p) = infn∈F

∑
` β`

∑
k 6=k∗`

∆k`nk` with
F = {n ≥ 0 : ∀`, ∀`′ ∈ L⊥(`),

∑
k 6=k∗`

kl(pk`, pk`′)nk` ≥ 1}.

Note that we do not include in the lower bound the term Rsp(T ) corresponding to the regret induced
by the lack of knowledge of the success probabilities. Indeed, it would scale as log(T ), and this
regret would be negligible compared to Ruc(T ) (remember that T = o(m2)), should L⊥ 6= ∅. Under
the latter condition, the main component of regret is for any time horizon is due to the unknown
user clusters. When L⊥ 6= ∅, the regret scales at least as m if for all `, L⊥(`) = ∅, and m log(T/m)
otherwise.

5 Algorithms

This section presents algorithms for our three structures and an analysis of their regret. The detailed
pseudo-codes of our algorithms and numerical experiments are presented in Appendix A. The proofs
of the regret upper bounds are postponed to Appendices G-H-I.

5.1 Clustered items and statistically identical users

To achieve a regret scaling as in our lower bounds, the structure needs to be exploited. Even without
accounting for the no-repetition constraint, the KL-UCB algorithm would, for example, yield a regret
scaling as n

∆2
log(T ). Now we could first sample T/m items and run KL-UCB on this restricted set

of items – this would yield a regret scaling as T
m∆2

log(T ), without accounting for the no-repetition
constraint. Our proposed algorithm, Explore-Cluster-and-Test (ECT), achieves a better regret scaling
and complies with the no-repetition constraint. Refer to Appendix A for numerical experiments
illustrating the superiority of ECT.

The Explore-Cluster-and-Test algorithm. ECT proceeds in the following phases:

(a) Exploration phase. This first phase consists in gathering samples for a subset S of randomly
selected items so that the success probabilities and the clusters of these items are learnt accurately.
Specifically, we pick |S| = blog(T )2c items, and for each of these items, gather roughly log(T )
samples.

(b) Clustering phase. We leverage the information gathered in the exploration phase to derive an
estimate ρ̂i of the success probability ρi for item i ∈ S. These estimates are used to cluster items,
using an appropriate version of the K-means algorithm. In turn, we extract from this phase, accurate
estimates p̂1 and p̂2 of the success rates of items in the two best item clusters, and a set V ⊂ S of
items believed to be in the best cluster: V := {i ∈ S : ρ̂i > (p̂1 + p̂2)/2}.
(c) Test phase. The test phase corresponds to an exploitation phase. Whenever this is possible (the
no-repetition constraint is not violated), items from V are recommended. When an item outside V
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has to be selected due to the no-repetition constraint, we randomly sample and recommend an item
outside V . This item is appended to V . To ensure that any item i in the (evolving) set V is from the
best cluster with high confidence, we keep updating its empirical success rate ρ̂i, and periodically
test whether ρ̂i is close enough from p̂1. If this is not the case, i is removed from V .

In all phases, ECT is designed to comply with the no-repetition constraint: for example, in the
exploration phase, when the user arrives, if we cannot recommend an item from S due to the
constraint, we randomly select an item not violating the constraint. In the analysis of ECT regret,
we upper bound the regret generated in rounds where a random item selection is imposed. Observe
that ECT does not depend on any parameter (except for the choice of the number of items initially
explored in the first phase).

Theorem 4. We have: RECT(T ) = O

(
2N
α1

∑K
k=2

αk(p1−pk)
(p1−p2)2 + (log T )3

)
.

The regret lower bound of Theorem 1 states that for any algorithm π, Rπ(T ) = Ω(N), and if π is
uniformly good Rπ(T ) = Ω(max{N, log(T )}). Thus, in view of the above theorem, ECT is order-
optimal if N = Ω((log T )3), and order-optimal up to an (log T )2 factor otherwise. Furthermore,
note that when Ric(T ) = Ω( T

∆2m
) is the leading term in our regret lower bound, ECT regret has also

the right scaling in ∆2: RECT(T ) = O( T
∆2m

).

5.2 Unclustered items and statistically identical users

When items are not clustered, we propose ET (Explore-and-Test), an algorithm that consists of two
phases: an exploration phase that aims at estimating the threshold level µ1−ε, and a test phase where
we apply to each item a sequential test to determine whether the item if above the threshold.

The Explore-and-Test algorithm. The ET algorithm proceeds as follows.

(a) Exploration phase. In this phase, we randomly select of set S consisting of b 82

ε2 log T c items and
recommend each selected item to b42 log T c users. For each item i ∈ S, we compute its empirical
success rate ρ̂i. We then estimate µ1− ε2 by µ̂1− ε2 defined so that: ε

2 |S| =
∣∣{i ∈ S : ρ̂i ≥ µ̂1− ε2 }

∣∣ .
We also initialize the set V of candidate items to exploit as V = {i ∈ S : ρ̂i ≥ µ̂1− ε2 }.
(b) Test phase. In this phase, we recommend items in V , and update the set V . Specifically, when a
user u arrives, we recommend the item i ∈ V that has been recommended the least recently among
items that would not break the no-repetition constraint. If no such items exist in V , we randomly
recommend an item outside V and add it to V .
Now to ensure that items in V are above the threshold, we perform the following sequential test,
which is reminiscent of sequential tests used in optimal algorithms for infinite bandit problems [2].
For each item, the test is applied when the item has been recommended for the b2` log log2(2em2)c
times for any positive integer `. For the `-th test, we denote by ρ̄(`) the real number such that
kl(ρ̄(`), µ̂1− ε2 ) = 2−`. If ρ̄(`) ≤ µ̂1− ε2 , the item is removed from V .

Theorem 5. Assume that the density of ζ satisfies ζ(µ) ≤ C for all µ ∈ [0, 1].

For any ε ≥ C
√

π
2 log T , we have: RET

ε (T ) = O
(
N log(1/ε) log log(m)

ε + (log T )2

ε2

)
.

In view of Theorem 2, the regret of any algorithm scales at least as Ω(Nε ). Hence, the above theorem
states that ET is order-optimal at least when N = Ω((log T )2).

5.3 Clustered items and clustered users

The main challenge in devising an algorithm in this setting stems from the fact that we do not
control the user arrival process. In turn, clustering users with low regret is delicate. We present
Explore-Cluster with Upper Confidence Sets (EC-UCS), an algorithm that essentially exhibits the
same regret scaling as our lower bound. The idea behind the design of EC-UCS is as follows. We
estimate the success rates (pk`)k,` using small subsets of items and users. Then based on these
estimates, each user is optimistically associated with a UCS, Upper Confidence Set, a set of clusters
the user may likely belong to. The UCS of a user then shrinks as the number of requests made by this
user increases (just as the UCB index of an arm in bandit problems gets closer to its average reward).
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The design of our estimation procedure and of the various UCS is made so as to get an order-optimal
algorithm. In what follows, we assume that m2 ≥ T (log T )3 and T ≥ m log(T ).

The Explore-Cluster-with-Upper Confidence Sets algorithm.

(a) Exploration and item clustering phase. The algorithm starts by collecting data to infer the item
clusters. It randomly selects a set S consisting of min{n, b m

(log T )2 c} items. For the 10m first user
arrivals, it recommends items from S uniformly at random. These 10m recommendations and the
corresponding user responses are recorded in the dataset D. From the dataset D, the item clusters
are extracted using a spectral algorithm (see Algorithm 4 in the appendix). This algorithm is taken
from [33], and considers the indirect edges between items created by users. Specifically, when a user
appears more than twice in D, she creates an indirect edge between the items recommended to her
for which she provided the same answer (1 or 0). Items with indirect edges are more likely to belong
to the same cluster. The output of this phase is a partition of S into item clusters Î1, . . . , ÎK . We can
show that with an exploration budget of 10m, w.h.p. at least m/2 indirect edges are created and that
in turn, the spectral algorithm does not make any clustering errors w.p. at least 1− 1

T .

(b) Exploration and user clustering phase. To the (10 + log(T ))m next user arrivals, EC-UCS
clusters a subset of users using a Nearest-Neighbor algorithm. The algorithm selects a subset U∗ of
users to cluster, and recommendations to the remaining users will be made depending some distance
to the inferred clusters in U∗. Users from all clusters must be present in U∗. To this aim, EC-UCS first
randomly selects a subset U0 of bm/ log(T )c users from which it extracts the set U∗ of blog(T )2c
users who have been observed the most. The extraction and the clustering of U∗ is made several
times until the b(10 + log(T ))mc-th user arrives so as to update and improve the user clusters. From
these clusters, we deduce estimates p̂k` of the success probabilities.

(c) Recommendations based on Optimistic Assignments. After the 10m-th arrivals, recommenda-
tions are made based on the estimated p̂k`’s. For user ut /∈ U0, the item selection further depends
on the ρ̂kut’s, the empirical success rates of user ut for items in the various clusters. A greedy
recommendation for ut would consist in assigning ut to cluster ` minimizing ‖p̂·` − ρ̂·ut‖ over `,
and then in picking an item from cluster Îk with maximal p̂k`. Such a greedy recommendation
would not work as when ut has not been observed many times, the cluster she belongs to remains
uncertain. To address this issue, we apply the Optimism in Front of Uncertainty principle often
used in bandit algorithms to foster exploration. Specifically, we build a set L(ut) of clusters ut
is likely to belong to. L(ut) is referred to as the Upper Confidence Set of ut. As we get more
observations of ut, this set shrinks. Specifically, we let xk` = max{|p̂k` − ρ̂kut | − ε, 0}, for some
well defined ε > 0 (essentially scaling as

√
log log(T )/ log(T ), see Appendix A for details), and

define L(ut) = {` ∈ [L] :
∑
k x

2
k`nkut < 2K log(nut)} (nut is the number of time ut has arrived,

and nkut is the number of times ut has been recommended an item from cluster Îk). After optimisti-
cally composing the set L(ut), ut is assigned to cluster ` chosen uniformly at random in L(ut), and
recommended an item from cluster Îk with maximal p̂k`.

Theorem 6. For any `, let σ` be the permutation of [K] such that pσ`(1)` > pσ`(2)` ≥ · · · ≥ pσ`(K)`.
Let R` = {r ∈ [L] : k∗` 6= k∗r}, S`r = {k ∈ [K] : pk` 6= pkr}, y`r = mink∈S`r |pk` − pkr|,
δ = min`(pσ`(1)` − pσ`(2)`), and φ(x) := x/log (1/x). Then, we have:

REC−UCS(T ) = O

(
m
∑
`

β`(pσ`(1)` − pσ`(K)`)

(
max

(
K3 logK

φ(min(y`r, δ)2)
,

√
K

min` β`

)

+
∑

r∈R`\L⊥(`)

K2 logK

φ(|pk∗` r − pk∗` `|2)
+
∑
k∈S`r

∑
r∈L⊥(`)

K logN

|S`r||pk` − pkr|2

 .

EC-UCS blends clustering and bandit algorithms, and its regret analysis is rather intricate. The
above theorem states that remarkably, the regret of the EC-UCS algorithm macthes our lower bound
order-wise. In particular, the algorithm manages to get a regret (i) scaling asm whenever it is possible,
i.e., when L⊥(`) = ∅ for all `, (ii) scaling as m log(N) otherwise.

In Appendix A.3, we present ECB, a much simpler algorithm than EC-UCS, but whose regret upper
bound, derived in Appendix J, always scales as m log(N).
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6 Conclusion

This paper proposes and analyzes several models for online recommendation systems. These models
capture both the fact that items cannot repeatedly be recommended to the same users and some
underlying user and item structure. We provide regret lower bounds and algorithms approaching
these limits for all models. Many interesting and challenging questions remain open. We may, for
example, investigate other structural assumptions for the success probabilities (e.g. soft clusters),
and adapt our algorithms. We may also try to extend our analysis to the very popular linear reward
structure, but accounting for no-repetition constraint.

Broader Impact

This work, although mostly theoretical, may provide guidelines and insights towards an improved
design of recommendation systems. The benefits of such improved design could be to increase
user experience with these systems, and to help companies to improve their sales strategies through
differentiated recommendations. The massive use of recommendation systems and its potential
side effects have recently triggered a lot of interest. We must remain aware of and investigate such
effects. These include: opinion polarization, a potential negative impact on users’ behavior and their
willingness to pay, privacy issues.
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