
Notations

Besides the notations defined in Section 2, we also use the following notations in the proofs.

We use � for the Khatri-Rao product. We denote ei as the i-th basis vector in Rd.
We define mat(·) to be the matrixize operator for tensors, mapping a tensor in (Rd)⊗l to a matrix in
R× Rdl−1

: mat(T )i1,(i2−1)dl−2+···+(il−1−1)d+il := Ti1,i2,··· ,il for any i1, i2, · · · , il ∈ [d].

We view a tensor T ∈ (Rd)⊗l as a multilinear form. For matrices M1 ∈ Rd×k1 , · · · ,Ml ∈ Rd×kl ,
the tensor T (M1,M2, · · · ,Ml) ∈ Rk1×k2×···×kl is defined such that

T (M1,M2, · · · ,Ml)j1,··· ,jl :=
∑

i1,··· ,il∈[d]

Ti1,··· ,il(M1)i1,j1 · · · (Ml)il,jl ,

for any j1 ∈ [k1], · · · , jl ∈ [kl]. For notation simplicity, we use T (M⊗k,Mk+1, · · · ,Ml) to denote
T (M,M, · · · ,M,Mk+1, · · · ,Ml). In particular, for any v ∈ Rd, T (v⊗l) is a scalar equals to〈
T, v⊗l

〉
=
∑
i1,··· ,il∈[d] Ti1,··· ,ilvi1vi2 · · · vil .

A Lower Bound for the Number of Components Needed for Kernels

In this section, we will prove that a lazy training model requires Ω(dl−1) components to fit a random
rank-one tensor with o(1) loss. Recall Theorem 1 as follows.

Theorem 1. Suppose the ground truth tensor T ∗ = [u∗]⊗l, where u∗ is uniformly sampled from the
unit sphere Sd−1. Lazy training (defined as below) requires Ω(dl−1) components to achieve o(1)
error in expectation.

Recall that in our definition, a lazy training model can only capture tensors in the linear subspace
SU = span{Psymvec(u⊗l−1

i ⊗ δi)}mi=1 (here Psym is the projection to the space of vectorized
symmetric tensors, δi’s are arbitrary vectors in Rd). The dimension of this subspace is upperbounded
by dm. Let Wl be the space of all vectorized symmetric tensors in (Rd)⊗l, and S⊥U be the subspace
of Wl orthogonal to SU . We only need to show that for a random rank-one tensor, in expectation its
projection on the orthogonal subspace S⊥U is at least a constant unless m = Ω(dl−1). In the following
lemma, we first lower bound the projection of the ground truth tensor on a fixed direction. The proof
of Lemma 10 is deferred into Section A.2.
Lemma 10. Let u ∈ Rd be a vector sampled uniformly on the unit sphere Sd−1. For any vectorized
symmetric l-th order tensor b ∈ Rdl with unit `2 norm, we have

b>E[vec(u⊗l)vec(u⊗l)>]b ≥
Γ
(
d
2

)
2lΓ

(
l + d

2

) l!,
where Γ(·) is the Gamma function.

Next, we lower bound the projection of vec(T ∗) on subspace S⊥U by summation up the projections
on the subspace bases, each of which can be bounded by Lemma 10. We give the proof of Theorem 1
as follows.

Proof of Theorem 1. Recall that Wl is the space of all vectorized symmetric tensors in (Rd)⊗l. Due
to the symmetry, the dimension of Wl is

(
d+l−1
l

)
. Since the dimension of SU is at most dm, we know

that the dimension of S⊥U is at least
(
d+l−1
l

)
− dm. Assuming S⊥U is an m̄-dimensional space, we

have m̄ ≥
(
d+l−1
l

)
− dm ≥ dl

l! − dm. Let {e1, · · · , em̄} be a set of orthonormal bases of S⊥U , and
Π⊥U be the projection matrix from Rdl onto S⊥U , then we know that the smallest possible error that we
can get given U is

1

2
Eu∗

[∥∥Π⊥Uvec(T ∗)
∥∥2

F

]
=

1

2
Eu∗

[
m̄∑
i=1

〈vec(T ∗), ei〉2
]

=
1

2

m̄∑
i=1

Eu∗
[
〈vec(T ∗), ei〉2

]
,

where the expectation is taken over u∗ ∼ Unif(Sd−1).
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By Lemma 10, we know that for any i ∈ [m],

Eu∗
[
〈vec(T ∗), ei〉2

]
=e>i Eu∗ [(vec([u∗]⊗l)vec([u∗]⊗l)>]ei

≥
Γ
(
d
2

)
2lΓ

(
l + d

2

) l! ≥ µ l!
dl
,

where µ is a positive constant only related to l.

Therefore,

1

2
Eu∗

[∥∥Π⊥UT
∗∥∥2

F

]
=

1

2

m̄∑
i=1

Eu∗
[
〈vec(T ∗), ei〉2

]
≥
(
dl

l!
− dm

)
µl!

2dl
=
µ

2
− µl!

2
· m

dl−1
.

Note that we assume l is a constant. If m = o(dl−1), i.e., m
dl−1 = o(1), then the expectation of the

smallest possible error is at least some constant. Thus, if we want the error to be o(1), we must have
m = Ω(dl−1). This finishes the proof of Theorem 1. �

A.1 Numerical verification of the lower bound

In this section, we plot the projection of the ground truth tensor on the orthogonal subspace
Eu∗

∥∥Π⊥UT
∗
∥∥2

F
under different dimension d and number of components m. For convenience, we only

plot the lower bound for the projection that is
((
d+l−1
l

)
− dm

)
Γ( d

2 )
2lΓ(l+ d

2 )
l! as we derived previously.

Figure 1 shows that under different dimensions, Eu∗
∥∥Π⊥UT

∗
∥∥2

F
is at least a constant until logdm

gets close to l − 1 = 3. As dimension d increases, the threshold when the orthogonal projection
significantly drops becomes closer to 3.
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Figure 1: The projection of the ground truth tensor on the orthogonal subspace when l = 4.

A.2 Proofs of technical lemmas

To prove Lemma 10, we need another technical lemma, which is stated and proved below.

Lemma 11. Let u ∈ Rd be a standard normal vector. For any vectorized symmetric l-th order tensor
b ∈ Rdl with unit norm, we have

b>E[vec(u⊗l)vec(u⊗l)
>

]b ≥ l!.
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Proof of Lemma 11. First we define the notion of symmetry: For a vector x ∈ RdB , where B ∈ N∗,
if for all permutation σ of [d], and for all i1, · · · , iB ∈ [d], xi1i2···iB = xσ(i1)σ(i2)···σ(iB), then we
say vector x is symmetric.

Besides, for a vector v ∈ Rdl , we use vi1,i2,··· ,il to refer to Tensor(v)i1,i2,··· ,il where Tensor is the
inverse translation of vec, i.e., Tensor translates a Rdl vector back to a Rd⊗l

tensor. In other words,
we use vi1,i2,··· ,il to refer to the entry v(i1−1)dl−1+(i2−1)dl−2+···+(il−1−1)d+il . Similarly, for a dl×dl
matrix M , we use Mi1,i2,··· ,il,j1,j2,··· ,jl to denote Tensor(M)i1,i2,··· ,il,j1,j2,··· ,jl , or in other words,
M(i1−1)dl−1+(i2−1)dl−2+···+(il−1−1)d+il,(j1−1)dl−1+(j2−1)dl−2+···+(jl−1−1)d+jl .

Assume that v = u⊗l, then v ∈ Rd⊗l

, and v is a symmetric tensor. Note that
∀i1, · · · , il ∈ [d], vi1,··· ,il = ui1 · · ·uil .

Define M , vec(v)vec(v)> = vec(u⊗l)vec(u⊗l)>, then
Mi1,··· ,il,j1,··· ,jl = ui1 · · ·uil · uj1 · · ·ujl .

By Wick’s theorem, we know that

E[Mi1,··· ,il,j1,··· ,jl ] =
∑
σ∈P

∏
t∈[l]

E[uσ(2t−1)uσ(2t)],

where P is the set that containing all distinct partitions of S = {i1, · · · , il, j1, · · · , jl} into l pairs.
Each two variables in S are considered different even if the values of them are the same, e.g.,
{(i1, i2), (j1, j2)} and {(i1, j2), (j1, i2)} are different partitions even if i2 = j2. In other words, the
partition is independent of the value of those variables. Thus, we can decompose matrix M into the
sum of (2l − 1)!! matrices, i.e.,

M =
∑
σ∈P

Mσ.

Assume σ1 is the partition {(i1, j1), · · · , (il, jl)}, so

E[Mσ1 ] =
∏
t∈[l]

E[uitujt ].

Since E[uitujt ] = I{it = jt}(I is the indicator function), we know that all elements on the diagonal
of E[Mσ1

] are 1, and all other elements are 0, which means that E[Mσ1
] is the identity matrix. Hence,

b>E[Mσ1
]b = 1.

Note that b is a symmetric vector, meaning b>E[Mσ1
]b doesn’t change if we permute {i1, · · · , il}.

Thus, as long as each i is paired with a j in σ, we will have b>E[Mσ1
]b = b>E[Mσ]b. There are n!

such partitions, so summing them up gives us l!..

For any other partition σ, we can always permute {i1, · · · , il} and {j1, · · · , jl} such that the partition
becomes {(i1, i2), · · · , (i2t−1, i2t), (j1, j2), · · · , (j2t−1, j2t), (i2t+1, j2t+1), · · · , (il, jl)}. Then

E[Mσ] = Idl−2t ⊗ (ww>),

where w ∈ Rd2t and wi1,··· ,i2t = I{i1 = i2} · · · I{i2t−1 = i2t}. Therefore, E[Mσ] is a positive
semi-definite matrix, i.e., b>E[Mσ]b ≥ 0.

In a word, we can divide E[M ] into the sum of two sets of matrices. In the symmetric sense, the first
set of matrices are equivalent to identity matrices while the second set of matrices are equivalent to
some semi-definite matrices. Therefore,

b>E[vec(u⊗l)vec(u⊗l)>]b ≥ l!.
�

Proof of Lemma 10. Let u ∈ Rd be a standard normal vector, i.e., u ∼ N (0, Id), then from Theorem
2 in Vignat and Bhatnagar (2008) we know that

b>E
[

vec
(

(u/ ‖u‖)⊗l
)

vec
(

(u/ ‖u‖)⊗l
)>]

b =
Γ
(
d
2

)
2lΓ

(
l + d

2

)b>E[vec(u⊗l)vec(u⊗l)>]b.

Furthermore, from Lemma 11 we know that
>E[vec(u⊗l)vec(u⊗l)>]b ≥ l!.

Note that u/ ‖u‖ is distributed as a uniform vector from the unit sphere Sd−1. Combining the above
equality and inequality, we finish the proof of this lemma. �
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B Construction of Bad Local Minimum

In this section, we construct a bad local min for the vanilla loss function with vanilla parameterization
of T . That is, T :=

∑m
i=1 ciu

⊗l
i and fv(U,C) = 1/2 ‖T − T ∗‖2F . Recall Theorem 2 as follows.

Theorem 2. Let fv(U,C) be as defined in Equation 2. Assume l ≥ 3, d > r ≥ 1 and m ≥
r(l + 1) + 1. There exists a symmetric ground truth tensor T ∗ with rank at most r(l + 1) + 1 such
that a local minimum with function value l(l − 1)r/4 exists while the global minimum has function
value zero.

In our example, the model fits one direction in T ∗ but misses all the other directions. Moving any
component towards one of the missing directions would actually make the approximation worse
because of the cross terms. The proof of Theorem 2 is in Section B.1.

We also extend the local min to the vanilla loss function with 2-homogeneous parameterization of T .
That is, T :=

∑m
i=1 aic

l−2
i u⊗li and f(U,C) = 1/2 ‖T − T ∗‖2F . For simplicity, we assume half of

the ai’s are 1’s.

Theorem 4. Let f(U,C) := 1/2
∥∥∑m

i=1 aic
l−2
i u⊗li − T ∗

∥∥2

F
. Assume bm/2c of ai’s are 1’s and the

remaining are −1’s. Assume l ≥ 3, d− 2 ≥ r ≥ 1 and m ≥ 4r(l+ 1) + 2. There exists a symmetric
ground truth tensor T ∗ with rank at most 2r(l + 1) + 2 such that a local minimum with function
value l(l − 1)r/2 exists while the global minimum has function value zero.

In the above Theorem, we treat ci’s as separate variables from ui’s. That is, at a local min (U,C), we
allow arbitrary perturbations to ci’s regardless of the perturbations to ui’s and show none of these
perturbations can decrease the function value. Note our result trivially extends to the case when
ci = 1/ ‖ui‖ since the coupling between ci and ui only restricts the set of possible perturbations to
(U,C). The detailed proof of Theorem 4 is in Section B.1.

B.1 Detailed Proofs

Proof of Theorem 2. In this proof, we first construct a ground truth tensor and a local min with
non-zero loss. To further prove this local min is indeed spurious, we show there exists a global min
with zero loss under the same ground truth tensor.

We first define the local min. For every i ∈ [m], let ci be 1 and ui be e1/m
1
l . Then, we know at this

point T = e⊗l1 .

We define the ground truth tensor T ∗ by defining the residual R := T −T ∗. The residual R is defined
as the summation of R̂ and all its permutation. We define R̂ as follows,

R̂ :=

r+1∑
j=2

e⊗2
j ⊗ e

⊗l−2
1 .

Then, R is defined as the summation of all
(
l
2

)
permutations of R̂. It’s clear that R is symmetric and

therefore T ∗ is symmetric.

Let U be a d ×m matrix whose i-th row is ui, and C be an m ×m diagonal matrix with Cii =
ci,∀i ∈ [m]. Suppose we perform a local change to U and C such that U ′ = U+∆U,C ′ = C+∆C
and ‖∆U‖F , ‖∆C‖F → 0. We prove that for any ∆U,∆C, we have f(U ′, C ′) ≥ f(U,C). Let’s
first show that the gradient at U is zero, which means there is no locally first-order change on the
function value.

First-order Change Let’s first show the gradient of fv w.r.t. U and C at (U,C) is zero. Here we
first compute the gradient in terms of one column ui,

∀i ∈ [m],∇ui
fv(U,C) = lR(u⊗l−1

i , I)ci =
l

m
l−1
l

R(e⊗l−1
1 , I).

∀i ∈ [m],∇cifv(U,C) = R(u⊗li ) =
1

m
R(e⊗l1 ).
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In order to compute R(e⊗l−1
1 , I), we first consider R̂(e⊗l−1

1 , I). We have

R̂(e⊗l−1
1 , I) =

r+1∑
j=2

ej 〈ej , e1〉 〈e1, e1〉l−2
= 0.

Similarly,

R̂(e⊗l1 ) =

r+1∑
j=2

〈ej , e1〉2 〈e1, e1〉l−2
= 0.

The computation for other permutations of R̂ is the same. Overall, we have∇fv(U,C) = 0.

Second-order change The second order change of fv(U,C) is as follows,

1

2

∥∥∥∥∥
m∑
i=1

(
ci(∆ui)⊗ u⊗l−1

i + ciui ⊗ (∆ui)⊗ u⊗l−2
i + · · ·+ ciu

⊗l−1
i ⊗ (∆ui)

)
+ (∆ci)u

⊗l
i

∥∥∥∥∥
2

F

+

m∑
i=1

(
l(l − 1)R(u⊗l−2

i ,∆ui,∆ui)ci + lR(u⊗l−1
i ,∆ui)∆ci

)
.

The first term is always non-negative, and the second term can be further computed as follows:

l(l − 1)

m∑
i=1

R(ul−2
i ,∆ui,∆ui) =l(l − 1)

1

m(l−2)/l

m∑
i=1

R(e⊗l−2
1 ,∆ui,∆ui)

=l(l − 1)
1

m(l−2)/l

m∑
i=1

r+1∑
j=2

[∆ui]
2
j .

Similar to the computations in the first-order change part, we know R(u⊗l−1
i ,∆ui) = 0. Therefore,

the second-order change of f(U,C) can be lower bounded by l(l − 1) 1
m(l−2)/l

∑m
i=1

∑r+1
j=2[∆ui]

2
j .

For any ∆U,∆C, if there exists i ∈ [m], 2 ≤ j ≤ r + 1 such that [∆ui]j 6= 0, we know the second
order change is positive. Combining with the fact that the gradient is zero at (U,C), this implies the
function value increases.

Otherwise, if [∆ui]j = 0 for all i ∈ [m] and all 2 ≤ j ≤ r + 1, we know ∆ui ∈ B for all i ∈ [m]
where B is the span of {e1, ek|r + 2 ≤ k ≤ d}. Let the perturbed tensor be T ′, we know T ′ − T
lies in the B⊗l subspace. Note perturbing ci introduces changes in e⊗l1 direction that is also in the
B⊗l subspace. This type of perturbation cannot decrease the function value because the residual R is
orthogonal with B⊗l subspace.

Overall, we have proved that (U,C) is a local minimizer. Notice that residual R contains r
(
l
2

)
orthogonal components with unit norm. Therefore, the function value at (U,C) is f(U,C) =
1
2 ‖R‖

2
F = 1

2 × r ×
(
l
2

)
= l(l−1)r

4 .

Construction of global minimizer: Next we will show that when m ≥ r(l + 1) + 1, there exists
U and C such that f(U,C) = 0. Therefore, the local minimizer we found above must be a spurious
local minimizer. We only need to show that T ∗ can be expressed as the summation of r(l + 1) + 1
rank-one symmetric tensors.

Define R̂j := e⊗2
j ⊗ e

⊗l−2
1 , and define Rj to be the sum of all

(
l
2

)
permutations of R̂j . Then we can

write T ∗ as

T ∗ = e⊗l1 +

r+1∑
j=2

Rj .

Note that Rj is a symmetric tensor with entries equal to 1 if the index of the entry has 2 j’s and
(l − 2) 1’s, and entries equal to 0 otherwise. Define vi,j := e1 + bi,jej where bi,j ∈ R, and consider
the tensor T̄j :=

∑l+1
i=1 b̄i,jv

⊗l
i,j . Then we know that T̄j is also a symmetric tensor with entries equal

to
∑l+1
i=1 b̄i,jb

k
i,j if the index of the entry has k j’s and (l − k) 1’s, and entries equal to 0 otherwise.
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Therefore, if ∀k ∈ {0, 1, · · · , l}\{2},
∑l+1
i=1 b̄i,jb

k
i,j = 0 and

∑l+1
i=1 b̄i,jb

2
i,j = 1, then T̄j = Rj . In

other words, we want

0
0
1
0
...
0

 =


1 1 · · · 1
b1,j b2,j · · · bl+1,j

b21,j b22,j · · · b2l+1,j
...

...
...

...
bl1,j bl2,j · · · bll+1,j




b̄1,j
b̄2,j

...
b̄l+1,j

 .

Denote the matrix in the middle by Mj , then

|Mj | =
∏

1≤s<t≤l+1

(bs,j − bt,j).

Thus, as long as the bi,j’s are mutually different, the matrix Mj will be full rank, and there must exist
a set of b̄i,j’s such that the equation above holds. In other words, we have shown that there exists
such bi,j’s and b̄i,j’s that ∀2 ≤ j ≤ r + 1, T̄j = Rj . Therefore, we know each Rj can be expressed
as the summation of (l + 1) rank-one symmetric tensors.

To summarize, when m ≥ r(l + 1) + 1, we can construct T ∗ such that there exists a local minimum
with function value l(l−1)r

4 while the global minimum has function value zero.

�

Proof of Theorem 4. The proof is very similar as the proof of Theorem 2. The only difference is that
in the 2-homogeneous, all the ci’s are positive and we need to rely on positive and negative ai’s to fit
the ground truth tensors. We need to define a slightly different ground truth tensor and bad local min.

Same as in the proof of Theorem 2, we first construct a ground truth tensor and a local min with
non-zero loss. To further prove this local min is indeed spurious, we show there exists a global min
with zero loss under the same ground truth tensor.

We first define the local min. Let m′ = bm/2c. Without loss of generality, assume ai = 1 for all
i ∈ [m′] and ai = −1 for all i ∈ [m′+1,m]. For any i ∈ [m′], let ui =

√
1/m′e1 and ci = 1/ ‖ui‖ .

For any i ∈ [m′+1,m], let ui =
√

1/(m−m′)ed and ci = 1/ ‖ui‖ .With this choice of parameters,
it’s not hard to verify that T = e⊗l1 − e

⊗l
d .

We define the ground truth tensor T ∗ by defining the residual R := T −T ∗. The residual R is defined
as the summation of R̂ and all its permutation, where R̂ is defined as:

R̂ :=

r+1∑
j=2

(
e⊗2
j ⊗ e

⊗l−2
1 − e⊗2

j ⊗ e
⊗l−2
d

)
.

Since we assume r ≤ d − 2, we know r + 1 ≤ d − 1 and ej is orthogonal with e1, ed for all
2 ≤ j ≤ r + 1. Then, R is defined as the summation of all

(
l
2

)
permutations of R̂. It’s clear that R is

symmetric and T ∗ is also symmetric.

Suppose we perform a local change to U and C such that U ′ = U + ∆U,C ′ = C + ∆C and
‖∆U‖F , ‖∆C‖F → 0, where ∆C is a diagonal matrix. We prove that for all possible ∆U,∆C,
f(U ′, C ′) ≥ f(U,C).

First-order Change Let’s first show the derivative of f in terms of all ui’s and ci’s at (U,C) is
zero. This means there is no first order decrease direction at (U,C).

For any i ∈ [m′], we can compute the derivative in terms of ui and ci:

∇ui
f(U,C) =lR(u⊗l−1

i , I)cl−2
i =

l√
m′
R(e⊗l−1

1 , I),

∇cif(U,C) =(l − 2)R(u⊗li )cl−3
i =

l − 2

(m′)3/2
R(e⊗l1 ).

It’s not hard to verify that R(e⊗l−1
1 , I) = 0 and R(e⊗l1 ) = 0 using the orthogonality between e1 and

ej for all 2 ≤ j ≤ r + 1. For the same reason, we also have ∇ui
f(U,C) = 0,∇cif(U,C) = 0 for

all i ∈ [m′ + 1, 2m].
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Second-order change The second order change of f(U ′, C ′) compared with f(U,C) is as follows,

1

2

∥∥∥∥∥
m∑
i=1

ai
(
cl−2
i

(
(∆ui)⊗ u⊗l−1

i + ui ⊗ (∆ui)⊗ u⊗l−2
i + · · ·+ u⊗l−1

i ⊗ (∆ui)
)

+ (l − 2)cl−3
i (∆ci)u

⊗l
i

)∥∥∥∥∥
2

F

+

m∑
i=1

ai
(
l(l − 1)R(u⊗l−2

i ,∆ui,∆ui)c
l−2
i + l(l − 2)R(u⊗l−1

i ,∆ui)c
l−3
i ∆ci + (l − 2)(l − 3)R(u⊗li )cl−4

i (∆ci)
2
)
.

(When l = 3, we do not have the cl−4
i term)

The first term is always non-negative. By the previous argument, we also know R(u⊗l−1
i ,∆ui) = 0

and R(u⊗li ) = 0. Therefore, the second order change is lower bounded by
∑m
i=1 ail(l −

1)R(u⊗l−2
i ,∆ui,∆ui)c

l−2
i . Let’s first consider the components from 1 to m′ for which ai = 1,

l(l − 1)ai

m′∑
i=1

R(u⊗l−2
i ,∆ui,∆ui)c

l−2
i =l(l − 1)

m′∑
i=1

R(e⊗l−2
1 ,∆ui,∆ui)

=l(l − 1)

m′∑
i=1

r+1∑
j=2

[∆ui]
2
j .

For the components from m′ + 1 to m, we have

l(l − 1)ai

m∑
i=m′+1

R(u⊗l−2
i ,∆ui,∆ui)c

l−2
i =l(l − 1)

m∑
i=m′+1

−R(e⊗l−2
d ,∆ui,∆ui)

=l(l − 1)

m∑
i=m′+1

r+1∑
j=2

[∆ui]
2
j .

Overall, we have

m∑
i=1

ail(l − 1)R(u⊗l−2
i ,∆ui,∆ui)c

l−2
i ≥ l(l − 1)

m∑
i=1

r+1∑
j=2

[∆ui]
2
j .

For any ∆U,∆C, if there exists i ∈ [m], 2 ≤ j ≤ r + 1 such that [∆ui]j 6= 0, we know the second
order change is positive. Combining with the fact that the gradient is zero at (U,C), this implies the
function value increases.

Otherwise, if [∆ui]j = 0 for all i ∈ [m] and all 2 ≤ j ≤ r + 1, we know ∆ui ∈ B for all i ∈ [m]
where B is the span of {e1, ek|r+ 2 ≤ k ≤ d}. Let the perturbed tensor be T ′, we know T ′ − T lies
in the B⊗l subspace. Note perturbing ci introduces changes in e⊗l1 direction or e⊗ld direction that are
also in the B⊗l subspace. This type of perturbation cannot decrease the function value because the
residual R is orthogonal with B⊗l subspace.

Overall, we have proved that (U,C) is a local minimizer. Notice that residual R contains 2r
(
l
2

)
orthogonal components with unit norm. Therefore, the function value at (U,C) is f(U,C) =
1
2 ‖R‖

2
F = 1

2 × 2r ×
(
l
2

)
= l(l−1)r

2 .

Construction of global minimizer: Next, we show as long as m ≥ 4r(l + 1) + 2, there exists
parameters (U,C) such that f(U,C) = 0. To prove this, we first write T ∗ as summation of rank-one
symmetric tensors.

For any 2 ≤ j ≤ r + 1, define R̂j,1 := e⊗2
j ⊗ e

⊗l−2
1 and R̂j,d = e⊗2

j ⊗ e
⊗l−2
d , and define Rj,1, Rj,d

to be the sum of all
(
l
2

)
permutations of R̂j,1 and R̂j,d respectively. Then we can write T ∗ as

T ∗ = e⊗l1 − e
⊗l
d −

r+1∑
j=2

Rj,1 +

r+1∑
j=2

Rj,d.
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Same as in the proof of Theorem 2, we can show each Rj,1 or Rj,d can be written as the sum of
(l + 1) rank-one symmetric tensors.

Therefore, we know the ground truth T ∗ can be expressed as the summation of 2+2r(l+1) rank-one
symmetric tensors. For each component, we can re-scale it to make it fit the form of aicl−2

i u⊗li , with
ai = ±1 and ci = 1/ ‖ui‖ . In these rank-one tensors, at most 2r(l + 1) + 1 has positive (negative)
ai. So, as long as m′ ≥ 2r(l+ 1) + 1 or m ≥ 4r(l+ 1) + 2 our model is able to fit this ground truth
tensor and achieve zero loss.

To summarize, when m ≥ 4r(l + 1) + 2, we can construct T ∗ with rank at most 2r(l + 1) + 2 such
that there exists a local minimum with function value l(l−1)r

2 while the global minimum has function
value zero. �

C Detailed Proofs of Theorem 3

In this section, we give the proof of Theorem 3. We first state a formal version of Theorem 3.

Theorem 5. Given any target accuracy ε > 0, there exists m = O
(
r2.5l

ε5 log(d/ε)
)

, λ =

O
(

ε
r0.5l

)
, δ = O

(
ε5l−1.5

dl−1.5(log(d/ε))l+0.5r2.5l2−0.75l

)
, η = O

(
ε15l−4.5

d3l−4.5(log(d/ε))3l+1.5r7.5l2−2.25l

)
and

H = O

(
d3l−4.5(log(d/ε))3l+2.5r7.5l

2−1.75l

ε15l−3.5

)
such that with probability at least 0.99, our algorithm

finds a tensor T satisfying
‖T − T ∗‖F ≤ ε,

within K = O
(
r2l

ε4 log(d/ε)
)

epochs.

We follow the proof strategy outlined in Section 5.

As we discussed in Challenge 2, bad local minima exist for our loss function. Therefore, gradient
descent might get stuck at a bad local minima. This issue is fixed in our algorithm by re-initializing
one component at the beginning of each epoch. In Lemma 1, we show as long as the objective is
large, there is at least a constant probability to improve the objective within one epoch. We state the
formal version of Lemma 1 as follows. The proof of Lemma 12 is in Section C.2.
Lemma 12. Let (U ′0, C̄

′
0) and (UH , C̄H) be the parameters at the beginning of an epoch and

the parameters at the end of the same epoch. For the target accuracy ε > 0 in Theorem 5,
assume K ≤ λm

14 and ‖T ′0 − T ∗‖F ≥ ε where T ′0 is the tensor with parameters (U ′0, C̄
′
0).

There exists m = O
(
r2.5l

ε5 log(d/ε)
)

, λ = O
(

ε
r0.5l

)
, δ = O

(
ε5l−1.5

dl−1.5(log(d/ε))l+0.5r2.5l2−0.75l

)
,

η = O
(

ε15l−4.5

d3l−4.5(log(d/ε))3l+1.5r7.5l2−2.25l

)
, H = O

(
d3l−4.5(log(d/ε))3l+2.5r7.5l

2−1.75l

ε15l−3.5

)
, such that with

probability at least 1
6 , we have

f(UH , C̄H)− f(U ′0, C̄
′
0) ≤ −Ω

(
ε4

r2l log(d/ε)

)
.

We compliment this lemma by showing that even if an epoch does not improve the objective, it will
not increase the function value by too much. The formal version of Lemma 2 is as follows. We prove
Lemma 13 in Section C.1.
Lemma 13. Assume K ≤ λm

14 , δ ≤ µ1ε

m
3
4 d

l−2
2 (m+K)

l−1
2 λ

1
2

, and η ≤ µ2λ

m
1
2 d

l−1
2 (m+K)

l−2
2

for some

constants µ1, µ2, and 10
m ≤ λ ≤ 1. Let (U ′0, C̄

′
0) and (UH , C̄H) be the parameters at the beginning

of an epoch and the parameters at the end of the same epoch. Assume f(U ′0, C̄
′
0) ≥ ε2, where ε is the

target accuracy in Theorem 5. Then we have

f(UH , C̄H)− f(U ′0, C̄
′
0) ≤ O

(
1

λm

)
.

From these two lemmas, we know that in each epoch, the loss function can decrease by
Ω
(

ε4

r2l log(d/ε)

)
with probability at least 1

6 , and even if we fail to decrease the function value,
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the increase of function value is at most O
(

1
λm

)
. Therefore, choosing a large enough m, the function

value decrease will dominate the increase. This allows us to prove Theorem 5.

Proof of Theorem 5. We use a contradiction proof to show that with high probability our algorithm
finds a tensor T satisfying ‖T − T ∗‖F ≤ ε within K epochs. For the sake of contradiction, we
assume ‖T − T ∗‖F > ε through the first K epochs. Under this assumption, we show with high
probability the function value will decrease below zero.

Note that under the choice of parameters of this theorem, all the conditions of Lemma 12 and
Lemma 13 are satisfied. By Lemma 12, we know that with probability at least 1/6, the function
value decreases by at least Λ := Ω

(
ε4

r2l log(d/ε)

)
in each epoch. By Lemma 13, we show that the

function value at most increases by Λ′ := O( 1
λm ) in each epoch. Using our choice of the parameters

in Theorem 5, we know that O( 1
λm ) = O

(
ε4

r2l log(d/ε)

)
. Choosing a large enough constant factor for

m ensures that Λ′ ≤ Λ
10 .

For each 1 ≤ k ≤ K, let Ek be the event that in the beginning of the k-th epoch, the reinitialized
component acl−2

0 ul0 has good correlation with the residual (see Lemma 18) and ‖PSu0‖ ≥ µδ√
d
,where

µ is some constant. We know Ek’s are independent with each other and Pr[Ek] ≥ 1/6. By Hoeffding’s
inequality, we know as long as K ≥ µ′ for certain constant µ′, we have

∑K
k=1 1Ek ≥ K/7 with

probability at least 0.99, where 1Ek is the indicator function of event Ek.
By the proof of Lemma 12, we know conditioning on Ek, the function value decreases by at least
Λ in the k-th epoch. Since

∑K
k=1 1Ek ≥ K/7, we know the total function value decrease is at

least KΛ/7−KΛ/10 = KΩ
(

ε4

r2l log(d/ε)

)
. Therefore, there exists K = O

(
r2l log(d/ε)

ε4

)
such that

KΛ/7−KΛ/10 ≥ 4.

By the analysis in Lemma 16, the function value is upper bounded by 3 at initialization. However,
with probability at least 0.99, the decrease of the function value is at least 4, meaning that the function
value must be negative, which is a contradiction. Therefore, we know that with probability at least
0.99, our algorithm finds a tensor T satisfying ‖T − T ∗‖F ≤ ε within K = O

(
r2l log(d/ε)

ε4

)
epochs.

�

C.1 Upper bound on function increase

In this section, we prove Lemma 13.

To prove the increase of f is bounded in one epoch, we identify all the possible ways that the loss can
increase and upper bound each of them. We first show that a normal step (without re-initialization
or scalar mode switch) of the algorithm will not increase the objective function. Note that many
parts of our proofs rely on an upperbound on function value. To get such a bound the proof includes
an induction component: when we prove Lemma 14 and Lemma 15, we assume that the function
value is upper bounded by a constant, and we will inductively prove that these conditions are satisfied
in Lemma 16. This induction ensures that the conclusions of all the lemmas in this section hold
throughout the entire algorithm.

The following lemma is a formal version of Lemma 3 in the main text.

Lemma 14. Let (U, C̄) be the parameters at the beginning of one iteration and let U ′, C̄ ′ be the
updated parameters (before potential scalar mode switch). Assuming f(U, C̄) ≤ 10, λ ≤ 1, there
exists constants µ1, µ2 such that

f(U ′, C̄ ′)− f(U, C̄) ≤ −η
l

∥∥∇Uf(U, C̄)
∥∥2

F

as long as δ ≤ µ1

m
1
4
√
λd

l−2
2 (m+K)

l−1
2

, η ≤ µ2λ

m
1
2 d

l−1
2 (m+K)

l−2
2

.

Recall that in an iteration, we first update U by gradient descent, then update C and Ĉ by the updated
value of U . The gradient descent step on U cannot increase the function value as long as the step
size is small enough. The update on C and Ĉ can potentially increase the function value. In the
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proof of Lemma 14, we show the increase due to updating C and Ĉ is proportional to the decrease by
updating U and smaller in scale.

Proof of Lemma 14.

According to the algorithm, each iteration contains two steps: update U as U ′ ← U − η∇Uf(U, C̄);
update ci and ĉi as c′i = ci

‖ui‖
‖u′i‖

and ĉ′i = ĉi
‖ui‖
‖u′i‖

. We can divide the function value change into these

two steps: f(U ′, C̄ ′)− f(U, C̄) = (f(U ′, C̄)− f(U, C̄)) + (f(U ′, C̄ ′)− f(U ′, C̄)). We will show
that the function value decrease in the first step and does not increase by too much in the second step.
At the end, we will combine them to show that overall the function value decreases.

Since we assume f(U, C̄) ≤ 10. According to the definition of the loss function, we know

‖T − T ∗‖F ≤
√

20,
∑m
i=1 ‖ui‖

2 ≤ 10
λ . We also know that

∑m
i=1 ‖ui‖

4 ≤
(∑m

i=1 ‖ui‖
2
)2

≤ 100
λ2 .

For convenience, denote Γ = 10,M2
4 := 100

λ2 and M2
2 := 10

λ .

f(U ′, C̄)− f(U, C̄) is negative: In the first step, we update U by gradient descent, which should
decrease the function value as long as we choose the step size to be small enough. To prove that an
inverse polynomially step size suffices, we need to bound the second derivative of f in terms of U at
(U ′′, C̄) for any U ′′ ∈ {(1− θ)U + θU ′|0 ≤ θ ≤ 1}. Let H′′ be the Hessian of f in terms of U at
(U ′′, C̄). We will bound the Frobenius norm ofH′′.
Let’s first show that ‖u′′i ‖ ≤ (1 + 1/(4l)) ‖ui‖ when η is small enough. Recall the derivative in ui is,

∇ui
f(U, C̄) = l(T − T ∗)(u⊗(l−1)

i , I)cl−2
i ai + λlui.

Therefore, we can bound the derivative as∥∥∇ui
f(U, C̄)

∥∥ ≤ (l√2Γ(
√
d(m+K))l−2 + λl

)
‖ui‖ .

Thus, as long as η ≤ 1

4l2(
√

2Γ(
√
d(m+K))l−2+λ)

, we have

η
∥∥∇ui

f(U, C̄)
∥∥ ≤ η (l√2Γ(

√
d(m+K))l−2 + λl

)
‖ui‖ ≤

1

4l
‖ui‖ .

Since u′′i = ui − θη∇ui
f(U, C̄) for 0 ≤ θ ≤ 1, we know that

‖u′′i ‖ ≤‖ui‖+ η
∥∥∇ui

f(U, C̄)
∥∥

≤(1 +
1

4l
) ‖ui‖ ,

Let T ′′ be the tensor parameterized by (U ′′, C̄). We can bound ‖T ′′ − T ∗‖F as follows,

‖T ′′ − T ∗‖F ≤‖T − T
∗‖F +

m∑
i=1

l∑
k=1

(
l

k

)
‖ui‖l−k

∥∥η∇ui
f(U, C̄)

∥∥k cl−2
i

≤‖T − T ∗‖F +

m∑
i=1

l∑
k=1

(
l

k

)
1

lk
‖ui‖l cl−2

i

≤‖T − T ∗‖F + l

m∑
i=1

(
4(
√
d(m+K))l−2(m+K)δ2 + ‖ui‖2

)
≤‖T − T ∗‖F + 4lm(

√
d(m+K))l−2(m+K)δ2 + lM2

2

≤
√

2Γ + 2lM2
2 ,

where the last inequality assumes δ ≤ M2√
4m(
√
d(m+K))l−2(m+K)

. For convenience, denote β :=

√
2Γ + 2lM2

2 .

With the bound on ‖T ′′ − T ∗‖ and ‖u′′i ‖ , we are ready to bound the Frobenius norm of H′′. For
each i ∈ [m], we have

∂

∂ui
f(U ′′, C̄) = l(T ′′ − T ∗)((u′′i )l−1, I)cl−2

i ai + λl

(
‖u′′i ‖
‖ui‖

)l−2

u′′i . (3)
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We knowH′′ is a dm× dm matrix that contains m×m block matrices with dimension d× d. Each
block corresponds to the second-order derivative of f(U ′′, C̄) in terms of ui, uj . We will bound the
Frobenius norm ofH′′ by bounding the Frobenius norm of each block.

For each i, we can compute ∂2

∂ui∂ui
f(U ′′, C̄) as follows,

∂2

∂ui∂ui
f(U ′′, C̄) =l(l − 1)(T ′′ − T ∗)((u′′i )l−2, I, I)cl−2

i ai + l2c2l−4
i ‖u′′i ‖

2l−4
u′′i ⊗ u′′i

+ λl

(
‖u′′i ‖
‖ui‖

)l−2

I + λl(l − 2)
‖u′′i ‖

l−4
u′′i ⊗ u′′i

‖ui‖l−2
.

For the first term, we have l(l − 1)
∥∥(T ′′ − T ∗)((u′′i )l−2, I, I)cl−2

i

∥∥
F
≤ l2
√
eβ(
√
d(m+K))l−2

since ‖u′′i ‖ / ‖ui‖ ≤ (1 + 1/(4l)).

For the second term, we have

l2
∥∥∥c2l−4
i ‖u′′i ‖

2l−4
u′′i ⊗ u′′i

∥∥∥
F
≤l2
√
emax{4(d(m+K))l−2(m+K)δ2, ‖ui‖2}.

For the third term, we have ∥∥∥∥∥λl
(
‖u′′i ‖
‖ui‖

)l−2

vec(I)

∥∥∥∥∥
F

≤ λl
√
e
√
d.

For the fourth term, we have∥∥∥∥∥λl(l − 2)
‖u′′i ‖

l−4
u′′i ⊗ u′′i

‖ui‖l−2

∥∥∥∥∥
F

≤ λl2
√
e.

Combing the bounds on these terms and assuming λ ≤ 1, we have∥∥∥∥ ∂2

∂ui∂ui
f(U ′′, C̄)

∥∥∥∥
F

≤l2
√
eβ(
√
d(m+K))l−2 + l2

√
emax{4dl−2(m+K)l−1δ2, ‖ui‖2}+ 2l2

√
e
√
d.

Thus,∥∥∥∥ ∂2

∂ui∂ui
f(U ′′, C̄)

∥∥∥∥2

F

≤3el4β2dl−2(m+K)l−2 + 3el4 max{16d2l−4(m+K)2l−2δ4, ‖ui‖4}+ 12el4d

≤15el4β2dl−2(m+K)l−2 + 3el4 max{16d2l−4(m+K)2l−2δ4, ‖ui‖4}.

For each pair of i 6= j, we can compute ∂2

∂ui∂uj
f(U ′′, C̄) as follows

∂2

∂ui∂uj
f(U ′′, C) = l2aiajc

l−2
i cl−2

j

〈
u′′i , u

′′
j

〉l−2
u′′i ⊗ u′′j .

The Frobenius norm square can be bounded as∥∥∥∥ ∂2

∂ui∂uj
f(U ′′, C̄)

∥∥∥∥2

F

≤el4 max{4dl−2(m+K)l−1δ2, ‖ui‖2}max{4dl−2(m+K)l−1δ2, ‖uj‖2}

≤el4 max{max{‖ui‖2 , ‖uj‖2}2, 16d2l−4(m+K)2l−2δ4}

≤el4
(
‖ui‖4 + ‖uj‖4 + 16d2l−4(m+K)2l−2δ4

)
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Summing over the bounds on blocks, we can bound the Frobeneius norm ofH′′,

‖H′′‖2F =
∑
i,j

∥∥∥∥ ∂2

∂ui∂uj
f(U ′′, C̄)

∥∥∥∥2

F

≤15eml4β2dl−2(m+K)l−2 + 48eml4d2l−4(m+K)2l−2δ4 + 3el4
m∑
i=1

‖ui‖4

+ (m− 1)el4
m∑
i=1

‖ui‖4 + 16el4m(m− 1)d2l−4(m+K)2l−2δ4

=15eml4β2dl−2(m+K)l−2 + 16el4m(m+ 2)d2l−4(m+K)2l−2δ4 + (m+ 2)el4
m∑
i=1

‖ui‖4

≤15eml4β2dl−2(m+K)l−2 + 2(m+ 2)el4M2
4

where the last inequality assumes δ ≤
(

M2
4

16md2l−4(m+K)2l−2

)1/4

.

Denoting L1 :=
√

15eml4β2dl−2(m+K)l−2 + 2(m+ 2)el4M2
4 , we have

f(U ′, C̄)− f(U, C̄) ≤ −η
∥∥∇Uf(U, C̄)

∥∥2

F
+
η2L1

2

∥∥∇Uf(U, C̄)
∥∥2

F

f(U ′, C̄ ′)− f(U ′, C̄) is bounded: Next, we show that setting c′i as ci
‖ui‖
‖u′i‖

and ĉ′i as ĉi
‖ui‖
‖u′i‖

does

not increase the function value by too much. We use ∇ûi
f to denote the gradient of ui through ci

and ĉi, which means

∇ûi
f =

∂f

∂ci

∂ci
∂ui

+
∂f

∂ĉi

∂ĉi
∂ui

.

In the following we first bound the Frobenius norm of the Hessian of f in terms of Û evaluated
at (U ′, C̄ ′′) for any C ′′ ∈ {diag(c′′1 , · · · , c′′m)|c′′i = ci

‖ui‖
‖(1−θ)ui+θu′i‖

, 0 ≤ θ ≤ 1} and Ĉ ′′ ∈

{diag(ĉ′′1 , · · · , ĉ′′m)|ĉ′′i = ĉi
‖ui‖

‖(1−θ)ui+θu′i‖
, 0 ≤ θ ≤ 1}. We denote the Hessian at (U ′, C̄ ′′) as Ĥ′′,

which is a md ×md matrix. Hessian Ĥ′′ contains m ×m blocks with dimension d × d, each of
which corresponds to ∂2

∂ûi∂ûj
f(U ′, C̄ ′′) for some (i, j) ∈ [m]× [m].

Note that ‖u
′
i‖

‖u′′i ‖
≤ 1 + 1/l since ‖u′i − ui‖ ≤ 1/(4l) ‖ui‖ . Let T ′′′ be the tensor corresponds to

(U ′, C̄ ′′), we can bound ‖T ′′′ − T ∗‖F as follows,

‖T ′′′ − T ∗‖F ≤

∥∥∥∥∥
m∑
i=1

ai(c
′′
i )l−2(u′i)

⊗l

∥∥∥∥∥
F

+ ‖T ∗‖F

≤e

(
m∑
i=1

‖ui‖2 + 4(
√
d(m+K))l−2m(m+K)δ2

)
+ 1

≤2eM2
2 + 1,

where the last step assumes δ ≤ M2√
4(
√
d(m+K))l−2m(m+K)

. For convenience, denote α := 2eM2
2 +1.

Let’s first compute the derivative of f in terms of ûi,
∂

∂ûi
f(U ′, C̄ ′′) (4)

=− (l − 2)ai(T
′′′ − T ∗)((u′i)⊗l)

u′′i

‖u′′i ‖
l

(
(
√
d(m+K))l−2

1
c′′i =
√
d(m+K)/‖u′′i ‖ + 1c′′i =1/‖u′′i ‖

)
− λ(l − 2)

u′′i

‖u′′i ‖
l
‖u′i‖

l
. (5)
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For each i, we have

∂2

∂ûi∂ûi
f(U ′, C̄ ′′)

=− (l − 2)ai(T
′′′ − T ∗)((u′i)⊗l)

I

‖u′′i ‖
l

(
(
√
d(m+K))l−2

1
c′′i =
√
d(m+K)/‖u′′i ‖ + 1c′′i =1/‖u′′i ‖

)
+ l(l − 2)ai(T

′′′ − T ∗)((u′i)⊗l)
u′′i (u′′i )>

‖u′′i ‖
l+2

(
(
√
d(m+K))l−2

1
c′′i =
√
d(m+K)/‖u′′i ‖ + 1c′′i =1/‖u′′i ‖

)
+ (l − 2)2 ‖u′i‖

2l u′′i (u′′i )>

‖u′′i ‖
2l

(
dl−2(m+K)l−2

1
c′′i =
√
d(m+K)/‖u′′i ‖ + 1c′′i =1/‖u′′i ‖

)
− λ(l − 2)

I

‖u′′i ‖
l
‖u′i‖

l

+ λl(l − 2)
u′′i (u′′i )>

‖u′′i ‖
l+2
‖u′i‖

l
.

We bound its Frobenius norm square by

∥∥∥∥ ∂2

∂ûi∂ûi
f(U ′, C̄ ′′)

∥∥∥∥2

F

≤5
(
l2α2e2dl−1(m+K)l−2 + l4α2e2dl−2(m+K)l−2

)
+ 5

(
l4e4 max{‖ui‖4 , 16(m+K)2l−2δ4d2l−4}+ λ2l2de2 + λ2l4e2

)
≤20e2α2l4dl−1(m+K)l−2 + 5e4l4

(
‖ui‖4 + 16(m+K)2l−2δ4d2l−4

)
,

where we assume that λ ≤ 1.

For i 6= j, we have

∂2

∂ûi∂ûj
f(U ′, C̄ ′′)

=(l − 2)2(
〈
u′i, u

′
j

〉l
)
u′′i (u′′j )>

‖u′′i ‖
l ∥∥u′′j ∥∥l

·
(

(
√
d(m+K))l−2

1
c′′i =
√
d(m+K)/‖u′′i ‖ + 1c′′i =1/‖u′′i ‖

)
·
(

(
√
d(m+K))l−2

1
c′′j =
√
d(m+K)/‖u′′j ‖ + 1c′′j =1/‖u′′j ‖

)

We can bound its Frobenius norm by

∥∥∥∥ ∂2

∂ûi∂ûj
f(U ′, C̄ ′′)

∥∥∥∥2

F

≤l4e4 max{4dl−2(m+K)l−1δ2, ‖ui‖2}max{4dl−2(m+K)l−1δ2, ‖uj‖2}

≤l4e4
(
‖ui‖4 + ‖uj‖4 + 16(m+K)2l−2δ4d2l−4

)
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Combing the bounds on all blocks, we have∥∥∥Ĥ′′∥∥∥2

F
≤

m∑
i=1

(
20e2α2l4dl−1(m+K)l−2 + 5e4l4

(
‖ui‖4 + 16(m+K)2l−2δ4d2l−4

))
+
∑

i,j∈[m]
i 6=j

l4e4
(
‖ui‖4 + ‖uj‖4 + 16(m+K)2l−2δ4d2l−4

)

≤20me2α2l4dl−1(m+K)l−2 + 80ml4e4(m+K)2l−2δ4d2l−4 + 5l4e4
m∑
i=1

‖ui‖4

+ 16m2l4e4(m+K)2l−2δ4d2l−4 + 2l4e4m

m∑
i=1

‖ui‖4

≤20me2α2l4dl−1(m+K)l−2 + 7l4e4mM2
4 + 96m2l4e4(m+K)2l−2δ4d2l−4

≤20me2α2l4dl−1(m+K)l−2 + 8l4e4mM2
4 ,

where the last inequality assumes δ ≤
(

M2
4

96m(m+K)2l−2d2l−4

)1/4

.

Denote L2 :=
√

20me2α2l4dl−1(m+K)l−2 + 8l4e4mM2
4 . Then, we have

f(U ′, C̄ ′)− f(U ′, C̄) ≤
〈
∇Ûf(U ′, C̄),−η∇Uf(U, C̄)

〉
+
η2L2

2

∥∥∇Uf(U, C̄)
∥∥2

F
.

From equation 3 and 5 we know that ∀i ∈ [m], ∇ûi
f(U, C̄) = − l−2

l ·
uiu
>
i (∇ui

f(U,C̄))

‖ui‖2
. Thus,

∥∥∇Ûf(U, C̄)
∥∥
F
≤ l − 2

l

∥∥∇Uf(U, C̄)
∥∥
F
.

In order to bound
∥∥∇Ûf(U ′, C̄)

∥∥
F
, we still need to show that∇Ûf(U ′, C̄) is close to ∇Ûf(U, C̄).

Bounding
∥∥∇Ûf(U ′, C̄)−∇Ûf(U, C̄)

∥∥
F

: Define U ′′ as (1− θ)U + θU ′ for all 0 ≤ θ ≤ 1. We
will show that the derivative of∇Ûf in U evaluated (U ′′, C̄) is bounded. We denote this derivative as
H̃′′ that is a dm× dm matrix. Matrix H̃′′ contains m×m blocks each of which has dimension d× d
and corresponds to ∂2

∂ûi∂uj
f(U ′′, C̄). Denote T ′′ as the tensor parameterized by (U ′′, C̄). Recall that,

∂

∂ûi
f(U ′′, C̄)

=− (l − 2)ai(T
′′ − T ∗)((u′′i )⊗l)

ui

‖ui‖l
(

(
√
d(m+K))l−2

1
ci=
√
d(m+K)/‖ui‖

+ 1ci=1/‖ui‖

)
− λ(l − 2)

ui

‖ui‖l
‖u′′i ‖

l
.

For any i ∈ [m], we have

∂2

∂ui∂ûi
f(U ′′, C̄)

=− l(l − 2)ai(T
′′ − T ∗)((u′′i )⊗l−1, I)

u>i

‖ui‖l
(

(
√
d(m+K))l−2

1
ci=
√
d(m+K)/‖ui‖

+ 1ci=1/‖ui‖

)
− l(l − 2)cl−2

i ‖u′′i ‖
2l−2 ui(u

′′
i )>

‖ui‖l
(

(
√
d(m+K))l−2

1
ci=
√
d(m+K)/‖ui‖

+ 1ci=1/‖ui‖

)
− λl(l − 2)

ui(u
′′
i )>

‖ui‖l
‖u′′i ‖

l−2
.
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The Frobenius norm of ∂2

∂ui∂ûi
f(U ′′, C̄) can be bounded as follows,∥∥∥∥ ∂2

∂ui∂ûi
f(U ′′, C̄)

∥∥∥∥
F

≤
√
el2β(

√
d(m+K))l−2 +

√
el2 max

(
‖ui‖2 , 4dl−2(m+K)l−1δ2

)
+
√
eλl2

≤2
√
el2β(

√
d(m+K))l−2 +

√
el2 max

(
‖ui‖2 , 4dl−2(m+K)l−1δ2

)
,

where the last inequality assumes λ ≤ 1. Therefore,∥∥∥∥ ∂2

∂ui∂ûi
f(U ′′, C̄)

∥∥∥∥2

F

≤8el4β2dl−2(m+K)l−2 + 2el4 max
(
‖ui‖4 , 16d2l−4(m+K)2l−2δ4

)
For i 6= j, we have

∂2

∂uj∂ûi
f(U ′′, C̄)

=− l(l − 2)aiajc
l−2
j

〈
u′′i , u

′′
j

〉l−1 ui(u
′′
i )>

‖ui‖l
(

(
√
d(m+K))l−2

1
ci=
√
d(m+K)/‖ui‖

+ 1ci=1/‖ui‖

)
The Frobenius norm square can be bounded as∥∥∥∥ ∂2

∂ûi∂uj
f(U ′′, C)

∥∥∥∥2

F

≤el4 max{4dl−2(m+K)l−1δ2, ‖ui‖2}max{4dl−2(m+K)l−1δ2, ‖uj‖2}

≤el4
(
‖ui‖4 + ‖uj‖4 + 16(m+K)2l−2δ4d2l−4

)
.

Summing over the bounds on blocks, we can bound the Frobeneius norm of H̃′′,∥∥∥H̃′′∥∥∥2

F

=
∑
i,j

∥∥∥∥ ∂2

∂uj∂ûi
f(U ′′, C̄)

∥∥∥∥2

F

≤8mel4β2dl−2(m+K)l−2 + 2el4
m∑
i=1

‖ui‖4 + 32mel4d2l−4(m+K)2l−2δ4

+ 2mel4
m∑
i=1

‖ui‖4 + 16m2el4(m+K)2l−2δ4d2l−4

≤8mel4β2dl−2(m+K)l−2 + 48m2el4d2l−4(m+K)2l−2δ4 + 3el4mM2
4

≤8mel4β2dl−2(m+K)l−2 + 4el4mM2
4 ,

where the last inequality assumes δ ≤
(

M2
4

48md2l−4(m+K)2l−2

)1/4

.

Denoting L3 :=
√

8mel4β2dl−2(m+K)l−2 + 4el4mM2
4 , we have∥∥∇Ûf(U ′, C̄)−∇Ûf(U, C̄)

∥∥
F
≤ L3

∥∥η∇Uf(U, C̄)
∥∥
F
≤ 1

3l

∥∥∇Uf(U, C̄)
∥∥
F
,

where the second inequality assumes η ≤ 1
3L3l

. Therefore, we have

∥∥∇Ûf(U ′, C̄)
∥∥
F
≤
∥∥∇Ûf(U, C̄)

∥∥
F

+
1

3l

∥∥∇Uf(U, C̄)
∥∥
F
≤
(
l − 2

l
+

1

3l

)∥∥∇Uf(U, C̄)
∥∥
F

≤
(

1− 5

3l

)∥∥∇Uf(U, C̄)
∥∥
F
.
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Overall, we have proved that as long as η is small enough,

f(U ′, C̄ ′)− f(U, C̄) =f(U ′, C̄)− f(U, C̄) + f(U ′, C̄ ′)− f(U ′, C̄)

≤− η
∥∥∇Uf(U, C̄)

∥∥2

F
+
η2L1

2

∥∥∇Uf(U, C̄)
∥∥2

F

+ η
∥∥∇Ûf(U ′, C̄)

∥∥2

F
+
η2L2

2

∥∥∇Ûf(U ′, C̄)
∥∥2

F

≤− η
∥∥∇Uf(U, C̄)

∥∥2

F
+
η2L1

2

∥∥∇Uf(U, C̄)
∥∥2

F

+ η

(
1− 5

3l

)∥∥∇Uf(U, C̄)
∥∥2

F
+
η2L2

2

∥∥∇Uf(U, C̄)
∥∥2

F

≤− η

l

∥∥∇Uf(U, C̄)
∥∥2

F
,

where the last inequality assumes η ≤ 4
3l(L1+L2) . Combining all the bounds on δ, η, we know there

exists constant µ1, µ2 such that as long as δ ≤ µ1

m
1
4
√
λd

l−2
2 (m+K)

l−1
2

, η ≤ µ2λ

m
1
2 d

l−1
2 (m+K)

l−2
2

, we

have

f(U ′, C̄ ′)− f(U, C̄) ≤ −η
l

∥∥∇Uf(U, C̄)
∥∥2

F
.

�

Then, we know in an epoch, the function value can only increase because of the initialization and
the scalar mode switches. In Lemma 15, we show these operations cannot increase the function by
too much. Note that Lemma 15 is the formal version of Lemma 4 together with the bound for scalar
mode switches in the main text (these two arguments in the main text correspond to the two claims in
Lemma 15).

Lemma 15. Assume f(U ′0, C̄
′
0) ≤ Γ̃ ≤ 10 at the beginning of an epoch, δ ≤ µ1

√
Γ̃

m
3
4 d

l−2
2 (m+K)

l−1
2 λ

1
2

,

and η ≤ µ2λ

m
1
2 d

l−1
2 (m+K)

l−2
2

for some constants µ1, µ2. Also assume that λm ≥ 10. Denote the

parameters at the end of this epoch as (UH , C̄H), then

f(UH , C̄H) ≤ exp

(
14

λm

)
Γ̃.

Proof of Lemma 15. By Lemma 14, we know the function value does not increase in any itera-
tion (before potential scalar mode switch) as long as the initial function value is at most 10 and
δ ≤ µ1

m
1
4
√
λd

l−2
2 (m+K)

l−1
2

, η ≤ µ2λ

m
1
2 d

l−1
2 (m+K)

l−2
2

for some constants µ1, µ2. Thus, the function

value can only increase when we reinitialize a component or when we switch the scaling from√
d(m+K)/ ‖ui‖ to 1/ ‖ui‖ . In the following, we first show that reinitializing a component can

only increase the function value by a small factor.

Claim 1. Suppose f(U, C̄) ≤ Γ̂ ≤ 10. Reinitialize any vector with the smallest `2 norm among all
columns of U , and let the updated parameters be (U ′, C̄ ′), then

f(U ′, C̄ ′) ≤
(

1 +
13

λm

)
Γ̂.

According to the definition of the function value, we know ‖T − T ∗‖F ≤
√

2Γ̂ ≤
√

20,∑m
j=1 ‖uj‖

2 ≤ Γ̂
λ , and

∑m
j=1 ‖uj‖

4 ≤
(∑m

j=1 ‖uj‖
2
)2

≤ Γ̂2

λ2 . Suppose ui is one of the vec-

tors in U with the smallest `2 norm, then ‖ui‖2 ≤ Γ̂
λm . Suppose u′i, c

′
i, ĉ
′
i, a
′
i are the corresponding
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reinitialized vector and coefficients, and we have∥∥aicl−2
i u⊗li − a

′
i(c
′
i)
l−2(u′i)

⊗l∥∥
F

≤
∥∥aicl−2

i u⊗li
∥∥
F

+
∥∥a′i(c′i)l−2(u′i)

⊗l∥∥
F

≤max
(
‖ui‖2 , (

√
d(m+K))l−24(m+K)δ2

)
+ (
√
d(m+K))l−2δ2

≤ Γ̂

λm
+ (
√
d(m+K))l−24(m+K)δ2 + (

√
d(m+K))l−2δ2 ≤ 2̂Γ

λm
,

where the last inequality assumes δ2 ≤ Γ̂

5λm(m+K)
l
2 d

l−2
2

. Therefore, we can bound f(U ′, C̄ ′) as

f(U ′, C̄ ′)

=
1

2

∥∥T − T ∗ − aicl−2
i u⊗li + a′i(c

′
i)
l−2(u′i)

⊗l∥∥2

F
+ λ

m∑
j=1

ĉl−2
j ‖uj‖l − λĉl−2

i ‖ui‖2l + λ(ĉ′i)
l−2 ‖u′i‖

l

≤f(U,C) + ‖T − T ∗‖F
∥∥aicl−2

i u⊗li − a
′
i(c
′
i)
l−2(u′i)

⊗l∥∥
F

+
1

2

∥∥aicl−2
i uli − a′i(c′i)l−2(u′i)

l
∥∥2

F
+ λ(ĉ′i)

l−2 ‖u′i‖
l

≤f(U,C) +
√

20 · 2Γ̂

λm
+

1

2

(
2

Γ̂

λm

)2

+ λδ2

≤
(

1 +
12

λm

)
Γ̂ + λδ2

≤
(

1 +
13

λm

)
Γ̂,

where the second last inequality assumes λm ≥ Γ̂ and the last inequality assumes δ2 ≤ Γ̂
λ2m .

Switching the scaling from
√
d(m+K)/ ‖ui‖ to 1/ ‖ui‖ can also potentially increase the function

value. In the following, we show that the function value increase is small because we only switch the
scaling mode when ‖ui‖ ≤ 2

√
m+Kδ.

Claim 2. Assume f(U ′, C̄ ′) ≤ Γ̄. Suppose at this iteration we switch the scaling of c′i, i.e., we set c′i
as c′i/

√
d(m+K). Let the updated parameters be (U ′, C ′′, Ĉ ′, A′), we have

f(U ′, C ′′, Ĉ ′, A′) ≤
(

1 +
1

λm2

)
Γ̄.

Suppose ui is the parameter which is one step of gradient descent before u′i. According to the
algorithm, we know ‖ui‖ ≤ 2

√
m+Kδ. According to the proof in Lemma 14 where we bound the

derivative of f with respect to ui, we know that as long as η ≤ 1

l(
√

2Γ(
√
d(m+K))l−2+λ)

, we have

‖u′i‖ ≤ 2 ‖ui‖ ≤ 4
√
m+Kδ. Therefore,∥∥(c′i)

l−2(u′i)
⊗l − (c′′i )l−2(u′i)

⊗l∥∥
F

=

∥∥∥∥∥(c′i)
l−2(u′i)

⊗l − 1

(
√
d(m+K))l−2

(c′i)
l−2(u′i)

⊗l

∥∥∥∥∥
F

≤
∥∥(c′i)

l−2(u′i)
⊗l∥∥

F
≤ 16(m+K)δ2(

√
d(m+K))l−2.

Suppose the tensor at (U ′, C̄ ′) is T ′, then ‖T ′ − T ∗‖F ≤
√

2Γ̄.

Thus, we can bound f(U ′, C ′′, Ĉ ′, A′) as follows:

f(U ′, C ′′, Ĉ ′, A′)

≤f(U ′, C̄ ′′) + ‖T ′ − T ∗‖F
∥∥(c′i)

l−2(u′i)
⊗l − (c′′i )l−2(u′i)

⊗l∥∥
F

+
1

2

∥∥(c′i)
l−2(u′i)

⊗l − (c′′i )l−2(u′i)
⊗l∥∥2

F

≤Γ̄ +
√

2Γ̄
(

16(m+K)δ2(
√
d(m+K))l−2

)
+

1

2

(
16(m+K)δ2(

√
d(m+K))l−2

)2

≤
(

1 +
1

λm2

)
Γ̄,
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where the last inequality assumes δ2 ≤
√

Γ̄

32
√

2λm2(m+K)
l
2 d

l−2
2

and λm2 ≥ 1.

We are now ready to bound the increase of the function value during this epoch. According to the
algorithm, each epoch contains at most m scaling mode switches. Therefore, following Claim 2, all
the scaling switches in one epoch can increase the upper bound of the function value by at most a
factor of

(
1 + 1

λm2

)m ≤ exp
(

1
λm

)
. Combining with Claim 1 which considers the re-initialization,

we know that in each epoch, the upper bound of the function value increase by at most a factor of
exp

(
1
λm

) (
1 + 13

λm

)
≤ exp

(
14
λm

)
. �

Following Lemma 14 and Lemma 15, we are ready to show that the function value is upper bounded
by a constant by an induction proof. At the beginning of our algorithm, the function value is bounded
by a constant as long as the initialization radius δ is small enough. According to Lemma 15, the
increase in each epoch is bounded by a factor of O( 1

λm ). Therefore, as long as the total number
of epochs do not exceed O(λm), f will always be bounded by a constant. As a consequence, the
Frobenius norm square of U must be bounded by O( 1

λ ) due to the design of the regularizer. These
results are summarized into Lemma 16.
Lemma 16. Assume δ ≤ µ1

m
3
4 d

l−2
2 (m+K)

l−1
2 λ

1
2

, and η ≤ µ2λ

m
1
2 l4d

l−1
2 (m+K)

l−2
2

for some constants

µ1, µ2. Also assume K ≤ λm
14 and 10

m ≤ λ ≤ 1. We know throughout the algorithm

f(U, C̄) ≤ 10 and
m∑
i=1

‖ui‖2 ≤
10

λ
.

Proof of Lemma 16. Let’s first show that the function value is bounded at the initialization if we
choose δ to be small enough. At initialization, we have

f(U, C̄) =
1

2
‖T − T ∗‖2F + λ

m∑
i=1

ĉl−2
i ‖ui‖l

≤1

2

(
m∑
i=1

∥∥cl−2
i u⊗li

∥∥
F

+ ‖T ∗‖F

)2

+ λ

m∑
i=1

‖ui‖2

≤1

2

(
m(
√
d(m+K))l−2δ2 + 1

)2

+ λmδ2

≤m2dl−2(m+K)l−2δ4 + 1 + λmδ2 ≤ 3,

where the last inequality assumes δ4 ≤ 1
m2dl−2(m+K)l−2 and λ ≤ 1.

We use an inductive proof to prove that the function value at the end of the k-th (k ≤ K) iteration is
at most 3 exp( 14k

λm ): At the initialization, the function value is at most 3. For every epoch, assume
that our induction hypothesis is true, then at each step (a step can be a re-initialization, a gradient
descent update, or a scalar mode switch), from Lemma 15 we know that the function value is upper
bounded by 3 exp( 14k

λm ) ≤ 10, so at this step Lemma 14 is correct, meaning that Lemma 15 is still
correct at the next step.

Therefore, throughout the algorithm, we have

f(U,C) ≤ 3 exp

(
14K

λm

)
≤ 10,

where we assume K ≤ λm
14 . This immediately implies that

∑
i ‖ui‖

2 ≤ 10
λ by the design of our

regularizer. �

Now we are ready to prove Lemma 13.

Proof of Lemma 13. From Lemma 16, we know that the function value is upper bounded by 10
throughout our algorithm. Besides, from Lemma 15 we know that the function value increase is at
most (exp( 14

λm )−1) times the function value at the beginning of this epoch. Choosing Γ̃ = f(U ′0, C̄
′
0),

we know the function value increase at each epoch cannot exceed 10(exp( 14
λm ) − 1) = O( 1

λm ),
which finishes the proof of Lemma 13. �
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C.2 Escaping local minima

In this section, we will give a formal proof of Lemma 12. We again follow the proof ideas outlined in
Section 5.2. Recall that the proof goes in the following steps:

1. We first show that the projection of U in the B subspace must be very small, therefore the
influence from incorrect subspace B is small (Lemma 17).

2. We then focus on the correlation in the correct subspace S. First we show that the correlation
can be significantly negative at re-initialization with constant probability (Lemma 18).

3. If the correlation is always significantly negative, then the re-initialized component will
grow exponentially and eventually decrease the function value (Lemma 19).

4. If the correlation changes significantly, the function value must also decrease (Lemma 20
and Lemma 21).

First of all, we need to show that the influence coming fromB is small enough so that it can be ignored.

The following lemma is the formal version of Lemma 5. Note that the assumption ‖U‖F ≤
√

10
λ has

been verified in Lemma 16 so Lemma 17 holds for the entire algorithm.

Lemma 17. Assume ‖U‖F ≤
√

10
λ throughout the algorithm. Assume λ ≤

√
10, δ ≤

√
10

2
√
λmdl−2(m+K)l−1

and η ≤ λ
20l . Then, we know ‖PBU‖2F ≤ (m+K)δ2 throughout the algorithm.

Proof of Lemma 17. At the initialization,

‖PBU‖2F ≤ ‖U‖
2
F = mδ2.

At the beginning of each epoch, we re-initialize one column of U , which at most increases ‖PBU‖2F
by δ2. Thus, the total increase due to the re-initialization process is at most Kδ2.

Then, we only need to show that running gradient descent does not increase the norm of PBU.
Suppose at the beginning of one iteration, the tensor T is parameterized by (U, C̄). Let U ′ be the
updated parameter, which means U ′ = U − η∇Uf(U, C̄). We have,

‖PBU ′‖
2
F − ‖PBU‖

2
F

=
∥∥PB(U − η∇Uf(U, C̄))

∥∥2

F
− ‖PBU‖2F

= −2η
〈
PBU,PB∇Uf(U, C̄)

〉
+ η2

∥∥PB∇Uf(U, C̄)
∥∥2

F
. (6)

We will show that the first term is negative and dominates the second term when η is small enough,
which implies that gradient descent never increases the norm of PBU . We first compute the gradient
as follows,

∇Uf(U, C̄) = lmat(T − T ∗)U�l−1Cl−2A+ lλU.

where mat(T − T ∗) = UCl−2A(U�l−1)> − U∗C∗[(U∗)�l−1]> is a d × dl−1 matrix. Therefore,
the projection of the gradient on B subspace is

PB∇Uf(U, C̄) = lPBmat(T )U�l−1Cl−2A+ lλPBU.

Now, we show that the first term in (6) is negative.

−2η
〈
PBU,PB∇Uf(U, C̄)

〉
=− 2lη

〈
PBU,PBmat(T )U�l−1Cl−2A+ λPBU

〉
=− 2lη

〈
PBUC

l−2A[U�l−1]>, PBmat(T )
〉
− 2lη 〈PBU, λPBU〉

=− 2lη ‖PBmat(T )‖2F − 2lλη ‖PBU‖2F .

Next, we show the second term in (6) is bounded. We have,

η2
∥∥PB∇Uf(U, C̄)

∥∥2

F
=η2

∥∥lPBmat(T )U�l−1Cl−2A+ lλPBU
∥∥2

F

≤2η2l2
(∥∥PBmat(T )U�l−1Cl−2A

∥∥2

F
+ λ2 ‖PBU‖2F

)
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Recall that M2 =
√

10
λ . Note that∥∥PBmat(T )U�l−1Cl−2A

∥∥2

F
≤ ‖PBmat(T )‖2F

∥∥U�l−1Cl−2
∥∥2

F

= ‖PBmat(T )‖2F
m∑
i=1

c2l−4
i ‖ui‖2l−2

≤ ‖PBmat(T )‖2F
m∑
i=1

max{4(d(m+K))l−2(m+K)δ2, ‖ui‖2}

≤M2
2 ‖PBmat(T )‖2F

where the second inequality holds since ci =

√
d(m+K)

‖ui‖ only when ‖ui‖ ≤ 2
√
m+Kδ, and

otherwise ci = 1
‖ui‖ . The last inequality assumes δ ≤ M2

2
√
mdl−2(m+K)l−1

.

Overall, we have

‖PBU ′‖
2
F − ‖PBU‖

2
F

=− 2η
〈
PBU,PB∇Uf(U, C̄)

〉
+ η2

∥∥PB∇Uf(U, C̄)
∥∥2

F

≤− 2lη
(
‖PBmat(T )‖2F + λ ‖PBU‖2F

)
+ 2η2l2

(
M2

2 ‖PBmat(T )‖2F + λ2 ‖PBU‖2F
)

≤− lη
(
‖PBmat(T )‖2F + λ ‖PBU‖2F

)
,

where the last inequality assumes λ ≤M2
2 and η ≤ 1

2lM2
2
. �

Lemma 17 shows that the norm of PBU only increases at the (re-)initializations, so it will stay small
throughout this algorithm. This allows us to bound the influence to our algorithm from the orthogonal
subspace B and only focus on subspace S. We denote the re-initialized vector at t-th step as ut, and
its sign as a ∈ {±1}. Our analysis focuses on the correlation between PSut and the residual tensor

〈PS⊗lTt − T ∗, aPSut
⊗l〉.

Here PSut is the normalized version PSut. We will show that if this correlation is significantly
negative at every iteration the norm of ut will blow up exponentially.

Towards this goal, first we will show that the initial point PSu0 has a large negative correlation with
the residual. We will lower bound this correlation by anti-concentration of Gaussian polynomials,
and the following lemma is the formal version of Lemma 6. Note in our notation, we have 〈PS⊗lTt−
T ∗, aPSut

⊗l〉 = a (PS⊗lTt − T ∗)
(
PSut

⊗l)
.

Lemma 18. Suppose the residual at the beginning of one epoch is T ′0 − T ∗. Suppose acl−2
0 u⊗l0 is

the reinitialized component. There exists absolute constant µ such that with probability at least 1/5,〈
PS⊗lT ′0 − T ∗, aPSu0

⊗l〉 ≤ − 1

(µrl)l/2
‖PS⊗lT ′0 − PS⊗lT ∗‖F ,

where PSu0 = PSu0/ ‖PSu0‖ .

Proof of Lemma 18. Let’s restrict into the rl-dimensional space S⊗l, and let PS⊗l be the projection
operator that projects a dl-dimensional tensor to the rl-dimensional space S⊗l. Then, we can think of
(PS⊗lT − PS⊗lT ∗) as an rl dimensional vector, and PSu comes from uniform distribution on Sr−1.

Let v be an r-dimensional standard normal vector, then a(PS⊗lT − PS⊗lT ∗)(PSu
⊗l

) has the same
distribution as a(PS⊗lT − PS⊗lT ∗)(vl) 1

‖v‖l .

Let’s first show that the variance of a(PS⊗lT − PS⊗lT ∗)(vl) is large:

Var
[
a(PS⊗lT − PS⊗lT ∗)(vl)

]
=E

∣∣a(PS⊗lT − PS⊗lT ∗)(vl)
∣∣2

≥l! ‖PS⊗lT − PS⊗lT ∗‖2F ,
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where the equality holds because E
[
a(PS⊗lT − PS⊗lT ∗)(vl)

]
= 0 and the inequality follows from

Lemma 11. It’s not hard to see that a(PS⊗lT − PS⊗lT ∗)(vl) is an l-th order polynomial of standard
Gaussian vectors. By anti-concentration inequality of Gaussian polynomials (Lemma 25), we know
there exists constant κ such that

Pr
[∣∣a(PS⊗lT − PS⊗lT ∗)(vl)

∣∣ ≤ ε√l! ‖PS⊗lT − PS⊗lT ∗‖F
]
≤ κlε1/l.

Choosing ε = 1
2lκlll

, we know with probability at least half,∣∣a(PS⊗lT − PS⊗lT ∗)(vl)
∣∣ ≥ 1

2lκlll

√
l! ‖PS⊗lT − PS⊗lT ∗‖F

≥ 1

2lκlll

(
l

e

)l/2
‖PS⊗lT − PS⊗lT ∗‖F

=
1

2lel/2κlll/2
‖PS⊗lT − PS⊗lT ∗‖F .

Since the distribution of a(PS⊗lT − PS⊗lT ∗)(vl) is symmetric, we know with probability at least
1/4,

a(PS⊗lT − PS⊗lT ∗)(vl) ≤ − 1

2lel/2κlll/2
‖PS⊗lT − PS⊗lT ∗‖F .

According to Lemma 24, we know that with probability at least 19/20,

‖v‖ ≤ κ′
√
r,

where κ′ is some constant. This further implies that with probability at least 1/5,

a(PS⊗lT − PS⊗lT ∗)(vl)
1

‖v‖l
≤ − 1

2lel/2(κκ′)l(rl)l/2
‖PS⊗lT − PS⊗lT ∗‖F .

Choosing µ = 4eκ2(κ′)2 finishes the proof. �

Our next step argues that if this negative correlation is large in every step, then the norm of ut blows
up exponentially. Intuitively, this is due to the fact that the correlation is basically the dominating
term in the gradient, so when it is significantly negative the vector ut behaves similar to a vector
doing matrix power method (here it is important that our model is 2-homogeneous so the behavior of
power method is similar to the matrix setting). Below is the formal version of Lemma 7.
Lemma 19. In the setting of Theorem 5, within one epoch, let T0 be the tensor after the reinitilization
and let Tτ be the tensor at the end of the τ -th iteration. Assume ‖PSu0‖ ≥ µ2δ√

d
for some constant

µ2 ∈ (0, 1). For any H ≥ t ≥ 1, as long as
〈
PS⊗lTτ − T ∗, aPSuτ

⊗l〉 ≤ −ε
5(µ1rl)l/2

for some
constant µ1 for all t− 1 ≥ τ ≥ 0, we have

‖PSut‖2 ≥

(
1 + η

(µ2

2

)l−2 ε

10(µ1rl)
l
2

)t
‖PSu0‖2 .

Proof of Lemma 19. We will use inductive proof for this lemma. At the first step, we have

‖PSu1‖2 =
∥∥PSu0 − ηPS∇uf(U0, C̄0)

∥∥2

= ‖PSu0‖2 − η
〈
PSu0, PS∇uf(U0, C̄0)

〉
+ η2

∥∥PS∇uf(U0, C̄0)
∥∥2

≥‖PSu0‖2 − η
〈
PSu0, PS∇uf(U0, C̄0)

〉
.

We can write down the PS∇uf(U0, C̄0) as follows,

PS∇uf(U0, C̄0) = al(T0 − T ∗)(u⊗(l−1)
0 , PS)cl−2

0 + λlPSu0.

Let’s first consider al(T0 − T ∗)((u0)⊗(l−1), PS)cl−2
0 . We can decompose u0 into PSu0 and PBu0,

so we can divide al(T0 − T ∗)(u
⊗(l−1)
0 , PS)cl−2

0 into 2l−1 terms, each of which corresponds to
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the projection of u⊗(l−1)
0 on a subspace in {S,B}⊗l−1. For subspace S⊗(l−1), the projection is

al(PS⊗lT0 − PS⊗lT ∗)((PSu0)⊗l−1, PS)cl−2
0 . Its inner product with −PSu0 is〈

−PSu0, al(PS⊗lT0 − PS⊗lT ∗)((PSu0)⊗l−1, PS)cl−2
0

〉
=− al(PS⊗lT0 − PS⊗lT ∗)((PSu0)⊗l)cl−2

0

=− al(PS⊗lT0 − PS⊗lT ∗)((PSu0)⊗l) (‖PSu0‖ c0)
l−2 ‖PSu0‖2 .

Now, we only need to show that ‖PSu0‖ c0 is lower bounded. We have

‖PSu0‖ c0 =

√
d(m+K) ‖PSu0‖

‖u0‖
≥
√
d(m+K)µ2δ/

√
d

δ
≥ µ2

2
,

where the first inequality uses ‖PSu0‖ ≥ µ2δ/
√
d. Therefore,〈

−PSu0, al(PS⊗lT0 − PS⊗lT ∗)((PSu0)⊗l−1, PS)cl−2
0

〉
≥
(µ2

2

)l−2 ε

5(µ1rl)l/2
‖PSu0‖2 .

We then bound the remaining terms in al(T0 − T ∗)((u0)⊗l−1, PS)cl−2
0 : For any l − 1 ≥ k ≥ 1,

we consider the subspace B⊗k ⊗ S⊗l−1−k and all of its permutations, we bound the norm of
al(T0 − T ∗)((PBu0)⊗k, (PSu0)⊗l−1−k, PS)cl−2

0 as follows.∥∥al(T0 − T ∗)
(
(PBu0)⊗k, (PSu0)⊗l−1−k, PS

)
cl−2
0

∥∥
=l
∥∥T0((PBu0)⊗k, (PSu0)⊗l−1−k, PS)cl−2

0

∥∥
≤l

m∑
i=1

cl−2
0,i ‖PBu0,i‖k ‖PSu0,i‖l−k ‖PBu0‖k ‖PSu0‖l−1−k

cl−2
0

≤l
m∑
i=1

cl−2
0,i ‖PBu0,i‖ ‖u0,i‖l−1 ‖PBu0‖ ‖u0‖l−2

cl−2
0

≤l
m∑
i=1

dl−2(m+K)l−1δ2 ‖u0,i‖

≤l
√
mdl−2(m+K)l−1δ2M2,

where M2 =
√

10
λ is the upper bound of ‖U‖F . Denote R0 as the summation of terms in all

subspaces except for S⊗l−1. We have ‖R0‖ ≤ (2l−1 − 1)l
√
mdl−2(m + K)l−1δ2M2. Therefore,

we have

| 〈PSu0, R0〉 | ≤ ‖PSu0‖ ‖R0‖ ≤2ll
√
mdl−2(m+K)l−1δ2M2 ‖PSu0‖

≤
(µ2

2

)l−2 ε

20(µ1rl)l/2
‖PSu0‖2

where the last inequality uses ‖PSu0‖ ≥ µ2δ√
d

and assumes δ ≤ 1
2ll
√
mdl−2(m+K)l−1M2

·
µ2√
d

(
µ2

2

)l−2 ε
20(µ1rl)l/2

.

Next, let’s analyze the regularizer λlPSu0. Its norm can be bounded as follows,

‖λlPSu0‖ ≤
(µ2

2

)l−2 ε

20(µ1rl)l/2
‖PSu0‖ ,

where we assume λ ≤ 1
l ·
(
µ2

2

)l−2 ε
20(µ1rl)l/2

.

Overall, we have

‖PSu1‖2 ≥ ‖PSu0‖2 − η
〈
PSu0,∇uf(U0, C̄0)

〉
≥ ‖PSu0‖2 + η

(µ2

2

)l−2
(

ε

5(µ1rl)l/2
− ε

20(µ1rl)l/2
− ε

20(µ1rl)l/2

)
‖PSu0‖2

=

(
1 + η

(µ2

2

)l−2 ε

10(µ1rl)l/2

)
‖PSu0‖2 .
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Induction Step: Suppose ‖PSut‖2 ≥
(

1 + η
(
µ2

2

)l−2 ε
10(µ1rl)l/2

)t
‖PSu0‖2 , we will prove

that ‖PSut+1‖2 ≥
(

1 + η
(
µ2

2

)l−2 ε
10(µ1rl)l/2

)t+1

‖PSu0‖2 . Actually, we have assumed that

a(PS⊗lTt − PS⊗lT ∗)(PSut
⊗l

) ≤ − ε
5(µ1rl)l/2

, so we only need to show that ct ‖PSut‖ ≥ µ2

2 .
Based on these two properties, the remaining proofs are exactly the same as that for t = 0.

The latter property is not hard to verify:

If ‖ut‖ > 2
√
m+Kδ, we know ct = 1/ ‖ut‖ . Then, we have ‖PSut‖ ct = ‖PSut‖

‖ut‖ ≥
‖ut‖−‖PBut‖

‖ut‖ ≥ 1
2 , where we use ‖PBut‖ ≤

√
m+Kδ.

If ‖ut‖ ≤ 2
√
m+Kδ, we do not necessarily have ct =

√
d(m+K)

‖ut‖ because the norm of ‖ut‖ might
first exceed the threshold and then drop below the threshold later. Note, by the induction proof, we
only know the norm of PSut monotonically increase, which does not imply that ‖ut‖ monotonically

increases. So, we have to consider both cases here. If ct =

√
d(m+K)

‖ut‖ , we have ‖PSut‖ ct =
√
d(m+K)‖PSut‖

‖ut‖ ≥ µ2

2 , which is because ‖PSut‖ ≥ ‖PSu0‖ ≥ µ2δ/
√
d. If ct = 1/ ‖ut‖ , we

know there exists τ ≤ t such that ‖uτ‖ > 2
√
m+Kδ. Since ‖PBuτ‖ ≤

√
m+Kδ, we know

‖PSuτ‖ ≥
√
m+Kδ. By the induction proof, we know ‖PSut‖ ≥ ‖PSuτ‖ ≥

√
m+Kδ. Then,

we have ‖PSut‖ ct = ‖PSut‖
‖ut‖ ≥

1
2 .

This finishes the proof of Lemma 19. �

Therefore the final step is to show that aPSut
⊗l

always has a large negative correlation with PS⊗lTt−
PS⊗lT ∗, unless the function value has already decreased. The difficulty here is that both the current
reinitialized component ut and other components are moving, therefore Tt is also changing.

We can bound the change of T − T ∗ by separating it into two terms, which are the change of the
re-initialized component and the change of the residual:

∣∣∣a(PS⊗lTt − PS⊗lT ∗)(PSut
⊗l

)− a(PS⊗lT0 − PS⊗lT ∗)(PSu0
⊗l

)
∣∣∣

≤

∣∣∣∣∣
t∑

τ=1

(
(PS⊗lTτ−1 − PS⊗lT ∗)(PSuτ

⊗l
)− (PS⊗lTτ−1 − PS⊗lT ∗)(PSuτ−1

⊗l
)
)∣∣∣∣∣

+

t∑
τ=1

‖Tτ − Tτ−1‖F .

The change of the re-initialized component has a small effect on the correlation because the change
in S subspace can only improve the correlation, and the influence of the B subspace can be bounded.
This is formally proved in the following lemma, which is the formal version of Lemma 8.

Lemma 20. Assume δ ≤ µ1

m
3
4
√
λd

l−2
2 (m+K)

l−1
2

, η ≤ µ2

λ
3
2m

9
4 d

3l−6
2 (m+K)

3l−3
2

for some constants

µ1, µ2. Assume K ≤ λm
14 and 10

m ≤ λ ≤ 1. Suppose at the beginning of one iteration, the tensor T
is parameterized by (U, C̄). Suppose u is one column vector in U with ‖PSu‖ ≥ µ3δ√

d
where µ3 is a

constant. Suppose u′ is u after one step of gradient descent: u′ = u− η∇uf(U, C̄). We have

a(PS⊗lT −PS⊗lT ∗)(PSu′
⊗l

) ≤ a(PS⊗lT −PS⊗lT ∗)(PSu
⊗l

)+µl42ldl−1.5m1/2(m+K)l−1ηδλ,

where µ is some constant.

Proof of Lemma 20. Define g(u) := a(PS⊗lT − PS⊗lT ∗)(PSu
⊗l

). Note that in function g(u), we
view T as fixed. We will show that the change of g is bounded when the input changes from u to u′.
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Bounding first order change: Let’s first compute the gradient of g at u.

∇g(u) =al(PS⊗lT − PS⊗lT ∗)((PSu)⊗l−1, PS)
1

‖PSu‖l
− al(PS⊗lT − PS⊗lT ∗)((PSu)⊗l)

PSu

‖PSu‖l+2

=al(PS⊗lT − PS⊗lT ∗)((PSu)⊗l−1, PS)
1

‖PSu‖l
− al(PS⊗lT − PS⊗lT ∗)((PSu)⊗l−1, PSu)

PSu

‖PSu‖l

=al(PS⊗lT − PS⊗lT ∗)((PSu)⊗l−1, PS − PSu · PSu
>

)
1

‖PSu‖l

=al(PS⊗lT − PS⊗lT ∗)((PSu)⊗l−1, PD)
1

‖PSu‖l
,

where PD is the projection matrix on the span of S \ {u}. We can also compute the projection of
∇uf(U, C̄) on D as follows,

PD∇uf(U, C̄) =al(T − T ∗)(u⊗l−1, PD)cl−2.

We can divide l(T−T ∗)(u⊗l−1, PD)cl−2 into 2l−1 terms, each of which corresponds to the projection
of ul−1 on a subspace. For subspace S⊗l−1, we have

al(T − T ∗)((PSu)⊗l−1, PD)cl−2 = al(PS⊗lT − PS⊗lT ∗)((PSu)⊗l−1, PD)cl−2,

which has non-negative inner product with ∇g(u). We can bound the norm of all the other terms.
For any l − 1 ≥ k ≥ 1, consider subspace B⊗k ⊗ S⊗(l−1−k), we can bound the norm of al(T −
T ∗)((PBu)⊗k, (PSu)⊗(l−1−k), PD)cl−2 as follows:∥∥al(T − T ∗)((PBu)⊗k, (PSu)⊗l−1−k, PD)cl−2

∥∥
=l
∥∥T ((PBu)⊗k, (PSu)⊗l−1−k, PD)cl−2

∥∥
≤l

m∑
i=1

cl−2
i ‖PBui‖k ‖PSui‖l−k ‖PBu‖k ‖PSu‖l−1−k

cl−2

≤l
m∑
i=1

cl−2
i ‖PBui‖ ‖ui‖l−1 ‖PBu‖ ‖u‖l−2

cl−2

≤l
m∑
i=1

dl−2(m+K)l−1δ2 ‖ui‖

≤l
√
mdl−2(m+K)l−1δ2M2,

where the second last inequality comes from Lemma 17.

Denote R as the summation of terms in all subspaces except for S⊗l−1, then

‖R‖ ≤ (2l−1 − 1)l
√
mdl−2(m+K)l−1δ2M2.

Therefore, the first order change of g can be bounded as follows,〈
∇g(u),−η∇uf(U, C̄)

〉
=

〈
al(PS⊗lT − PS⊗lT ∗)((PSu)⊗l−1, PD)

1

‖PSu‖l
,−ηal(PS⊗lT − PS⊗lT ∗)((PSu)⊗l−1, PD)cl−2

u − ηR

〉

≤η

∥∥∥∥∥l(PS⊗lT − PS⊗lT ∗)((PSu)⊗l−1, PD)
1

‖PSu‖l

∥∥∥∥∥ ‖R‖
≤ηl
√

20

√
d

µ3δ
· (2l−1 − 1)l

√
mdl−2(m+K)l−1δ2M2

≤10l22l

µ3
ηdl−1.5

√
m(m+K)l−1δM2,

where the second last inequality assumes ||PSu|| ≥ µ3δ√
d

.
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Bounding higher order change: For all u′′ = (1−θ)u+θu′ with 0 ≤ θ ≤ 1, we prove a uniform
upper bound for

∥∥∇2g(u′′)
∥∥
F
. Recall the gradient of g at u′′,

∇g(u′′) = al(PS⊗lT − PS⊗lT ∗)((PSu
′′)⊗l−1, P ′′D)

1

‖PSu′′‖l
,

where P ′′D is the projection matrix to S \ {u′′}. We compute
∥∥∇2g(u′′)

∥∥ as follows,

∇2g(u′′) =al(l − 1)(PS⊗lT − PS⊗lT ∗)((PSu
′′)⊗l−2, PS , P

′′
D)

1

‖PSu′′‖l

− al2(PS⊗lT − PS⊗lT ∗)((PSu
′′)⊗l−1, P ′′D)⊗ PSu

′′

‖PSu′′‖l+2
.

Therefore, ∥∥∇2g(u′′)
∥∥
F
≤ 2l2

√
20

1

‖PSu′′‖2
.

Assume that η ≤ µ3δ
√
λ

2
√

10d
(√

20l(
√
d(m+K))l−2+λl

) and from the proof of Lemma 14 where we bound

the gradient, we know that

∥∥η∇uf(U, C̄)
∥∥ ≤ η (l√20(

√
d(m+K))l−2 + λl

)
‖u‖ ≤

√
λ
10µ3δ

2
√
d

√
10

λ
=

µ3δ

2
√
d
.

Thus,

‖PSu′′‖ ≥ ‖PSu‖ − ‖PSu′′ − PSu‖
≥ ‖PSu‖ −

∥∥θη∇uf(U, C̄)
∥∥

≥ µ3δ√
d
− µ3δ

2
√
d

=
µ3δ

2
√
d
.

Therefore, ∥∥∇2g(u′′)
∥∥
F
≤ 2l2

√
20

4d

µ2
3δ

2
.

Overall, we have

g(u′)− g(u) ≤
〈
∇g(u),−η∇uf(U, C̄)

〉
+
η2

2
2l2
√

20
4d

µ2
3δ

2

∥∥∇uf(U, C̄)
∥∥2
.

Recall that,
∇uf(U, C̄) = al(T − T ∗)(u⊗l−1, I)cl−2 + λlu,

we have ∥∥∇uf(U, C̄)
∥∥
F
≤l
√

20 max
(
‖u‖ , 2

√
m+Kδ(

√
d(m+K))l−2

)
+ λl ‖u‖

≤l
√

20 max
(
M2, 2

√
m+Kδ(

√
d(m+K))l−2

)
+ λlM2

≤l
√

20M2 + λlM2,

where the last inequality assumes δ ≤ M2

2
√
m+K(

√
d(m+K))l−2

.

Finally, we have

g(u′)− g(u) ≤
〈
∇g(u),−η∇uf(U, C̄)

〉
+
η2

2
2l2
√

20
4d

µ2
3δ

2

∥∥∇uf(U, C̄)
∥∥2

≤10l22l

µ3
ηdl−1.5

√
m(m+K)l−1δM2 +

η2

2
2l2
√

20
4d

µ2
3δ

2

(
l
√

20M2 + λlM2

)2

≤10l22l

µ3
ηdl−1.5

√
m(m+K)l−1

√
10

λ
δ +
√

20η2l2
4d

µ2
3δ

2

(
40l2

10

λ
+ 2λ2l2

10

λ

)
≤µl42ldl−1.5m1/2(m+K)l−1ηδλ,
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where the last inequality assumes l ≥ 3, η ≤ δ3 and µ is some constant. �

Therefore, the only way to change the residual term by a lot must be changing the tensor T , and
the accumulated change of T is strongly correlated with the decrease of f . This is similar to the
technique of bounding the function value decrease in Wei et al. (2019). The connection between them
are formalized in the following lemma, which is the formal version of Lemma 9:

Lemma 21. Assume that δ ≤ µ1

m
3
4
√
λd

l−2
2 (m+K)

l−1
2

, η ≤ µ2λ

m
1
2 l4d

l−1
2

(m+K)
l−2
2

for some constants

µ1, µ2, and 10
m ≤ λ ≤ 1. Within one epoch, let T0 be the tensor after reinitialization, and let Tt be

the tensor at the end of the t-th iteration. Let (U0, C̄0) be the parameters after the reinitialization
step and let (UH , C̄H) be the parameters at the end of this epoch. We have

H∑
τ=1

‖Tτ − Tτ−1‖F

≤200l2.5
√

1

λ

√
ηH

√
f(U0, C̄0)− f(UH , C̄H) + 160m(m+K)δ2(

√
d(m+K))l−2

+ 16m(m+K)δ2(
√
d(m+K))l−2.

Intuitively, if we are doing a standard gradient descent, at each step the change in function value is
going to be proportional to the square of the change in the tensor T , and the guarantee similar to
the Lemma above can be proved by applying Cauchy-Schwartz. However, in our setting the proof
becomes more complicated because of the normalization steps and in particular the scalar mode
switch.

Before proving Lemma 21, we first prove the following lemma which guarantees the function value
decrease in one step (without scalar mode switch):

Lemma 22. Assume δ ≤ µ1

m
3
4
√
λd

l−2
2 (m+K)

l−1
2

, η ≤ µ2λ

m
1
2 l4d

l−1
2

(m+K)
l−2
2

for some constants µ1, µ2,

and η ≤ δ3. Assume K ≤ λm
14 . Starting from T parameterized by (U, C̄), suppose after one iteration

(before potential scalar mode switch) the tensor becomes T ′ parameterized by (U ′, C̄ ′). We have

‖T ′ − T‖F ≤ 200l2
√

1

λ

∥∥η∇Uf(U, C̄)
∥∥
F
.

Proof of Lemma 22. According to the algorithm, we know each iteration is composed of two steps:
update U by gradient descent (U ′ = U − η∇Uf(U, C̄)) and update C and Ĉ according to U ′. Let
T̂ be the intermediate tensor parameterized by (U ′, C̄). We will bound ‖T ′ − T‖F by bounding∥∥∥T̂ − T∥∥∥

F
and

∥∥∥T ′ − T̂∥∥∥
F

separately.

According to Lemma 16, we know
∑m
i=1 ‖ui‖

2
,
∑m
i=1 ‖u′i‖

2 ≤ 10
λ . Denote M2

2 = 10
λ .

Bounding
∥∥∥T̂ − T∥∥∥

F
: From T to T̂ , U is updated to U ′ = U − η∇Uf(U, C̄) while C and Ĉ

remains the same. Therefore,

∥∥∥T̂ − T∥∥∥
F

=

∥∥∥∥∥
m∑
i=1

aic
l−2
i

(
ui − η∇ui

f(U, C̄)
)⊗l − m∑

i=1

aic
l−2
i u⊗li

∥∥∥∥∥
F

≤
m∑
i=1

l ‖ui‖l−1 ∥∥η∇uif(U, C̄)
∥∥ cl−2

i +

m∑
i=1

l∑
k=2

(
l

k

)
‖ui‖l−k

∥∥η∇uif(U, C̄)
∥∥k cl−2

i .
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We can further bound the linear term as follows:
m∑
i=1

l ‖ui‖l−1 ∥∥η∇ui
f(U, C̄)

∥∥ cl−2
i ≤l

m∑
i=1

∥∥η∇ui
f(U, C̄)

∥∥max(‖ui‖ , 2
√
m+Kδ(

√
d(m+K))l−2)

≤l

√√√√ m∑
i=1

∥∥η∇ui
f(U, C̄)

∥∥2

√√√√ m∑
i=1

max(‖ui‖2 , 4(m+K)l−1δ2dl−2)

≤
√

2lM2η
∥∥∇Uf(U, C̄)

∥∥
F
,

where the last inequality assumes δ2 ≤ M2
2

4m(m+K)l−1dl−2 .

According to the proof in Lemma 14, we know
∥∥η∇ui

f(U, C̄)
∥∥ ≤ 1

l ‖ui‖. Therefore, for the higher
order terms, for each k ≥ 2,

m∑
i=1

(
l

k

)
‖ui‖l−k

∥∥η∇uif(U, C̄)
∥∥k cl−2

i ≤
m∑
i=1

lk ‖ui‖l−k
‖ui‖k−1

lk−1

∥∥η∇uif(U, C̄)
∥∥ cl−2

i

≤
m∑
i=1

l ‖ui‖l−1 ∥∥η∇uif(U, C̄)
∥∥ cl−2

i

≤
√

2lM2η
∥∥∇Uf(U, C̄)

∥∥
F
.

Overall, we have ∥∥∥T̂ − T∥∥∥
F
≤ 2
√

2l2M2η
∥∥∇Uf(U, C̄)

∥∥
F
.

Bounding
∥∥∥T ′ − T̂∥∥∥

F
: From T̂ to T ′, we update C to C ′ and Ĉ to Ĉ ′ such that ∀i ∈ [m], c′i =

ci
‖ui‖
‖u′i‖

and ĉ′i = ĉi
‖ui‖
‖u′i‖

. Thus,

∥∥∥T ′ − T̂∥∥∥
F

=

∥∥∥∥∥
m∑
i=1

ai(c
′
i)
l−2(u′i)

⊗l −
m∑
i=1

aic
l−2
i (u′i)

⊗l

∥∥∥∥∥
F

≤
m∑
i=1

∣∣(c′i)l−2 − cl−2
i

∣∣ ‖u′i‖l .
Now, let’s focus on the change in cl−2

i . Define g(u) = 1
‖u‖l−2 . We have,

∇g(u) = −(l − 2)
u

‖u‖l
and ∇2g(u) = −(l − 2)

I

‖u‖l
+ l(l − 2)

uu>

‖u‖l+2
.

Therefore, the spectral norm of∇2g(u) is bounded by l2/ ‖u‖l .

For any i ∈ [m], let u′′i be any point on the line segment between ui and u′i, then
∥∥∇2g(u′′i )

∥∥
2
≤

l2/ ‖u′′i ‖
l
. If ci = 1/ ‖ui‖ , we have∣∣(c′i)l−2 − cl−2

i

∣∣ ≤‖∇g(ui)‖
∥∥η∇uif(U, C̄)

∥∥+
1

2
max
u′′i

∥∥∇2g(u′′i )
∥∥

2

∥∥η∇uif(U, C̄)
∥∥2

≤ l − 2

‖ui‖l−1

∥∥η∇ui
f(U, C̄)

∥∥+
1

2
max
u′′i

l ‖ui‖
‖u′′i ‖

l

∥∥η∇ui
f(U, C̄)

∥∥ .
If ci =

√
d(m+K)/ ‖ui‖ , we have∣∣(c′i)l−2 − cl−2
i

∣∣ ≤ l − 2

‖ui‖l−1

∥∥η∇uif(U, C̄)
∥∥ (
√
d(m+K))l−2 +

1

2
max
u′′i

l ‖ui‖
‖u′′i ‖

l

∥∥η∇uif(U, C̄)
∥∥ (
√
d(m+K))l−2.
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Therefore, we have∥∥∥T ′ − T̂∥∥∥
F
≤2el

m∑
i=1

∥∥η∇uif(U, C̄)
∥∥max(‖ui‖ , 2

√
m+Kδ(

√
d(m+K))l−2)

≤2
√

2elM2

∥∥η∇Uf(U, C̄)
∥∥
F
,

where the first inequality holds because ‖u′i‖ ≤
(
1 + 1

l

)
‖ui‖ and the second inequality assumes

δ2 ≤ M2
2

4m(m+K)l−1dl−2 .

Overall, combing the bounds on
∥∥∥T̂ − T∥∥∥

F
and

∥∥∥T ′ − T̂∥∥∥
F
, we have

‖T ′ − T‖F ≤ 200l2
√

1

λ

∥∥η∇Uf(U, C̄)
∥∥
F
.

�

Now we are ready to prove Lemma 21.

Proof of Lemma 21. Let’s first bound the tensor change and function value change due to scalar
mode switches. Following the proof of Claim 2 in Lemma 15, setting Γ̃ = 10 and assuming
η ≤ 1

l(
√

2Γ(
√
d(m+K))l−2+λ)

, we know each scalar mode switch can at most change the tensor

Frobenius norm by 16(m + K)δ2(
√
d(m+K))l−2. Furthermore, using the same argument as

Claim 2, the function value can increase by at most
√

20
(

16(m+K)δ2(
√
d(m+K))l−2

)
+

1
2

(
16(m+K)δ2(

√
d(m+K))l−2

)2

≤ 160(m+K)δ2(
√
d(m+K))l−2,where we assume δ2 ≤

5

8(m+K)(
√
d(m+K))l−2

.

According to the algorithm, we know each epoch contains at most m scalar mode switches. Suppose
T ′τ be the tensor before potential scalar mode switch in the τ -th iteration. Then, we have

t∑
τ=1

‖Tτ − Tτ−1‖F ≤
t∑

τ=1

‖T ′τ − Tτ−1‖F +

t∑
τ=1

‖Tτ − T ′τ‖F

≤
t∑

τ=1

‖T ′τ − Tτ−1‖F + 16m(m+K)δ2(
√
d(m+K))l−2.

According to Lemma 22, we know

‖T ′τ − Tτ−1‖F ≤ 200l2
√

1

λ

∥∥η∇Uf(Uτ−1, C̄τ−1)
∥∥
F
.

Therefore, we have

t∑
τ=1

‖T ′τ − Tτ−1‖F ≤200l2
√

1

λ

t∑
τ=1

∥∥η∇Uf(Uτ−1, C̄τ−1)
∥∥
F

≤200l2
√

1

λ

√
t

√√√√ t∑
τ=1

∥∥η∇Uf(Uτ−1, C̄τ−1)
∥∥2

F
.

According to Lemma 14, we know f(U ′τ , C̄
′
τ ) − f(Uτ−1, C̄τ−1) ≤ −ηl

∥∥∇Uf(Uτ−1, C̄τ−1)
∥∥2

F
.

Therefore, we have

t∑
τ=1

‖T ′τ − Tτ−1‖F ≤200l2
√

1

λ

√
t

√√√√ t∑
τ=1

ηl
(
f(Uτ−1, C̄τ−1)− f(U ′τ , C̄

′
τ )
)
.
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Since scalar mode switches in total change the function value by at most 160m(m +

K)δ2(
√
d(m+K))l−2, we know

t∑
τ=1

(
f(Uτ−1, C̄τ−1)− f(U ′τ , C̄

′
τ )
)

≤f(U0, C̄0)− f(Ut, C̄t) + 160m(m+K)δ2(
√
d(m+K))l−2.

Overall, we have

t∑
τ=1

‖Tτ − Tτ−1‖F

≤200l2.5
√

1

λ

√
ηH

√
f(U0, C̄0)− f(Ut, C̄t) + 160m(m+K)δ2(

√
d(m+K))l−2

+ 16m(m+K)δ2(
√
d(m+K))l−2.

�

Combining all the steps above, we are now ready to prove Lemma 12.

Proof of Lemma 12. Let u0 be the reinitialized vector. According to Lemma 18, we know with
probability at least 1/5,

a(PS⊗lT ′0 − PS⊗lT ∗)(PSu0
⊗l

) ≤ −1

(µ1rl)l/2
‖PS⊗lT ′0 − PS⊗lT ∗‖F ≤ −

ε

(µ1rl)l/2
,

where µ1 is some constant. According to Lemma 23, we know with probability at least 1− 1/30,

‖PSu0‖ ≥ µ2δ√
d

for some constant µ2 < 1. Taking a union bound, we know both properties hold with
probability at least 1/6.

Conditioning on both properties, we will prove that

f(U0, C̄0)− f(UH , C̄H) ≥ λ

32000000(µ1rl)lηHl5
ε2.

For the sake of contradiction, assume that f(U0, C̄0) − f(UH , C̄H) ≤ λ
32000000(µ1rl)lηHl5

ε2. Ac-
cording to Lemma 21, we know

H∑
τ=1

‖Tτ − Tτ−1‖F ≤
ε

10(µ1rl)l/2

as long as δ2 ≤ ε

320(µ1rl)l/2m(m+K)
l
2 d

l−2
2

and δ2 ≤ λε2

32000000(µ1rl)lηHl5·160m(m+K)
l
2 d

l−2
2

.

We will prove that a(PS⊗lTt − PS⊗lT ∗)(PSut
⊗l

) ≤ − ε
5(C1rl)l/2

for all 0 ≤ t ≤ H − 1, so from
Lemma 19 we know that the norm of PSut must increase exponentially.

Let’s first prove the case at the beginning of an epoch: Let T0 be the tensor after reinitialization.
According to the proof of Claim 1 in Lemma 15, we know

‖T0 − T ′0‖F ≤ 2

√
10

λm
≤ ε

2(µ1rl)l/2
,

where the last inequality assumes λm ≥ 160(µ1rl)
l

ε2 . This implies that

a(PS⊗lT0−PS⊗lT ∗)(PSu0
⊗l

) ≤ a(PS⊗lT ′0−PS⊗lT ∗)(PSu0
⊗l

) + ‖T0 − T ′0‖F ≤ −
ε

2(µ1rl)l/2
.
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For later steps, we will show that a(PS⊗lTt − PS⊗lT ∗)(PSut
⊗l

) is close to a(PS⊗lT0 −
PS⊗lT ∗)(PSu0

⊗l
). Actually,∣∣∣a(PS⊗lTt − PS⊗lT ∗)(PSut

⊗l
)− a(PS⊗lT0 − PS⊗lT ∗)(PSu0

⊗l
)
∣∣∣

≤

∣∣∣∣∣
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(
(PS⊗lTτ−1 − PS⊗lT ∗)(PSuτ

⊗l
)− (PS⊗lTτ−1 − PS⊗lT ∗)(PSuτ−1

⊗l
)
)∣∣∣∣∣

+

∣∣∣∣∣
t∑

τ=1

(
(PS⊗lTτ − PS⊗lT ∗)(PSuτ

⊗l
)− (PS⊗lTτ−1 − PS⊗lT ∗)(PSuτ

⊗l
)
)∣∣∣∣∣

≤Hµl42ldl−1.5m1/2(m+K)l−1ηδλ+

t∑
τ=1

‖Tτ − Tτ−1‖

≤Hµl42ldl−1.5m1/2(m+K)l−1ηδλ+
ε

10(µ1rl)l/2
≤ ε

5(µ1rl)l/2
.

The second inequality above comes from Lemma 20, and the last inequality assumes δ ≤
1

µl42ldl−1.5m1/2(m+K)l−1ηλH
· ε

10(µ1rl)l/2
.

This then implies that for all 0 ≤ t ≤ H − 1,

a(PS⊗lTt − PS⊗lT ∗)(PSut
⊗l

) ≤ − ε

2(µ1rl)l/2
+

ε

5(µ1rl)l/2
≤ − ε

5(µ1rl)l/2
.

Then according to Lemma 19,

‖PSuH‖2 ≥
(

1 + η
(µ2

2

)l−2 ε

10(µ1rl)l/2

)H
‖PSu0‖2

≥
(

1 + η
(µ2

2

)l−2 ε

10(µ1rl)l/2

)H
µ2

2δ
2

d

≥ exp

(
1

2
ηH

(µ2

2

)l−2 ε

10(µ1rl)l/2

)
µ2

2δ
2

d
,

where the last inequality assumes η ≤
(

2
µ2

)l−2
10(µ1rl)

l/2

ε . Therefore, ‖PSuH‖2 exceeds M2 as

long as ηH ≥ 2
(

2
µ2

)l−2
10(µ1rl)

l/2

ε log
(
dM2

µ2
2δ

2

)
. Since M2 =

√
10
λ is the upper bound of ‖U‖F ,

this finishes the contradiction proof.

We have shown that

f(U0, C̄0)− f(UH , C̄H) ≥ λ

32000000(µ1rl)lηHl5
ε2.

In order to show f(U ′0, C̄
′
0)− f(UH , C̄H) is large, we still need to bound |f(U ′0, C̄

′
0)− f(U0, C̄0)|

that comes from reinitialization. According to Lemma 15, we know

|f(U ′0, C̄
′
0)− f(U0, C̄0)| ≤ 200

λm
≤ λ

64000000(µ1rl)lηHl5
ε2,

where the second inequality assumes λ2m ≥ 1.28× 1011(µ1rl)
lηHl5. Therefore,

f(UH , C̄H)− f(U ′0, C̄
′
0)

≤
(
f(U0, C̄0)− f(UH , C̄H)

)
+ |f(U0, C̄0)− f(U ′0, C̄

′
0)|

≤ − λ

3.2× 107(µ1rl)lηHl5
ε2 +

λ

6.4× 108(µ1rl)lηHl5
ε2

≤− λ

6.4× 107(µ1rl)lηHl5
ε2.
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We choose m = O
(
r2.5l

ε5 log(d/ε)
)

, λ = O
(

ε
r0.5l

)
, δ = O

(
ε5l−1.5

dl−1.5(log(d/ε))l+0.5r2.5l2−0.75l

)
,

η = O
(

ε15l−4.5

d3l−4.5(log(d/ε))3l+1.5r7.5l2−2.25l

)
, H = O

(
d3l−4.5(log(d/ε))3l+2.5r7.5l

2−1.75l

ε15l−3.5

)
and K =

O
(
r2l

ε4 log(d/ε)
)

such that all the conditions are satisfied and the function value decreases by

Ω( ε4

r2l log(d/ε)
) in each epoch. Note that there does exist some circular dependency between the

parameters. This turns out to be not an issue in our proof because for example δ depends on 1
ηH

while ηH only depends logarithmically on 1/δ. Other circular dependencies can be resolved in the
same manner. �

D Tools

In this section, we give the technical lemmas we use in the proof.

D.1 Random projection on a subspace

We use the following lemma to show that with good probability, the projection of the reinitialized
component on the good subspace is lower bounded.
Lemma 23 (Lemma 2.2 in Dasgupta and Gupta (2003)). Let Y be a d-dimensional vector uniformly
sampled from sphere Sd−1. Let Z ∈ Rk be the projection of Y onto its first k coordinates (k < d).
For any β < 1, we have

Pr

[
‖Z‖2 ≤ βk

d

]
≤ exp

(
k

2
(1− β + lnβ)

)
.

D.2 Norm of random Gaussian vectors

The following lemma gives the concentration of `2 norm of a random Gaussian vector.
Lemma 24 (Theorem 3.1.1 in Vershynin (2018)). Let X = (X1, X2, · · · , Xn) ∈ Rn be a random
vector with each entry independently sampled from N (0, 1). Then

Pr
[∣∣‖x‖ − √n∣∣ ≥ t] ≤ 2 exp

(
−t2/C2

)
,

where C is an absolute constant.

D.3 Anti-concentration of Gaussian polynomials

We use anti-concentration of Gaussian polynomials to argue that a randomly initialized component
has good correlation with the residual.
Lemma 25 (Theorem 8 in Carbery and Wright (2001)). Let x ∈ Rn be a Gaussian variable
x ∈ N(0, I), for any polynomial p(x) of degree l, there exists a constant κ such that

Pr
[
|p(x)| ≤ ε

√
V ar[p(x)]

]
≤ κlε1/l.
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