
Appendices

A Proofs

A.1 Evidence Lower Bound on pθ (x, y)

log p(x, y) = log

∫
p(x|zx, zs)p(y|zy, zs) p(zx)p(zs)p(zy) dzxdzsdzy

= log

∫
p(x|zx, zs)p(y|zy, zs) p(zx)p(zs)p(zy)

q(zx|x)q(zs|x, y)q(zy|y)
q(zx|x)q(zs|x, y)q(zy|y) dzxdzsdzy

= logEq(zx|x)q(zs|x,y)q(zy|y)
[
p(x|zx, zs)p(y|zy, zs) p(zx)p(zs)p(zy)

q(zx|x)q(zs|x, y)q(zy|y)

]
≥ Eq(zx|x)q(zs|x,y)q(zy|y)

[
log

p(x|zx, zs)p(y|zy, zs) p(zx)p(zs)p(zy)
q(zx|x)q(zs|x, y)q(zy|y)

]
= Eq(zx|x)q(zs|x,y) [log p(x|zx, zs)] + E(zs|x,y)q(zy|y) [log p(y|zy, zs)]
−DKL [q(zx|x)‖p(zx)]−DKL [q(zs|x, y)‖p(zs)]−DKL [q(zy|y)‖p(zy)] .

A.2 I(ZX ;ZS) = I(X;ZX) + I(X;ZS)− I(X;ZX , ZS).

Interaction information [31] between three random variables is defined as follows.

I (X;Y ;Z) = I (X;Y )− I (X;Y |Z) = I (X;Z)− I (X;Z|Y ) = I (Y ;Z)− I (Y ;Z|X) .
(14)

Using the last equality, we obtain the following expression of mutual information between ZX and
ZY :

I(ZX ;ZS) = I(ZX ;X)− I(ZX ;X|ZS) + I(ZX ;ZS |X). (15)

Due to the structural assumption on q, q(zx|x) = q(zx|x, zs) holds. Thus, the last term in the above
equation disappears:

I(ZX ;ZS |X) = H(ZX |X)−H(ZX |X,ZS) = H(ZX |X)−H(ZX |X) = 0,

which yields

I(ZX ;ZS) = I(X;ZX)− I(X;ZX |ZS)
= I(X;ZX) + I(X;ZS)− I(X;ZX , ZS). (16)

A.3 Derivation of full objective

A.3.1 Lower bound on (I(X;Y ;ZS)− I(ZX ;ZS)) + (I(X;Y ;ZS)− I(ZY ;ZS))

Here we derive the lower bound on I(X;Y ;ZS) − I(ZX ;ZS) since the one on I(X;Y ;ZS) −
I(ZY ;ZS) is analogous.

I(X;Y ;ZS)− I(ZX ;ZS)

=
(
�����
I(X;ZS) − I(X;ZS |Y )

)
−
(
I(X;ZX) +�����

I(X;ZS) − I(X;ZX , ZS)
)

= I(X;ZX , ZS)− I(X;ZX)− I(X;ZS |Y ) (17)
= H(X) + EpD(x)q(zs,zx|x) [log q(x|zx, zs)]− EpD(x) [DKL [q(zx|x)‖q(zx)]]

− EpD(x,y) [DKL [q(zs|x, y)‖q(zs|y)]]

where q(x|zx, zs) = q(zx,zs|x)pD(x)∫
pD(x,y) q(zx,zs|x,y) dxdy , q(zx) =

∫
q(zx|x)pD(x)dx,

and q(zy) =
∫
q(zy|y)pD(y)dy require intractable integrals. Thus, we need to derive the lower

bound on Eq. (17).
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Variational lower bound on I(X;ZX , ZS) :
Note that q(zx, zs) is intractable due to the unknown density of pD(x, y): q(zx, zs) =∫
pD(x, y) q(z

x, zs|x, y) dx dy

Consequently, q(x|zx, zs) = q(zx,zs|x)pD(x)
q(zx,zs) is intractable. Thus, we would like to bring the genera-

tive distribution p(x|zx, zs) to derive a lower bound such that:

I(X;ZX , ZS) = Eq(zx,zs|x)pD(x)

[
log

q(x|zx, zs)
pD(x)

]
= H(X) + Eq(zx,zs|x)pD(x) [log q(x|zx, zs)− log p(x|zx, zs) + log p(x|zx, zs)]
= H(X) + Eq(zx,zs|x)pD(x) [log p(x|zx, zs)] + Eq(zx,zs) [DKL [q(x|zx, zs)‖p(x|zx, zs)]]
≥ H(X) + Eq(zx,zs|x)pD(x) [log p(x|zx, zs)]

= H(X) +

∫
q(zx, zs|x)pD(x) log p(x|zx, zs) dx dzx dzs

= H(X) +

∫
pD(x)

(∫
q(zx, zs|x, y) pD(y|x) dy

)
log p(x|zx, zs) dx dzx dzs

= H(X) +

∫
pD(x) q(z

x|x)
(∫

q(zs|x, y) pD(y|x) dy
)
log p(x|zx, zs) dx dzx dzs

= H(X) +

∫
pD(x, y) q(z

x|x) q(zs|x, y) log p(x|zx, zs) dx dy dzx dzs

= H(X) + EpD(x,y) q(zx|x) q(zs|x,y) [log p(x|zx, zs)]

Thus, maximization of EpD(x,y) q(zx|x) q(zs|x,y) [log p(x|zx, zs)] not only maximizes I(X;ZX , ZS),
but also fits p(x|zx, zs) to q(x|zx, zs), so that we can utilize it as a decoder.

Variational upper bound on I(X;ZS |Y ) :
Note that q(zs|y) =

∫
pD(x|y) q(zs|x, y) dx is intractable. Thus,

I(X;ZS |Y ) = EpD(x,y)q(zs|x,y)

[
log

q(zs|x, y)
q(zs|y)

] (
= EpD(x,y) [DKL [q(zs|x, y)‖q(zs|y)]]

)
= EpD(x,y)q(zs|x,y)

[
log

q(zs|x, y)ry(zs|y)
ry(zs|y)q(zs|y)

]
= EpD(x,y) [DKL [q(zs|x, y)‖ry(zs|y)]]− EpD(y) [DKL [q(zs|y)‖ry(zs|y)]]
≤ EpD(x,y) [DKL [q(zs|x, y)‖ry(zs|y)]] (18)

Thus, minimization of EpD(x,y) [DKL [q(zs|x, y)‖ry(zs|y)]] not only minimizes I(X;ZS |Y ),
but also fits ry(zs|y) to q(zs|y).

Variational upper bound on I(X;ZX) :
Similar to Eq. (18), I(X;ZX) = EpD(x) [DKL [q(zx|x)‖q(zx)]] ≤ EpD(x) [DKL [q(zx|x)‖p(zx)]].

Overall information preference :
Putting together, we can derive the lower bound of the preference for q on domain X and Y :

(I(X;Y ;ZS)− I(ZX ;ZS)) + (I(X;Y ;ZS)− I(ZY ;ZS))
= 2 · I(X;Y ;ZS)− I(ZX ;ZS)− I(ZY ;ZS)
= I(X;ZX , ZS) + I(Y ;ZY , ZS)− I(X;ZX)− I(Y ;ZY )− I(X;ZS |Y )− I(Y ;ZS |X)

≥ EpD(x,y)

[
Eq(zs|x,y)q(zx|x) [log p(x|zx, zs)] + Eq(zs|x,y)q(zy|y) [log p(y|zy, zs)]

]
(19)

− EpD(x,y) [ DKL [q(zx|x)‖p(zx)] +DKL [q(zy|y)‖p(zy)] ] (20)

− EpD(x,y) [ DKL [q(zs|x, y)‖ry(zs|y)] +DKL [q(zs|x, y)‖rx(zs|x)] ]
+H(X) +H(Y ).
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A.3.2 Merging ELBO and information preference

Note that Eq. (19) and Eq. (20) coexist in ELBO as reconstruction and KL regularization terms (on
exclusive representation) respectively. Thus, the final objective is as follows:

max
p,q

Eq(zx,zs,zy,x,y)
[
log

p(x, y, zx, zs, zy)

q(zx, zs, zy|x, y)

]
+ λ

(
2 · I(X;Y ;ZS)− I(ZX ;ZS)− I(ZY ;ZS)

)
≥ max

p,q,r
(1 + λ) · EpD(x,y)

[
Eq(zx|x)q(zs|x,y) [log p(x|zx, zs)] + Eq(zy|y)q(zs|x,y) [log p(y|zy, zs)]

]
− (1 + λ) · EpD(x,y) [ DKL [q(zx|x)‖p(zx)] +DKL [q(zy|y)|p(zy)] ]
− EpD(x,y) [ DKL [q(zs|x, y)‖p(zs)] ]
− λ · EpD(x,y) [ DKL [q(zs|x, y)‖ry(zs|y)] +DKL [q(zs|x, y)‖rx(zs|x)] ]

= max
p,q,r

(1 + λ) · EpD(x,y) [ ELBO(p, q) ]

+ λ · EpD(x,y) [ DKL [q(zs|x, y)‖p(zs)] ]
− λ · EpD(x,y) [ DKL [q(zs|x, y)‖ry(zs|y)] +DKL [q(zs|x, y)‖rx(zs|x)] ] .

B Additional quantitative results

B.1 Sample quality evaluation

Translation pix2pix [23] CdDN [12] IIAE

X → Y 0.24987 ± 0.00780 0.23517 ± 0.00799 0.21478 ± 0.00844
Y → X 0.21524 ± 0.00704 0.19295 ± 0.00687 0.15277 ± 0.00774

Table 4: Sample quality evaluation on the Cars (bimodal) dataset.

We report quantitative evaluation on the quality of samples in table 4. We followed the exact
experimental setting for the Cars dataset as in [12], except we use freshly generated training data (the
data from [12] was unavailable) and the updated version of the evaluation metric LPIPS. Thus, the
numbers here do not exactly match those in [12]. The results show that the sample quality of IIAE
clearly exceeds the quality of GAN-based methods.

B.2 Additional notes on table 2

Facades(Val) BicycleGAN [47] CdDN [12] IIAE

F→ L (%) - 95.0 (1.0) 100.0 (1.0)
L→ F (%) 45.0 97.0 (1.0) 100.0 (0.0)

Table 5: Shared (exclusive) representation based retrieval on
validation set in the Facades [41] dataset.

Regarding the numbers from the
Facades dataset in table 2, they
are different from [12] since we
used test set rather than the vali-
dation set (stated in the footnote).
The table 5 shows the result on
the validation set, which matches
the numbers in [12].

B.3 Ablation study

Metric II II-MI ELBO+λII ELBO+λ(II-MI)

mAP 0.517 0.534 0.516 0.573
P@100 0.605 0.616 0.595 0.659

Table 6: Ablation study on ZS-SBIR.

We evaluated the effect of terms in the IIAE objective using the ZS-SBIR dataset. Table 6 summarizes
the result. II represents maximizing only the interaction information among X ,Y , and ZS (Eq. (21)),
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whose lower bound is as follows:

2 · I(X;Y ;ZS) = I(X;ZS) + I(Y ;ZS)− I(X;ZS |Y )− I(Y ;ZS |X) (21)

≥ EpD(x,y)

[
Eq(zs|x,y) [log p(x|zs)] + Eq(zs|x,y) [log p(y|zs)]

]
− EpD(x,y) [ DKL [q(zs|x, y)‖ry(zs|y)] +DKL [q(zs|x, y)‖rx(zs|x)] ]
+H(X) +H(Y ). (22)

II-MI is the joint information preference of maximizing the interaction information and minimizing
mutual information between shared and domain-specific representations simultaneously (Eq. (23)),
whose lower bound is Eq. (25).

2 · I(X;Y ;ZS)− I(ZX ;ZS)− I(ZY ;ZS) (23)

= I(X;ZX , ZS) + I(Y ;ZY , ZS)− I(X;ZX)− I(Y ;ZY )− I(X;ZS |Y )− I(Y ;ZS |X)
(24)

≥ EpD(x,y)

[
Eq(zs|x,y)q(zx|x) [log p(x|zx, zs)] + Eq(zs|x,y)q(zy|y) [log p(y|zy, zs)]

]
− EpD(x,y) [ DKL [q(zx|x)‖p(zx)] +DKL [q(zy|y)‖p(zy)] ]
− EpD(x,y) [ DKL [q(zs|x, y)‖ry(zs|y)] +DKL [q(zs|x, y)‖rx(zs|x)] ]
+H(X) +H(Y ). (25)

Last two columns in table 6 represent taking weighted sum with the ELBO, treating λ = 2 as the
hyperparameter. The final column is the objective of IIAE.

The first two columns imply that augmenting the minimization of the mutual information to the
maximization of the interaction information is beneficial. This is because the optimization of Eq. (21)
gives ZS an implicit trade-off between capturing domain-specific information to maximize the first
and second terms and emptying domain-specific information to minimize the third and fourth terms in
Eq. (21). Thus, encoding the domain-specific information in addition to the shared information can be
one of optimal solutions for ZS . On the other hand, optimizing Eq. (23) (or Eq. (24)) eliminates the
trade-off since the first and second terms in Eq. (24) allow ZS to share with ZX and ZY the burden
of being informative to X and Y . Consequently, the optimal solution of Eq. (23) is that ZS encodes
only the information shared across X and Y while ZX and ZY encode only the domain-specific
information.

Finally, the last two columns show that the joint information preference is better suited to ELBO than
maximization of the interaction information only and gains further performance improvement.

C Visualization

C.1 Additional samples of cross-domain image translation

C.1.1 MNIST-CDCB [12]

We present additional samples of image translation with IIAE in table 7. Furthermore, we generate
visual analogies using IIAE which are presented in table 8. For each row, we show the queries (the
first and fourth columns), references (the second and fifth columns), and the synthesized images
(the third and sixth columns). Queries are sources of shared representation, which is digit identity,
whereas references are sources of exclusive representations, which are color variations. Tables 7 and
8 shows that IIAE extracts and preserves both of domain specific and shared representations properly.
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X → Y Y → X

Input Outputs w/ different zy Input Outputs w/ different zx

x zy1 , z
y
2 , z

y
3 ∼ p(zy) µy y zx1 , z

x
2 , z

x
3 ∼ p(zx) µx

Table 7: Additional cross-domain translation results in MNIST-CDCB [12] by IIAE. In MNIST-
CDCB, domain-specific factors of variation are color variation in background(X) and in
foreground(Y ) while the common factor is the digit ID.
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X Y

query reference Output query reference Output

Table 8: Visual analogies generated by IIAE, synthesizing shared representation from the query and
exclusive representations from the reference in each domain.

C.1.2 Cars [36]

In this section, we compare IIAE with CdDN [12] with Cars dataset. We present additional samples
of image translation with IIAE in table 9 and samples from CdDN in table 10 with the same input
images. Furthermore, we generate visual analogies using IIAE which are presented in table 11. To
achieve the result of table 10 without pretrained model not available, we trained CdDN for Cars
dataset (the version with 23 different views) using the code and following the hyperparameter settings
released by [12]. Tables 9 and 10 shows that IIAE achieves not only better sample quality but also
better disentanglement. In each row of table 10, The content of the given car exposed dependency on
the exclusive representation; The details of car such as shape or color varies depending on if exclusive
representation is sampled from its prior distribution (the second, third, fourth and seventh, eighth,
ninth columns) or extracted from ground-truth pair (the fifth and tenth columns). In table 11, we
show the query (the first column), 2 references with different orientation (the sencond and fourth
columns), and two synthesized images (the third and fifth columns). Queries are sources of shared
representation, which is car identity, whereas references are sources of exclusive representations,
which are variations in orientation. We present only the analogy of Y domain, since factors of
variation only exists in Y .
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X → Y Y → X

Input Outputs w/ different zy Input Outputs w/ different zx

x zy1 , z
y
2 , z

y
3 ∼ p(zy) µy y zx1 , z

x
2 , z

x
3 ∼ p(zx) µx

Table 9: Additional cross-domain translation results in Cars [36] generated by IIAE. In Cars, domain-
specific factors only exists in Y , views in 23 different degrees, while the shared factor is the identity
of car.

X → Y Y → X

Input Outputs w/ different zy Input Outputs w/ different zx

x zy1 , z
y
2 , z

y
3 ∼ p(zy) µy y zx1 , z

x
2 , z

x
3 ∼ p(zx) µx

Table 10: Cross-domain translation results in Cars [36] generated by CdDN [12].

20



Y

query reference1 Output1 reference2 Output2

Table 11: Visual analogies generated by IIAE, synthesizing shared representation from the query and
exclusive representations from the reference in Y domain.
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C.2 Cross-domain retrieval

In this section, we visualize the top-3 retrieved images of the cross-domain retrieval task in Facades
[41] and Maps [17] datasets. For each query image, we classify the result as a success only when the
ground truth pair of the query is retrieved as the closest one (top-1), failure otherwise. Although IIAE
performs close to perfect in this task, there exist a few of failure cases which we present here as well.

C.2.1 Maps [17]

Query(S) GT(M) S → M Query(M) GT(S) M → S

Figure 5: Successful examples of cross-domain retrieval (Top-3) in Maps using IIAE.

Query(S) GT(M) S → M Query(M) GT(S) M → S

Figure 6: Unsuccessful examples of cross-domain retrieval (Top-3) in Maps using IIAE.
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C.2.2 Facades [41]

Query(F) GT(L) F → L Query(L) GT(F) L → F

Figure 7: Successful examples of cross-domain retrieval (Top-3) in Facades using IIAE.

Query(F) GT(L) F → L Query(L) GT(F) L → F

Figure 8: All unsuccessful cases of cross-domain retrieval (Top-3) in Facades using IIAE.
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C.3 ZS-SBIR

Figure 9: Top-10 ZS-SBIR samples from IIAE on the Sketchy Extended dataset. Sketches in the
leftmost columns are queries and rest are retrieved candidates (Top-1 to 10 from the left to right).
Green checkmark indicates correct retrieval, whereas red crossmark indicates wrong retrieval.
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D Implementation details

Here we describe the network architectures of our implementation. For any dataset, every convo-
lutional layer or fully connected layer in encoders is followed by batch normalization (BN) and
LeakyReLU with slope 0.2, except the last layers of distribution encoders q(zx|x), q(zy|y), r(zs|x),
r(zs|y), and q(zs|x, y). The output of those last layers are means and log variances. Note that feature
extractors (FE) of r(zs|x) and r(zs|y) are shared with q(zs|x, y). Our implementation is publicly
available.2

D.1 Network Architecture for MNIST-CDCB [12], Cars [36], Maps [17], and Facades[41]

Encoder q(zx|x) or q(zy|y) FE
Input 256 x 256 x 3 image 256 x 256 x 3 image

Layer1 4x4 Conv. w/ stride 2 and 32 filters 4x4 Conv. w/ stride 2 and 32 filters
Layer2 4x4 Conv. w/ stride 2 and 64 filters 4x4 Conv. w/ stride 2 and 64 filters
Layer3 4x4 Conv. w/ stride 2 and 128 filters 4x4 Conv. w/ stride 2 and 128 filters
Layer4 4x4 Conv. w/ stride 2 and 256 filters 4x4 Conv. w/ stride 2 and 256 filters
Layer5 FC. 16 -

Encoder r(zs|x) or r(zs|y) q(zs|x, y)
Input FE(x) or FE(y) [FE(x) ; FE(y)]

Layer1 4x4 Conv. w/ 256 filters 4x4 Conv. w/ 256 filters
Layer2 FC. 256 FC. 256
Layer3 FC. 256 FC. 256

Decoder p(x|zx, zs) or p(y|zy, zs)
Input [zx; zs] or [zy; zs]

Layer1 FC. 262,144, BN, Dropout(0.5), ReLU
Layer2 4x4 Deconv. w/ stride 1/2 and 512 filters, BN, Dropout(0.5), ReLU
Layer3 4x4 Deconv. w/ stride 1/2 and 256 filters, BN, Dropout(0.5), ReLU
Layer4 4x4 Deconv. w/ stride 1/2 and 128 filters, BN, ReLU
Layer5 4x4 Deconv. w/ stride 1/2 and 64 filters, BN, ReLU
Layer6 4x4 Deconv. w/ stride 1/2 and 3 filters and Tanh activation

Note that the last two fully connected layers in shared representation encoders (r(zs|x), r(zs|y), and
q(zs|x, y)) and the first fully connected layer in decoders are only applied to Cars [36] dataset.

D.2 Network architecture for Sketchy Extended [29, 37] (ZS-SBIR)

Encoder q(zx|x) or q(zy|y) FE
Input 512 image feature 512 image feature

Layer1 FC. 512 FC. 512
Layer2 FC. 256 -
Layer5 FC. 128 -

Encoder r(zs|x) or r(zs|y) q(zs|x, y) Decoder p(x|zx, zs) or p(y|zy, zs)
Input FE(x) or FE(y) [FE(x) ; FE(y)] Input [zx; zs] or [zy; zs]

Layer1 FC. 256 FC. 512 Layer1 FC. 128
Layer2 FC. 128 FC. 128 Layer2 FC. 512

2https://github.com/gr8joo/IIAE
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D.3 Hyperparameters

Hyper- Datasets
parameters MNIST-CDCB Cars Facades Maps Sketchy Extended

Learning rate 0.0002
Lambda 5 50 1,000 50 2

Reconstruction weight 1,000 20,000 10
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