
Supplement to: User-Dependent Neural Sequence
Models for Continuous-Time Event Data

A Model Details

A.1 Encoder Details

Below are precise details concerning the steps to encode a single sequence, Hu, to describe its
associated component distribution, q(zu |Hu).

Temporal Embedding The encoder contains a bidirectional RNN that accepts as input for each
step the embedded mark vector, ki, and the embedded time vector, ti, for a given event in the sequence
being encoded. The embedding for the mark is a standard, learned embedding. The embedding for
the time is a fixed transformation that converts a single time t into a dtime-dimensional vector. The
specific temporal embedding function used in the models trained is defined as follows:

Φ(t) = [sin(α(t− ti)); cos(α(t− ti))]
for ti < t ≤ ti+1,

(A)

where ti is the latest event time that the model has conditioned on that is less than the time
t being embedded, α is a fixed dtime

2 -dimensional vector with the jth element being αj =
exp{−j log(Tmax)/dtime} with Tmax being the maximum difference of consecutive times for a
given dataset. This transformation is the same as the positional embeddings from Vaswani et al.
[2017] adapted to continuous times and can be seen as a simplified version of Xu et al. [2019]. This
form was chosen to have a dense representation of time that safely generalizes to new time values.

Encoding Events As mentioned previously, the embedded times and marks are used as inputs to a
bidirectional RNN. More precisely:

−→
h i = f−→Enc(

−→
h i−1, [ti;ki]), (B)

←−
h i = f←−Enc(

←−
h i+1, [ti;ki]), (C)

for i = 1, . . . , |Hu| where
−→
h 0 and

←−
h |Hu|+1 are learned, and f−→Enc and f←−Enc are recurrent units (in our

case, GRUs).

The information in the reference sequence is summarized by concatenating the last hidden states
from each direction. We will denote that as h = [

−→
h |Hu|;

←−
h 1]. This vector is then used to compute

the sufficient statistics for the component distribution via:

µ = fµ(h) and log σ = fσ(h) (D)

where in our implementation, fµ(h) = Wµh + bµ and fσ(h) = Wσh + bσ for learnable matrices
Wµ and Wσ and learnable bias vectors bµ and bσ .

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

encoding reference history

Figure A: A detailed operational diagram of the encoding process. A single sequenceHu is being
encoded to compute the sufficient statistics, µu and σu, for a single component/mixture, q(zu |Hu).

Figure B: Graphical model of the proposed VAE for personalized point processes with a) being the
generative model and b) being the inference model. U is the set of all possible users for a given
dataset.

A.2 Model Visualizations

An operational diagram of the encoder, as described previously, can be found in Figure A. A graphical
model representation of the personalized neural MTPP framework can be found in Figure B.

A.3 Sampling Sequences

One convenient property of point processes is that given multiple point processes, the superposition
of them is also a valid point process. Furthermore, the intensity function of the superposition point
process is simply equal to the sum of intensity functions that make it up (e.g., for the combination of
two point processes: λ(t|Ht) = λ1(t|Ht) + λ2(t|Ht)). This is why

∑K
k=1 λk(t|Ht) = λ(t|Ht) for

MTPPs, as events for each mark can be seen as coming from their own point process. Note that no
assumption of independence was made for this property to hold true.

We utilize this property in a thinning procedure to sample from arbitrary point processes. If we let
λ∗ > λ(t|Ht) for all t ∈ [0, T), then to sample from λ(t|Ht) requires sampling a time, t∗, from a
Poisson point process with constant rate λ∗, then randomly accepting that point as originating from
the model with probability λ(t∗|Ht)

λ∗ . If it is accepted, then the mark is determined by sampling from a
2

Table A: Descriptions and values of hyperparameters used for models trained on all of the
datasets. The same decoder hyperparameters were used on all of the models, whereas the encoder
hyperparameters were only used for the MoE variants.

Value Used
Section Description Meme Reddit Amazon LastFM

Encoder

Temporal Embedding Size 64 64 64 64
Mark Embedding Size 32 32 32 32
Encoder Hidden Size 64 64 64 64
Latent State Size 64 32 32 32

Decoder Mark Embedding Size 32 32 32 32
Decoder Hidden Size 64 64 64 256

categorical distribution with probabilities equal to λk(t∗|Ht)
λ(t∗|Ht) for k ∈ {1, . . . ,K}. The time and mark

are then appended toH and the procedure continues until candidate times are sampled outside of a
pre-specified time window. Note that, should we want to condition on a portion of a history,Hc, and
sample future trajectories, then the intensity function is conditioned onHc and the only candidate
times considered are t ∈ [c, T).

For this thinning procedure to be valid, λ∗ must dominate all intensity values estimated by the model;
however, this can be difficult to ensure prior to generating a sample due to the intensity function
changing in response to new events. As such, to ensure that a sample was validly generated one
must check the intensity function conditioned on the sample at various times in the time window and
validate that it is less than λ∗. All samples that we generated had this check done at 1,000 different
times that were uniformly sampled across the time window. Should this condition not hold for at
least one point in the interval, then λ∗ is increased and a new sample is generated and subsequently
validated.

B Experimental Details

This section pertains to more precise and specific details concerning our experimental findings, as
well as some additional results that were omitted from the main text due to space.

B.1 Experiment Hyperparameters

Below are descriptions that list all of the hyperparameters set throughout our training and experiments,
such as the specific sizes for model parameters or the number of samples used when approximating
integrals.

Model Architecture Table A contains model hyperparameters used for all of the experiments.
The same hyperparameters were sufficient for models trained on all datasets; however, due to the
difference in total unique marks (i.e. KMemeTracker = 5000, KReddit = 1000,KAmazon = 737, and
KLastFM = 15) it turned out necessary to have the size of the amortized latent user embedding, zu, be
64 for the MemeTracker data instead of 32 as used for the Reddit and Amazon data. Similarly, we
found it necessary that the decoder hidden size was much larger for the models trained on the LastFM
data due to different trends and patterns being harder to differentiate from the subset of marks present
alone. These values were found from ablation studies using splits of the training data for each dataset.
We suspect that since each dataset had a similar amount of observations, the models tended to require
similar minimum capacities.

For the MoE models, to save on parameters, the same mark embeddings were shared amongst the
encoder and decoder.

Approximations For training and experiments, there are a number of integrals that need to be
computed which are not feasible in closed form. Thus, we must approximate them. All integrals and
expectations are approximated via Monte-Carlo (MC) estimates with varying amounts of samples
used.

3

S

Figure C: Mean values of SCE,PP+, and PP− (seen in rows (a), (b), and (c), respectively) for decoder-
only (dotted lines) and MoE (solid lines) variants of NHP (blue lines) and RMTPP (orange lines)
models with each column corresponding to results for the MemeTracker dataset, Reddit comments,
Amazon reviews, and the LastFM dataset. In every plot, a lower value is better. Note that for the
Amazon results, the periodic trends shown can most likely be attributed to the small uniform noise
applied to the data to avoid multiple events co-occurring.

In the log-likelihood of a sequence, Eq. 7, the term
∫ T

0
λ(t|Ht)dt uses 150 MC samples during

training and 500 MC samples for evaluating held-out log-likelihood values for experiments. The
exact approximation procedure for the log-likelihood can be found in Mei and Eisner [2017]. Similarly,
in the objective function for the MoE models, Eq. 8, the expectation term Eqφ(zu|Ru)[log pθ(Hu|zu)]
uses a single MC sample drawn from qφ(zu|Ru) for training, and 5 MC samples for evaluating
held-out log-likelihood values for experiments.

When evaluating the integrals used for next event predictions, we used 10,000 samples where
the sample points were shared across integrals for a single set of predictions in order to save on
computation. This approach is the same as executed in Mei and Eisner [2017].

B.2 Likelihood Over Time Analysis

In the main text, we broke down the negative log-likelihood of a sequence H up to time t into
the normalized cross entropy SCE(Ht) = −1

|Ht|
∑|Ht|
i=1 log p(ki|ti,Hti), the normalized positive

point process evidence PP+(Ht) = −1
|Ht|

∑|Ht|
i=1 log λ(ti|Hti), and the normalized negative point

process evidence PP−(Ht) = 1
t

∫ t
0
λ(τ |Hτ)dτ . The first of which assesses the model’s sequential

classification performance and the latter two assesses the model’s performances as a non-marked
temporal point process (or in other words, how well it captures the time dynamics of the event data).
More specifically, the positive evidence measures how well the model reports high intensity rates for
all events when an event actually occurs, and the negative evidence quantifies how well the model
estimates low intensity values during periods of no events occurring. These defined terms have all
been normalized so that they may be compared across different amounts of time into a sequence.
They have also been appropriately negated so that for each term, a lower value is desirable.

Results for all three terms across all four model variants and all four datasets can be seen in Figure C.
We observe that the cross entropy for every dataset is superior for the proposed, personalized models

4

Table B: Mean next event prediction results for the predicted times t̂11 after conditioning on ten
events in a given sequence. L1 error is reported comparing true times to predicted times, with lower
values being better. Superior performance between an MoE model and decoder-only counterpart is
bolded for every dataset.

Mean L1 Loss for Predicted Times (t̂11)
Dataset MoE-NHP NHP MoE-RMTPP RMTPP
Meme 15.64 15.93 12.97 14.01
Reddit 4.57 4.51 3.88 3.87
Amazon 2.39 2.43 1.97 2.06
LastFM 0.56 0.61 0.33 0.32

compared to their decoder-only counterparts, especially near the beginning of the sequence where
there is the most uncertainty. The story is not as consistent for the other two terms as it appears there
is a trade-off between them. In most instances, an average set of lower PP+ values results in higher
PP− values when comparing MoE models to their decoder-only counterparts.

From this, we would conclude that our proposed personalization scheme appears to consistently
improve held-out log-likelihoods primarily due to better modeling of the sequential mark distributions,
whereas it is a mixed bag for improving the distributions over event timings.

B.3 Next Event Predictions

As described in Mei and Eisner [2017], we minimized the Bayes risk to determine decisions for what
a predicted next time t̂i+1 and mark k̂i+1 would be after conditioning on a portion of a sequence
Hti = [(t1, k1), . . . , (ti, ki)].

For the former prediction (t̂i+1), we first note that the next event time ti+1 has a density pi+1(t) =

P (ti+1 = t |Hti) = λ(t|Ht) exp
{
−
∫ t
ti
λ(s|Hs)ds

}
. We define the precitec time t̂i+1 as the

expected time under pi+1(t), i.e., t̂i+1 = E[ti+1 |Hti+1
] =

∫∞
ti
tpi(t)dt. With this definition, t̂i+1

minimizes the expected L2 distance Epi+1(t)[(t− t̂i+1)2].

The latter prediction (k̂i+1) is computed similarly via k̂i+1 = argmaxk
∫∞
ti

λk(t|Ht)
λ(t|Ht) pi(t)dt. Note

that this prediction of ki+1 does not condition on the predicted time. These can be viewed as marginal
predictions.

As mentioned previously, these integrals are approximated using an MC estimate with 10,000 samples.

Time Prediction Results Results for the above mentioned next event time prediction task can be
seen in Table B. While the results seem slightly in favor of the proposed MoE models compared to
their decoder-only counterparts, they are by no means conclusive. What is important to note is that
the results are, for the most part, similar between the two types of models. This indicates at the very
least that the addition of personalization for a given neural MTPP will not harm its predictive power
for timings of events (whereas it would consistently improve prediction performance of marks as
seen previously).

B.4 Sampling Experiments

When modeling complex data with probabilistic models, having high log-likelihood scores does not
always imply that the model will generate good samples [Theis et al., 2015]. We therefore describe
experiments below that directly measure the sampling performance of the proposed models and
baselines.

Sampling Task We sample future “trajectories” (sequences of event times and marks) for different
models, conditioned on a partial history of a sequence (of relative size ρ, 0% ≤ ρ ≤ 100%), and
evaluate the quality of the sampled trajectories relative to the observed actual future trajectory for the
same sequence.

5

Table C: (a) Mean Jacard distances and (b) mean Wasserstein distances for samples generated on the
four datasets for varying percentages of sequences to condition (ρ) across the four model variants.
Lower values are better for both, and bolbed values indicate superior performance between an MoE
model and its decoder-only counterpart.

(a) Mean Sample Jacard Distances (b) Mean Sample Wasserstein Distances
Dataset ρ MoE-NHP NHP MoE-RMTPP RMTPP Dataset ρ MoE-NHP NHP MoE-RMTPP RMTPP

Meme
10% 0.410 0.455 0.483 0.447

Meme
10% 26.302 27.133 28.296 28.022

30% 0.390 0.409 0.452 0.418 30% 21.477 22.862 23.768 23.484
50% 0.360 0.374 0.414 0.374 50% 17.657 18.204 18.547 18.842

Reddit
10% 0.699 0.781 0.695 0.768

Reddit
10% 22.735 22.145 34.095 34.408

30% 0.691 0.723 0.673 0.716 30% 18.765 18.826 25.019 25.113
50% 0.650 0.677 0.656 0.684 50% 16.137 15.683 18.513 18.065

Amazon
10% 0.809 0.848 0.812 0.859

Amazon
10% 4.523 4.852 4.546 4.733

30% 0.817 0.838 0.809 0.837 30% 3.718 4.020 3.979 4.046
50% 0.830 0.836 0.827 0.841 50% 3.298 3.392 3.525 3.636

LastFM
10% 0.534 0.556 0.503 0.530

LastFM
10% 3.755 3.822 3.402 3.351

30% 0.526 0.544 0.503 0.515 30% 3.132 3.015 2.793 2.843
50% 0.552 0.556 0.540 0.544 50% 2.443 2.426 2.639 2.568

More explicitly, for a given (real) test sequence Hs ∈ DTest, let Hsπ be a portion of that sequence
where π < T is the smallest value that makes for |Hsπ| ≈ ρ|Hs| for ρ ∈ [0, 1]. This partial, ground-
truth sequence will be what we condition the model on and new events (t̂, k̂) will be sampled from
time π up until time T . We will denoteHs>π as the portion of the real sequence not conditioned on,
and Ĥs>π as the collection of all sampled events.

We use two different metrics to compare sampled data Ĥs>π to actual dataHs>π . These methods are
introduced in the following two paragraphs.

Sampled Marks Quality The first metric is a measurement of common marks between the two
subsequences known as Jaccard Distance:

JD(H, Ĥ) = 1− |{k ∈ H} ∩ {k̂ ∈ Ĥ}|
|{k ∈ H} ∪ {k̂ ∈ Ĥ}|

. (E)

JD values close to 1 indicate that the sampled out-of-distribution marks do not match well with the
observed sequence (or the user that generated the sequence). Likewise, values close to 0 indicate
appropriate marks being sampled. This metric is particularly useful for datasets with a very large
number of marks, with individual sequences only containing a fraction of them.

Sampled Times Quality The second metric is a measurement of how similar the empirical distribu-
tions of sampled timestamps are to the true timestamps. Here we use the Earth-movers (Wasserstein)
distance, defined for two sequences as:

WD(H>π, Ĥ>π) = inf
γ∈Γ({t},{t̂})

∫
[π,T]×[π,T]

|t− t̂|dγ(t, t̂), (F)

where {t} and {t̂} are the empirical distributions of times inH>π and Ĥ>π respectively, and Γ is a
set of joint probability distributions whose marginals are {t} and {t′}. WD values close to 0 indicate
the two distributions are well-aligned both in the timing of events and the number of them. Larger
WD values indicate that the sampled times are less congruent with the original times for the given
sequence, or more broadly, for the given user.

Sampling Results We evaluated the two metrics averaged over 1000 randomly selected test se-
quences from all four datasets for ρ values of 10%, 30%, and 50%.

Table C shows the results. For JD, it appears that our personalization framework yields superior
matching of the true mark mark distribution compared to the non-personalized, baseline models in 21
out of 24 settings. Similarly personalized models are only superior for mean WD values in 15 out of
24 settings. These findings further enforce our previous results for next event prediction, insofar as
that the personalization framework appears to benefit mark distributions consistently versus yielding
occasionally bettter modeling of the temporal dynamics.

6

References
Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating

multivariate point process. In Advances in Neural Information Processing Systems, pages 6754–
6764, 2017.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008, 2017.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Self-attention with
functional time representation learning. In Advances in Neural Information Processing Systems,
pages 15889–15899, 2019.

7

	Model Details
	Encoder Details
	Model Visualizations
	Sampling Sequences

	Experimental Details
	Experiment Hyperparameters
	Likelihood Over Time Analysis
	Next Event Predictions
	Sampling Experiments

