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Abstract

k-nearest neighbour (k-NN) is one of the simplest and most widely-used methods
for supervised classification, that predicts a query’s label by taking weighted ratio
of observed labels of k objects nearest to the query. The weights and the parameter
k ∈ N regulate its bias-variance trade-off, and the trade-off implicitly affects
the convergence rate of the excess risk for the k-NN classifier; several existing
studies considered selecting optimal k and weights to obtain faster convergence
rate. Whereas k-NN with non-negative weights has been developed widely, it was
also proved that negative weights are essential for eradicating the bias terms and
attaining optimal convergence rate. In this paper, we propose a novel multiscale
k-NN (MS-k-NN), that extrapolates unweighted k-NN estimators from several
k ≥ 1 values to k = 0, thus giving an imaginary 0-NN estimator. Our method
implicitly computes optimal real-valued weights that are adaptive to the query and
its neighbour points. We theoretically prove that the MS-k-NN attains the improved
rate, which coincides with the existing optimal rate under some conditions.

1 Introduction

Supervised classification has been a fundamental problem in machine learning and statistics over
the years. It is widely used in a number of applications, such as music-genre categorization (Li
et al., 2003), medical diagnosis (Soni et al., 2011), speaker recognition (Ge et al., 2017) and so
forth. Moreover, vast amounts of data have become readily available for anyone, along with the
development of information technology; potential demands for better classification are still growing.

Table 1: Convergence Rates

Nadaraya-Watson n−4/(4+d)

Local polynomial† n−2β/(2β+d)

k-NN (unweighted) n−4/(4+d)

k-NN (with weights ≥ 0) n−4/(4+d)

k-NN (with weights ∈ R) n−2β/(2β+d)

Multiscale k-NN n−2β/(2β+d)

†uniform bound; others are non-uniform.
α = 1, β = 2u, u ∈ N, γ = 2.

One of the simplest and most widely-used methods for
supervised classification is k-nearest neighbour (k-NN;
Fix & Hodges (1951)), where the estimator predicts a
query’s label probability by taking the weighted ratio
of observed labels of k objects nearest to the query,
and the corresponding classifier specifies the class of
objects via the predicted label probabilities. k-NN has
strengths in its simplicity and flexibility over and above
its statistical consistency (as k = kn → ∞, kn/n →
0, n→∞), proved by Fix & Hodges (1951), Cover &
Hart (1967) and Stone (1977). However, such a simple
k-NN heavily depends on the selection of parameters, i.e., the weights and k therein; inexhaustible
discussions on parameter selection have been developed for long decades (Devroye et al., 1996;
Boucheron et al., 2005; Audibert & Tsybakov, 2007; Samworth, 2012; Chaudhuri & Dasgupta, 2014;
Anava & Levy, 2016; Cannings et al., 2017; Balsubramani et al., 2019).
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Figure 1: For a fixed query X∗ ∈ R5, un-
weighted k-NN estimators using synthetic
data for 4 different k values are plotted as
grey points (20 times); bias-variance trade-
off is observed. In an instance shown as
black points, k-NN estimators are extrapo-
lated to imaginary 0-NN by regression (11),
via r(k)2 := ‖X(k) −X∗‖22 where X(k) is
the k-th nearest to the query X∗.

A prevailing line of research in the parameter selec-
tion focuses on misclassification error rate of classi-
fiers as the sample size n grows asymptotically. They
attempt to minimize the convergence rate of the ex-
cess risk, i.e., the difference of error rates between
the classifier and Bayes-optimal classifier . The con-
vergence rate depends on the functional form of the
conditional expectation η(x) := E(Y | X = x) of
the binary label Y ∈ {0, 1} given its feature vector
X ∈ X (⊂ Rd). Its function class is specified by (i)
α-margin condition, (ii) β-Hölder condition, (iii) γ-
neighbour average smoothness, that will be formally
described in Definition 1, 2 and 3 later in Section 2.
Roughly speaking, classification problems with larger
α ≥ 0, β > 0, γ > 0 values are easier to solve, and
the corresponding convergence rate becomes faster; the
rates for specific cases are summarized in Table 1.

For unweighted k-NN, Chaudhuri & Dasgupta (2014) proves the rate O(n−(1+α)γ/(2γ+d)) by impos-
ing α-margin condition and γ-average neighbour smoothness. Whereas the rate seems favorable, γ is
upper-bounded by 2 due to the asymptotic bias, even if highly-smooth function is considered (β ≥ 2;
our Theorem 1). Thus the rate for unweighted k-NN is O(n−2(1+α)/(4+d)) at best.

k-NN estimator has much in common with Nadaraya-Watson (NW) estimator (Tsybakov, 2009),
and its classifier is proved to attain the same rate O(n−4/(4+d)) as unweighted k-NN, for α = 1
and twice-differentiable η (Hall & Kang, 2005). It is also widely known that the convergence rate
of local polynomial (LP)-estimator (Tsybakov, 2009) is drastically improved from that of the NW-
estimator, when approximating highly smooth functions; Audibert & Tsybakov (2007) considers
a classifier based on LP-estimator and an uniform bound of the excess risk over all the possible η
and the distribution of X . The rate for LP classifier is O(n−(1+α)β/(2β+d)), which is also proved
to be optimal among all the classifiers. However, the LP estimator employs polynomials of degree
bβc := max{β′ ∈ N0 | β′ < β}; it estimates coefficients of 1 + d+ d2 + · · ·+ dbβc terms, resulting
in high computational cost and difficulty in implementation.

Returning back to k-NN classifiers, which do not require such a large number of coefficients therein,
Samworth (2012) finds optimal weights for weighted k-NN by minimizing the exact asymptotic
expansion of the non-uniform bound of the excess risk. When considering only non-negative weights,
optimal convergence rate is O(n−4/(4+d)), where the rate is still same as the case α = 1 of the
unweighted k-NN. However, interestingly, Samworth (2012) also proves that real-valued weights
including negative weights are essential for eradicating the bias and attaining the exact optimal rate
O(n−2β/(2β+d)) for η ∈ Cβ with α = 1, β = 2u (u ∈ N).

Current issue: In practice, determining the weights explicitly in the way of Samworth (2012) is
rather burdensome, where explicit weights are shown for limited cases (β = 2, 4). Other simpler
approaches to determine optimal weights are appreciated.

Contribution of this paper: We propose multiscale k-NN (MS-k-NN), consisting of two simple
steps: (1) unweighted k-NN estimators are computed for several k ≥ 1 values, and (2) extrapolating
them to k = 0 via regression, as explained in Figure 1. This algorithm eradicates the asymptotic
bias, as it computes an imaginary 0-NN estimator. Whereas the MS-k-NN is computed quite
simply, it corresponds to the weighted k-NN equipped with favorable real-valued weights, which
are automatically specified via regression. Our algorithm implicitly computes the optimal weights
adaptive to the query and its neighbour points. We prove that the MS-k-NN attains the improved
convergence rate O(n−(1+α)β/(2β+d)), that coincides with the optimal rate obtained in Samworth
(2012) if α = 1, β = 2u (u ∈ N). Numerical experiments are conducted for performing MS-k-NN.

We last note that, the weights implicitly obtained in MS-k-NN are different from those of Samworth
(2012), though both of these weights attain the same optimal convergence rate. See Figure 2 in
Section 4.2 for the obtained weights. Also see Supplement A for remaining related works.
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2 Preliminaries

We describe the problem setting, notation, and the conditions in Section 2.1, 2.2, 2.3, respectively.

2.1 Problem setting

For a non-empty compact set X ⊂ Rd, d ∈ N, a pair of random variables (X,Y ) takes values
in X × {0, 1} with joint distribution Q, where X represents a feature vector of an object, and Y
represents its binary class label to which the object belongs. µ represents the probability density
function of X and η is the conditional expectation

η(x) = E(Y | X = x). (1)

Conditions on η are listed in Definition 1–3 later in Section 2.3.

Dn := {(Xi, Yi)}ni=1, n ∈ N, and (X∗, Y∗) are considered throughout this paper, where they are
independent copies of (X,Y ); Dn is called a sample, and X∗ is called a query. Given a query
X∗ ∈ X , we consider predicting the corresponding label Y∗ by a classifier ĝn : X → {0, 1} using
the sample Dn. The performance of a classifier g is evaluated by the misclassification error rate
L(g) := PX∗,Y∗(g(X∗) 6= Y∗). Under some mild assumptions, excess risk

E(ĝn) := EDn(L(ĝn))− inf
g:X→{0,1}

L(g) (2)

for various classifiers is proved to approach 0 as n→∞. Note that the classifier g∗(X) := 1(η(X) ≥
1/2) satisfies L(g∗) = infg:X→{0,1} L(g), and it is said to be Bayes-optimal (see, e.g., Devroye et al.,
1996, Section 2.2). Then, the asymptotic order of the excess risk E(ĝn) with respect to the sample
size n is called convergence rate; the goal of this study is to propose a classifier that (i) is practically
easy to implement, and (ii) attains the optimal convergence rate.

2.2 Notation

For any given query X∗ ∈ X (⊂ Rd) and a sample Dn, the index 1, 2, . . . , n is re-arranged
to be (1), (2), . . . , (n) s.t. ‖X∗ −X(1)‖2 ≤ ‖X∗ −X(2)‖2 ≤ · · · ≤ ‖X∗ −X(n)‖2 where Eu-
clidean norm ‖x‖2 = (

∑d
i=1 x

2
i )

1/2 is employed throughout this paper. Note that the re-
arranged index (1), (2), . . . , (n) depends on the query X∗; we may also denote the index by
(1;X∗), (2;X∗), . . . , (n;X∗). B(X; r) := {X ′ ∈ X | ‖X − X ′‖2 ≤ r} ⊂ X represents the
d-dimensional closed ball centered at x ∈ X whose radius is r > 0.

f(n) � g(n) indicates that the asymptotic order of f, g are the same, trA =
∑d
i=1 aii represents

the trace of the matrix A = (aij) ∈ Rd×d, 1 = (1, 1, . . . , 1)> is a vector and 1(·) represents an
indicator function. bβc := max{β′ ∈ N | β′ < β} for β > 0, [n] := {1, 2, . . . , n} for any n ∈ N,
and ‖x‖∞ := maxi∈[d] |xi| for x = (x1, x2, . . . , xd). Let N0 = N∪{0}. For q ∈ N0, Cq = Cq(X )
represents a set of q-times continuously differentiable functions f : X → R.

2.3 Conditions

We first list three different types of conditions on the conditional expectation (1), in Definition 1, 2
and 3 below; they are considered in a variety of existing studies (Györfi, 1981; Devroye et al., 1996;
Audibert & Tsybakov, 2007; Tsybakov, 2009; Chaudhuri & Dasgupta, 2014).
Definition 1 (α-margin condition). If there exist constants Lα ≥ 0, t̃ > 0 and α ≥ 0 such that

P(|η(X)− 1/2| ≤ t) ≤ Lαtα,

for all t ∈ (0, t̃] and X ∈ X , η is said to be satisfying α-margin condition, with margin exponent α.
Definition 2 (β-Hölder condition). Let Tq,X∗ [η] be the Taylor expansion of a function η of degree
q ∈ N0 at X∗ ∈ X (See, Definition 8 in Supplement for details). A function η ∈ Cbβc(X ) is said to
be β-Hölder, where β > 0 is called Hölder exponent, if there exists Lβ > 0 such that

|η(X)− Tbβc,X∗ [η](X)| ≤ Lβ‖X −X∗‖β (3)

for any X,X∗ ∈ X . Note that a function η ∈ C(X )β for β ∈ N and compact X is also β-Hölder.
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The above Hölder condition specifies the smoothness of η by a user-specified parameter β > 0, and
the above (3) is employed in many studies, e.g., Audibert & Tsybakov (2007). It reduces to

|η(X)− η(X∗)| ≤ Lβ‖X −X∗‖β (4)

for 0 < β ≤ 1. However, (3) and (4) are different for β > 1, where the latter is considered in
Chaudhuri & Dasgupta (2014).

For describing the next condition, we consider η(∞)(B) := E(Y |X ∈ B), that is the conditional
expectation of Y given X ∈ B for the set B ⊂ Rd. η(∞) and the support of µ are expressed as

η(∞)(B) =

∫
B∩X η(X)µ(X)dX∫

B∩X µ(X)dX
, S(µ) :=

{
X ∈ X |

∫
B(X;r)

µ(X)dX > 0,∀r > 0

}
(5)

where Chaudhuri & Dasgupta (2014) Lemma 9 proves that η(∞)(B(X∗; r)) for X∗ ∈ S(µ) asymp-
totically approximates the unweighted k-NN estimator (with roughly r = ‖X(k) −X∗‖2), that will
be formally defined in Definition 5. S(µ) is assumed to be compact throughout this paper.
Definition 3 (γ-neighbour average smoothness). If there exists Lγ , γ > 0 such that

|η(∞)(B(X; r))− η(X)| ≤ Lγrγ

for all r > 0 and X ∈ S(µ), then the function η is said to be γ-neighbour average smooth with
respect to µ, where γ is called neighbour average exponent. A weaker version of this condition is
used in Györfi (1981), where the constant Lγ is replaced by a function Lγ(X). A related but different
condition called “(α,L)-smooth” is used in Chaudhuri & Dasgupta (2014); see Supplement C.

We last define an assumption on the density of X , that is employed in Audibert & Tsybakov (2007).
Definition 4 (Strong density assumption). If there exist µmin, µmax ∈ (0,∞) such that µmin ≤
µ(X) ≤ µmax for all X ∈ X , µ is said to be satisfying strong density assumption.

3 k-NN classifier and convergence rates

In Section 3.1, we first define k-NN classifier. Subsequently, we review existing studies on conver-
gence rates for unweighted k-NN and weighted k-NN classifiers in Section 3.2 and 3.3, respectively.
Other classifiers and their convergence rates are also presented in Supplement B.

3.1 k-NN classifier

In this paper, we consider only a plug-in classifier (Audibert & Tsybakov, 2007)

g(plug-in)(X; η̂n) := 1(η̂n(X) ≥ 1/2), (6)

where η̂n(X) is an estimator of η(X), that leverages the sample Dn. Given a query X∗ ∈ X , an
archetypal example of the function value η̂n(X∗) is in the following.
Definition 5. Weighted k-NN estimator is defined as

η̂
(kNN)
n,k,w(X∗) :=

k∑
i=1

wiY(i;X∗), (7)

where (1;X∗), (2;X∗), . . . , (n;X∗) is the re-arranged index defined in Section 2.2 and k ∈ N is a
user-specified parameter. It is especially called unweighted k-NN if w1 = w2 = · · · = wk = 1/k,
and is denoted by η̂(kNN)

n,k . The (weighted) k-NN classifier is ĝ(kNN)
n,k,w(X) := g(plug-in)(X; η̂

(kNN)
n,k,w).

3.2 Convergence rate for unweighted k-NN classifier

Here, we consider the unweighted k-NN; the following Proposition 1 shows the convergence rate.
Proposition 1 (A slight modification of Chaudhuri & Dasgupta (2014) Th. 4). Let X be a compact
set, and assuming that (i) η satisfies α-margin condition and is γ-neighbour average smooth, and (ii)
µ satisfies strong density assumption. Then, the convergence rate of the unweighted k-NN classifier
with k∗ = kn � n2γ/(2γ+1) is

E(ĝ
(kNN)
n,k∗

) = O(n−(1+α)γ/(2γ+d)).
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Proof. Chaudhuri & Dasgupta (2014) Theorem 4(b) shows the convergence rate; see Supplement C
for the correspondence of the assumption and symbols. �

Our current concern is whether the convergence rate O(n−(1+α)γ/(2γ+d)) of the unweighted k-NN
classifier can be associated to the rate O(n−(1+α)β/(2β+d)) of the LP classifier, whose optimality is
proved by Audibert & Tsybakov (2007) and is formally described in Proposition 3 in Supplement B.
Chaudhuri & Dasgupta (2014) asserts that these rates are the same, i.e., γ = β, if there exists Lβ > 0
such that (4) holds for any X,X∗ ∈ X . However, only constant functions can satisfy the condition (4)
for β > 1 (Mittmann & Steinwart, 2003, Lemma 2.3); only an extremely restricted function class is
considered in Chaudhuri & Dasgupta (2014).

We here return back to the β-Hölder condition (3) considered in this paper and Audibert & Tsybakov
(2007), that is compatible with the condition (4) for β ≤ 1 but is different for β > 1. Whereas
a variety of functions besides constant functions satisfy the β-Hölder condition (3), our following
Theorem 1 shows that γ = 2 even if η is highly smooth (β � 2). Especially for α = 1, the rate of
unweighted k-NN coincides with the rate O(n−4/(4+d)) of NW-classifier (Hall & Kang, 2005).

Theorem 1. Let X be a compact set, and let β > 0. Assuming that (i) µ and ηµ are β-Hölder, and
(ii) µ satisfies the strong density assumption, there exist constants L∗β > 0, r̃ > 0 and continuous
functions b∗1, b

∗
2, . . . , b

∗
bβ/2c, δβ,r : X → R such that

η(∞)(B(X∗; r))− η(X∗) =
bβ/2c∑
c=1

b∗c(X∗)r
2c + δβ,r(X∗), |δβ,r(X∗)| ≤ L∗βrβ

for all r ∈ (0, r̃], X∗ ∈ S(µ) defined in (5). For β > 2, b∗1(X∗) = 1
2d+4

1
µ(X∗)

{∆[η(X∗)µ(X∗)]−
η(X∗)∆µ(X∗)} with ∆ := ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

; if η is β(≥ 2)-Hölder, η is (γ =)2-neighbour average
smooth and

E(ĝ
(kNN)
n,k∗

) = O(n−2(1+α)/(4+d)).

Proof. The numerator and denominator of η(∞)(B(X∗; r)) are obtained via integrating Taylor
expansions of ηµ and µ, respectively; division proves the assertion. See, Supplement F for details. �

3.3 Convergence rate for weighted k-NN classifier

Here, we consider the weighted k-NN. Samworth (2012) first derives non-negative optimal weights

w∗i :=
1

k∗

{
1 +

d

2
− d

2k
2/d
∗

(i1+2/d − (i− 1)1+2/d)

}
(8)

for i ∈ [k∗] and 0 otherwise, where k∗ � n4/(d+4), through the asymptotic expansion of the excess
risk. However, the obtained rate is still O(n−4/(4+d)) (Samworth (2012) Theorem 2), that is the
same as the case α = 1 of unweighted k-NN (Theorem 1); convergence evaluation of the k-NN still
remains slow, even if arbitrary weights can be specified.

For further improving the convergence rate, Samworth (2012) also considers real-valued weights
allowing negative values. The improved convergence rate is given in the following Proposition 2.
Formal descriptions, i.e., definition of the weight setWn,s and conditions for their rigorous proof,
are described in Supplement D due to the space limitation.

Proposition 2 (Samworth (2012) Th. 6). Let Wn,s be a set of real-valued weights defined in
Supplement D, where we assume the conditions (i)–(iv) therein. Note that the condition (ii) implies
η ∈ Cβ , β = 2u for u ∈ N. If (α =)1-margin condition is assumed, then

E(ĝ
(kNN)
n,k,w) �

B1

n∑
i=1

w2
i +B2

(
n∑
i=1

δ
(u)
i wi
n2r/d

)2
 (1 + o(1)) (9)

holds forw ∈ Wn,s, whereB1, B2 are some constants and δ(`)
i := i1+2`/d−(i−1)1+2`/d (∀` ∈ [u]).
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Following Proposition 2, Samworth (2012) shows that the asymptotic minimizer of the excess risk
(9) with the weight constraint

∑n
i=1 wi = 1,

∑n
i=1 δ

(`)
i wi = 0 for all ` ∈ [u − 1], and wi = 0 for

i = k∗ + 1, . . . , n with k∗ � n2β/(2β+d) is in the form of

w∗i := (a0 + a1δ
(1)
i + · · ·+ auδ

(u)
i )/k∗ (10)

for i = 1, 2, . . . , k∗, where a = (a0, a1, . . . , au) ∈ Ru+1 are unknowns. Samworth (2012) proposes
to find a so that (10) satisfies the weight constraint. Then, the following optimal rate is obtained.
Corollary 1. Symbols and assumptions are the same as those of Proposition 2. Then, the optimal
w∗ and k∗ � n2β/(2β+d) lead to

E(ĝ
(kNN)
n,k∗,w∗

) � n−2β/(2β+d).

Although only the case α = 1 is considered in Samworth (2012), the convergence rate in Corollary 1
coincides with the rate for LP-classifier, given in Proposition 3.

Whereas theories can be constructed without solving the equations, solving the equations to determine
the optimal real-valued weights explicitly is rather burdensome, where the explicit solution is
shown only for u = 1, 2 (namely, β = 2, 4) in Samworth (2012); the solution for u = 2 is
a1 := 1

(k∗)2/d

{
(d+4)2

4 − 2(d+4)
d+2 a0

}
, a2 = 1−a0−(k∗)

2/da1

(k∗)4/d (see, Supp. D for more details, and also
see Figure 2(a) in Supp. E for the optimal weights computed in an experiment (u = 2)).

We also note that, conducting cross-validation to choose (w1, w2, . . . , wk) directly fromWk (for
some setsW ⊂ R) is impractical, as it requires large computational cost O(|W|k). Therefore, other
simpler approaches to determine optimal real-valued weights are appreciated in practice.

4 Proposed multiscale k-NN

In this section, we propose multiscale k-NN (MS-k-NN), that implicitly finds favorable real-valued
weights for weighted k-NN. Note that the obtained weights are different from Samworth (2012),
as illustrated in Figure 2 in Supplement E. In what follows, we first formally define MS-k-NN
in Section 4.1. Subsequently, the weights obtained via MS-k-NN are shown in Section 4.2, the
convergence rate is discussed in Section 4.3.

4.1 Multiscale k-NN

Underlying idea: Since η(∞)(B(X∗; r)) asymptotically approximates the k-NN estimator
η̂

(kNN)
n,k (X∗) for roughly r = r(k) := ‖X(k) − X∗‖ (see, e.g., Chaudhuri & Dasgupta (2014)

Lemma 9), asymptotic expansion in Theorem 1 indicates that η̂(kNN)
n,k (X∗) ≈ η(X∗) +

∑bβ/2c
c=1 b∗cr

2c,

for some {b∗c} ⊂ R. Estimating a function fX∗(r) := b0 +
∑bβ/2c
c=1 bcr

2c to predict the k-NN
estimators for k1, k2, . . . , kV and extrapolating to k = 0 via r = r(k) with r(0) := 0 yields
f̂X∗(0) = b̂0 ≈ η(X∗); the asymptotic bias

∑
b∗cr

2c is then eradicated.

Definition of MS-k-NN: Let V,C ∈ N and fix any query X∗ ∈ X . We first compute unweighted
k-NN estimators for 1 ≤ k1 < k2 < · · · < kV ≤ n, i.e., η̂(kNN)

n,k1
(X∗), η̂

(kNN)
n,k2

(X∗), . . . , η̂
(kNN)
n,kV

(X∗).
Then, we compute rv := ‖X(kv) −X∗‖2, and consider a simple regression such that

η̂
(kNN)
n,kv

(X∗) ≈ b0 + b1r
2
v + b2r

4
v + · · ·+ bCr

2C
v (11)

for all v ∈ [V ], where b = (b0, b1, . . . , bC) is a regression coefficient vector to be estimated. Note
that the regression function is a polynomial of r2

v which contains only terms of even degrees r2c
v ,

since all the bias terms are of even degrees as shown in Theorem 1. However, it is certainly possible
that we employ a polynomial with terms of odd degrees in practical cases.

More formally, we consider a minimization problem

b̂ := arg min
b∈RC+1

V∑
v=1

(
η̂

(kNN)
n,kv

(X∗)− b0 −
C∑
c=1

bcr
2c
v

)2

. (12)
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Then, we propose a multiscale k-NN (MS-k-NN) estimator

η̂(MS-kNN)
n,k (X∗) := b̂0

(
= z(X∗)

>η̂
(kNN)
n,k (X∗)

)
, (13)

where k = (k1, k2, . . . , kV ) ∈ NV , η̂(kNN)
n,k (X∗) := (η̂

(kNN)
n,k1

(X∗), . . . , η̂
(kNN)
n,kV

(X∗))
> ∈ RV and

z(X∗) ∈ RV will be defined in (15). Since (11) extrapolates k-NN estimators to r = 0, we also
call the situation by “extrapolating to k = 0" analogously. The corresponding MS-k-NN classifier is
defined as

ĝ(MS-kNN)
n,k (X) := g(plug-in)(X; η̂(MS-kNN)

n,k ). (14)

Note that the number of terms in the regression function (11) is 1 + C, and C will be specified
as C = bβ/2c under the β-Hölder condition in Theorem 2. Although the parameter β cannot be
observed in practice, we may employ large C so that C ≥ bβ/2c is expected (e.g., C = 10). Even in
this case, overall number of terms in the MS-k-NN is 1 + C, which is much less than the number of
coefficients used in the LP classifier (= 1 + d+ d2 + · · ·+ dC).

4.2 Corresponding real-valued weights

In this section, real-valued weights implicitly obtained via MS-k-NN are considered. The vector
z(X∗) = (z1(X∗), z2(X∗), . . . , zV (X∗))

> ∈ RV in the definition of MS-k-NN (13) is obtained by
simply solving the minimization problem (12), as

z(X∗) :=
(I − PR(X∗))1

V − 1>PR(X∗)1
, (15)

where 1 = (1, 1, . . . , 1)> ∈ RV ,PR = R(R>R)−1R and (i, j)-th entry ofR = R(X∗) is r2j
i for

(i, j) ∈ [V ] × [C]; note that the radius ri depends on the query X∗. Therefore, the corresponding
optimal real-valued weight w∗(X∗) = (w∗1(X∗), w

∗
2(X∗), . . . , w

∗
kV

(X∗)) is obtained as

w∗i (X∗) :=
∑
v:i≤kv

zv(X∗)

kv
∈ R, (∀i ∈ [kV ]), (16)

then η̂(kNN)
n,kV ,w∗

(X∗) = η̂
(MS-kNN)
n,k (X∗). Here, we note that the weight (16) is adaptive to the query

X∗, as each entry of the matrixR used in the definition of z (15) depends on both sample Dn and
query X∗. See Supplement E for the skipped derivation of the above (15) and (16). Total sum of the
weights (16) is then easily proved as

∑kV
i=1 w

∗
i (X∗) =

∑V
v=1 zv(X∗) = 1>z(X∗)

(15)
= 1.

To give an example, we plotted the weights in the following Figure 2. The real-valued weights
implicitly computed in MS-k-NN are plotted to compare with the optimal real-valued weights
proposed by Samworth (2012).
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Figure 2: Amongst all the experiments, n = 1000, d = 10, u = C = 2, k∗ = 100. In (a), optimal
non-negative (8) and real-valued (10) weights for weighted k-NN (7) in Samworth (2012) are plotted.
In (b) and (c), real-valued weights (16) implicitly computed in the proposed MS-k-NN, are plotted
for kv = k∗v/V, rv := (kv/n)1/d (v ∈ [V ]). V is the number of k used for regression.

Figure 2(b) and 2(c) illustrate the optimal weights (16) for V = 5, 10. The weights are not mono-
tonically decreasing for i ≤ kV (= 100), and the weights are smoothly connected to w∗kV +1 = 0 at
i ≈ kV , unlike Samworth (2012) shown in Figure 2(a).
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Although the weights (16) can be easily computed, they are not computed in practice. Only a
procedure needed for MS-k-NN is to conduct the regression (12) and specify η̂(MS-kNN)

n,k by the
intercept b̂0 stored in the regression coefficient b̂. Then, MS-k-NN automatically coincides with the
weighted k-NN using the above optimal weight (16).

4.3 Convergence rate for MS-k-NN classifier

Here, we consider the convergence rate for MS-k-NN classifier. Firstly, we specify a vector ` =
(`1, `2, . . . , `V ) ∈ RV so that `1 = 1 < `2 < · · · < `V <∞. We assume that

(C-1) k1,n � n2β/(2β+d),
(C-2) kv,n := min{k ∈ [n] | ‖X(k) − X∗‖2 ≥ `vr1,n} for v = 2, 3, . . . , V , where r1,n :=

‖X(k1,n) −X∗‖2,

(C-3) ∃Lz > 0 such that ‖z`‖∞ < Lz , where z` = (I−PR)1
1>(I−PR)1

and R = (`2ji )ij ∈ R[V ]×[C],
for all X∗ ∈ S(µ).

Intuition behind the above conditions (C-1)–(C-3) is as follows. (C-1): local polynomial classifier
with bandwidth h = hn � n−1/(2β+d) is known to attain the optimal rate (Audibert & Tsybakov,
2007, Theorem 3.3). Therefore, the information in the ball B(X;h) with radius h > 0 is roughly
required for the optimal rate. When assuming that the feature vectors X1, X2, . . . , Xn distribute
uniformly, k and the bandwidth h have the relation k � nhd � n2β/(2β+d) as the volume of B(X;h)
is of order hd. (C-2): k1,n, k2,n, . . . , kv,n are selected so that r2,n, . . . , rv,n are in the same order as
r := r1,n (and rv,n/r1,n → `v). (C-3): the weights w1, w2, . . . , wk estimated via regression take
finite values asymptotically.

Then, regarding the MS-k-NN estimator (13) and its corresponding MS-k-NN classifier (14), the
following Theorem 2 holds.
Theorem 2 (Convergence rate for MS-k-NN). Assuming that (i) µ and ηµ are β-Hölder, (ii) µ
satisfies the strong density asumption, (iii) C := bβ/2c ≤ V − 1, and (iv) the conditions (C-1)–(C-3)
are satisfied. Then,

E(ĝ
(MS-kNN)
n,k ) = O(n−(1+α)β/(2β+d)).

Sketch of Proof: By following the underlying idea explained at first in Section 4.1, the bias
O(rmin{2,β}) of the conventional k-NN is reduced to O(rβ). Therefore, intuitively speaking, replac-
ing the bias term in the proof of Chaudhuri & Dasgupta (2014) Theorem 4(b) leads to the proof of
Theorem 2. Although this proof stands on the simple underlying idea, technically speaking, some
additional considerations are needed; see Supplement G for detailed proof. �

The rate obtained in Theorem 2 coincides with the optimal rate provided in Corollary 1; MS-k-NN is
an optimal classifier, at least for the case α = 1, β = 2u (u ∈ N).

4.4 Using log k as the predictor

The standard MS-k-NN predicts unweighted k-NN estimators through the radius r = r(k), that is
computed via sample Dn. As an alternative approach, we instead consider predicting the estimators
directly from k.

For clarifying the relation between the radius r = r(k) and k, we here consider the simplest setting
that the feature vector X distributes uniformly. Then, rv := ‖X(kv) −X∗‖2 used in (11) is roughly
proportional to k1/d

v since the volume of the ball of radius rv is proportional to rdv .

Then, for sufficiently large d,

r2
v ∝ k2/d

v = exp

(
2

d
log kv

)
= 1 +

2

d
log kv +O(d−2). (17)

Thus, (11) can be expressed as a polynomial with respect to log kv instead of r2
v. In numerical

experiments, we then extrapolate unweighted k-NN to k = 1.
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5 Numerical experiments

Datasets: We employ datasets from UCI Machine Learning Repository (Dua & Graff, 2017). Each
of datasets consists of d-dimensional n feature vectors Xi ∈ X , and their labels Yi ∈ {1, 2, . . . ,m}
representing 1 of m categories.

Preprocessing: Feature vectors are first normalized, and then randomly divided into 70% for
prediction (npred = b0.7nc) and the remaining for test query.

Evaluation metric: Category of the query is predicted so that the corresponding estimator attains the
maximum value. The classification accuracy is evaluated via 10 times experiments. The MS-k-NN
estimated via radius r(k) and that via log k described in Section 4.4 are performed with C = 1; they
are compared with unweighted k-NN and weighted k-NN with the optimal non-negative and real-
valued weights (Samworth, 2012). Regression in MS-k-NN is ridge regularized with the coefficient
λ = 10−4.

Parameter tuning: For unweighted and weighted k-NN, we first fix k := V ·bn4/(4+d)
pred c � n4/(4+d)

pred .
Using the same k, we simply choose k1 := k/V, k2 = 2k/V, . . . , kV = k with V = 5 for MS-k-NN.

Results: Sample mean and the sample standard deviation on 10 experiments are shown in Table 2.
Overall, weighted k-NN and MS-k-NN show better score than unweighted k-NN (wi = 1/k). MS-
k-NN via radius r(k) shows the best or second best score for (all of) 13 datasets; this number is
maximum among all the methods considered in these experiments. As well as the MS-k-NN using
r(k), MS-k-NN using the alternative predictor log k also shows promising scores for some datasets.
Regarding larger datasets such as MAGIC and Avila, weighted k-NN equipped with real-valued
weights, which are computed by both ways of Samworth (2012) and MS-k-NN, demonstrate slightly
better performance than the weighted k-NN with non-negative weights; this observation coincides
with the theoretical optimality.

Table 2: Each dataset consists of n feature vectors whose dimension is d; each object is labeled by 1
of m categories. Sample average and the standard deviation for the prediction accuracy are computed
on 10 times experiments. Best scores are bolded, and second best scores are underlined.

Dataset n d m
k-NN MS-k-NN

wi = 1/k wi ≥ 0 (8) wi ∈ R (10) via r(k) (13) via log k (17)
Iris 150 4 3 0.83± 0.04 0.92± 0.05 0.92± 0.04 0.93± 0.04 0.96± 0.04
Glass identification 213 9 6 0.58± 0.06 0.64± 0.06 0.67± 0.05 0.64± 0.05 0.64± 0.05
Ecoli 335 7 8 0.80± 0.03 0.85± 0.03 0.84± 0.02 0.85± 0.02 0.84± 0.02
Diabetes 768 8 2 0.75± 0.03 0.74± 0.03 0.70± 0.04 0.75± 0.03 0.71± 0.03
Biodegradation 1054 41 2 0.84± 0.02 0.86± 0.03 0.79± 0.02 0.86± 0.02 0.80± 0.02
Banknote 1371 4 2 0.95± 0.01 0.98± 0.01 0.97± 0.01 0.98± 0.01 0.99± 0.00
Yeast 1484 8 10 0.57± 0.02 0.58± 0.02 0.54± 0.03 0.58± 0.02 0.54± 0.02
Wireless localization 2000 7 4 0.97± 0.00 0.98± 0.00 0.98± 0.01 0.98± 0.00 0.98± 0.01
Spambase 4600 57 2 0.90± 0.01 0.91± 0.00 0.86± 0.01 0.91± 0.00 0.87± 0.01
Robot navigation 5455 24 4 0.81± 0.01 0.86± 0.01 0.81± 0.01 0.84± 0.01 0.84± 0.01
Page blocks 5473 10 5 0.95± 0.01 0.95± 0.01 0.96± 0.01 0.96± 0.01 0.96± 0.01
MAGIC 19020 10 2 0.82± 0.00 0.82± 0.00 0.84± 0.01 0.83± 0.00 0.83± 0.00
Avila 20867 10 12 0.63± 0.01 0.68± 0.01 0.70± 0.01 0.69± 0.00 0.70± 0.01

6 Conclusion and future works

In this paper, we proposed multiscale k-NN (13), that extrapolates k-NN estimators from k ≥ 1
to k = 0 via regression. MS-k-NN corresponds to finding favorable real-valued weights (16) for
weighted k-NN, and it attains the convergence rate O(n−(1+α)β/(2β+d)) shown in Theorem 2. It
coincides with the optimal rate shown in Samworth (2012) in the case α = 1, β = 2u (u ∈ N).
For future work, it would be worthwhile to relax assumptions in theorems, especially the β-Hölder
condition on µ and the limitation on the distance to Euclidean. As also noted at last in Samworth
(2012) Section 4, rather larger sample sizes would be needed for receiving benefits from asymptotic
theories; adaptation to small samples and high-dimensional settings are also appreciated.
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Broader Impact

For improving the convergence rate of the conventional k-NN, we propose to consider a simple
extrapolation idea; it provides an intuitive understanding of not only the optimal k-NN but also more
general nonparametric statistics. By virtue of the simplicity, MS-k-NN is also easy to implement; the
similar idea may be applied to some other statistical and machine learning methods.
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