
Mandiant Threat Hunting Guide

Snowflake
v1.0

Summary
This document contains threat hunting guidance and queries for detecting abnormal and
malicious activity across Snowflake customer database instances. Default retention policies
for the relevant views enable threat hunting across the past 1 year (365 days).

Created: June 17, 2024

2

Table of Contents
Table of Contents...2
Background..3
General Snowflake Tips & Tricks.. 4
IAM Review..6

Roles and Permissions Changes...6
Abnormal Table and DB Access..8
User Creation and Deletion..13

Query Analysis... 15
Frequency Analysis.. 15
Error Rate Analysis...19
High Resource Consumption...26
Long Running Queries..33
Multi-Day Duplicate Queries.. 36

Staging/Exfil.. 39
Data Compression..39
Data Staging... 43
Data Streams Outbound.. 47
Manual Data Retrieval..50

Network Analysis... 54
Network Traffic Spikes...54

User Analysis... 56
Abnormal Application Names... 56
Average User Sessions.. 60

Query for Temporary Stages and External URLs... 64

© Copyright 2024 Mandiant

3

Background
On June 10, 2024, Mandiant released a report on a threat campaign targeting Snowflake
customer database instances with the intent of data theft and extortion. Snowflake is a
multi-cloud data warehousing platform used to store and analyze large amounts of
structured and unstructured data. Mandiant tracks this cluster of activity as UNC5537, a
financially motivated threat actor suspected to have stolen a significant volume of
records from Snowflake customer environments. UNC5537 is systematically
compromising Snowflake customer instances using stolen customer credentials,
advertising victim data for sale on cybercrime forums, and attempting to extort many of
the victims.

Mandiant's investigation has not found any evidence to suggest that unauthorized
access to Snowflake customer accounts stemmed from a breach of Snowflake's
enterprise environment. Instead, every incident Mandiant responded to associated with
this campaign was traced back to compromised customer credentials.

This guide provides hunting guidance to identify both activity associated with this
campaign and other general malicious activity.

Read our incident response investigation blog post for more information.

© Copyright 2024 Mandiant

https://cloud.google.com/blog/topics/threat-intelligence/unc5537-snowflake-data-theft-extortion

Unset

Unset

4

General Snowflake Tips & Tricks
Description
This section contains a few tricks that can help keep your threat hunting queries readable, and
avoid some issues with parsing and exporting results.

1: Common Table Expressions (CTEs)
A CTE takes the results of a query and stores them as a value which can be referenced in your
main query. This can help keep the main body of your query cleaner and easier to edit in the
future.

Query

WITH sq AS (//sub query
SELECT <THINGS>
FROM <PLACE>
WHERE <CONDITION>
GROUP BY <THING-1>
)

SELECT //main query
<THINGS>

FROM <PLACE> p
JOIN sq ON sq.<THING-1> = p.<THING-1>

WHERE <CONDITION>

2: Timestamp normalization
Timestamps, even when cast to UTC, will only appear normalized in the snowflake UI. Once you
export them, they will return to their original timezone. To sidestep this, encapsulate timezones
in both CONVERT_TIMEZONE, then TO_VARCHAR, which stores them as immutable string
values.

Query

 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,

© Copyright 2024 Mandiant

Unset

Unset

5

 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
TO_VARCHAR(CONVERT_TIMEZONE('UTC', START_TIME) ,'yyyy-mm-dd hh24:mi:ss') AS
UTC_STR,

3: JSON extraction
Two main methods exist for JSON extraction:

1. Conversion of the entire JSON blob
2. Text extraction of single fields within a JSON blob

Query

//blob conversion
PARSE_JSON(DB.SCHEMA.TABLE.JSON_BLOB_FIELD) AS PARSED_JSON
//access nested members
PARSED_JSON:<NESTED FIELD NAME>::STRING AS NESTED_FIELD

Query

//individual path extraction
JSON_EXTRACT_PATH_TEXT(DB.SCHEMA.TABLE.JSON_BLOB_FIELD, '<NESTED FIELD IN JSON
BLOB') AS <NEW_FIELD_NAME>

© Copyright 2024 Mandiant

6

IAM Review

Roles and Permissions Changes

Description
Hunt for any changes made to roles or permissions that could be associated with attacker
activity. This includes abnormal usage of the GRANT statement to:

● Enumerate resources the current user has access to
● Grant additional rights to a user enabling additional access to commands or resources

Observations

During Mandiant’s investigation of UNC5537, the SHOW GRANT command was utilized to
enumerate permissions and identify what tables they had access to.

Potential Attacker Trends
We observed multiple instances of exfiltration preceded by a large number of "SHOW GRANT"
queries, explicitly calling individual usernames. Prior to table selection, the GRANT statement
was queried to confirm the current user account had proper access to the table of interest.

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

© Copyright 2024 Mandiant

Unset

7

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

Query 1: Spikes in Admin Permission Changes/Views by User, Application
Name, IP, and Operating System per Day

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OP_SYS,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
WHERE (
 upper(QUERY_TEXT) LIKE '%CREATE USER%' OR
 upper(QUERY_TEXT) LIKE '%ALTER USER%' OR
 upper(QUERY_TEXT) LIKE '%ALTER ACCOUNT%' OR
 upper(QUERY_TEXT) LIKE '%ALTER PASSWORD POLICY%' OR

© Copyright 2024 Mandiant

Unset

8

 upper(QUERY_TEXT) LIKE '%APPLY PASSWORD POLICY%' OR
 upper(QUERY_TEXT) LIKE '%GRANT USAGE%' OR
 upper(QUERY_TEXT) LIKE '%GRANT CREATE%' OR
 upper(QUERY_TEXT) LIKE '%GRANT APPLY%' OR
 upper(QUERY_TEXT) LIKE '%SHOW GRANT%' OR
 upper(QUERY_TEXT) LIKE '%GRANT ROLE%'
) OR QUERY_TYPE IN ('CREATE_USER', 'ALTER_ACCOUNT', 'GRANT', 'ALTER_USER')
GROUP BY
 QUERY_DATE

Abnormal Table and DB Access

Description
Most accounts regularly access a limited set of databases, schemas, views, and tables, but
unless there is prior insight, an attacker needs to enumerate a multitude of sources. These
spikes in the number of databases/schemas/views/tables can be indicative of attacker activity.

Observations
We noticed a very distinctive spike in unique views/tables accessed by user accounts impacted
by the attacker. Since there are more views/tables than schemas, and more schemas than
databases, analysis of views/tables can show more distinctive peaks and valleys.

Warnings about FP/Noise
Normalizing the results as a fraction from the average can be a better way to look for spikes,
rather than the raw aggregate numbers. Raw numbers can cause a loud service account to
drown out the enumeration of an attacker’s activity. The below aggregation normalizes the daily
unique numbers as a percentage of that entry’s average.

TO_NUMBER(UNIQ_QUERIES/AVG(UNIQ_QUERIES)*100, 10, 2) AS RATE

Note: The following queries are stacked by username and application name; however, stacking
by IP is explicitly excluded. Since most client environments include a very high number of IP hits,
and this query when stacked by date/DB/schema/table can get quite lengthy, an additional

© Copyright 2024 Mandiant

Unset

9

factor of IP causes the number of results to climb to an unmanageable volume. If you want to
try it in your own environment, do so at your own risk.

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

Query 1: Spikes in View Access by User, Application Name, IP, and
Operating System Across Whole Snowflake Environment Per Day

Query

WITH sq AS (

© Copyright 2024 Mandiant

10

 SELECT
 START_TIME,
 DATE(START_TIME) AS QUERY_DATE,
 QUERY_HASH,
 QUERY_TEXT,
 SESSION_ID,
 REGEXP_REPLACE(REGEXP_SUBSTR(QUERY_TEXT,
$$FROM.*\W([\w]+\.[^\s]+\.[\w]+).*$$,1,1,'mse'),'"','') as DB_S_TV_STR,
 CASE
 WHEN UPPER(QUERY_TEXT) LIKE '%COUNT(%' THEN 'TRUE'
 ELSE 'FALSE'
 END as IS_COUNT_Q
 FROM snowflake.account_usage.query_history q
 WHERE
 EXECUTION_STATUS = 'SUCCESS' AND
 (upper(QUERY_TEXT) LIKE 'SELECT%' OR upper(QUERY_TEXT) LIKE 'COPY
INTO%') AND
 upper(QUERY_TEXT) LIKE '%FROM%' AND
 NOT REGEXP_LIKE(UPPER(QUERY_TEXT),'.*INFORMATION_SCHEMA.*','s')
)

SELECT
 QUERY_DATE,
 COUNT(DISTINCT sq.QUERY_HASH) AS UNIQ_QUERIES,
 COUNT(DISTINCT l.USER_NAME) AS UNIQ_USER,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APPS,
 COUNT(DISTINCT sq.SESSION_ID) AS UNIQ_SESSION,
 SPLIT_PART(DB_S_TV_STR, '.', 1) AS target_DB,
 SPLIT_PART(DB_S_TV_STR, '.', 2) AS target_schema,
 SPLIT_PART(DB_S_TV_STR, '.', 3) AS target_table,
FROM sq
 JOIN snowflake.account_usage.sessions s ON s.session_id = sq.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
WHERE
 sq.IS_COUNT_Q = 'FALSE' AND
 DB_S_TV_STR IS NOT NULL
GROUP BY
 QUERY_DATE,
 target_DB,
 target_schema,
 target_table

© Copyright 2024 Mandiant

Unset

11

Query 2: Stacking Table and DB Access Application Name, IP, and
Operating System per Unique User and Day

Query

WITH sq AS (
 SELECT
 START_TIME,
 DATE(START_TIME) AS QUERY_DATE,
 QUERY_HASH,
 QUERY_TEXT,
 SESSION_ID,
 REGEXP_REPLACE(REGEXP_SUBSTR(QUERY_TEXT,
$$FROM.*\W([\w]+\.[^\s]+\.[\w]+).*$$,1,1,'mse'),'"','') as DB_S_TV_STR,
 CASE
 WHEN UPPER(QUERY_TEXT) LIKE '%COUNT(%' THEN 'TRUE'
 ELSE 'FALSE'
 END as IS_COUNT_Q
 FROM snowflake.account_usage.query_history q
 WHERE
 EXECUTION_STATUS = 'SUCCESS' AND
 (upper(QUERY_TEXT) LIKE 'SELECT%' OR upper(QUERY_TEXT) LIKE 'COPY
INTO%') AND
 upper(QUERY_TEXT) LIKE '%FROM%' AND
 NOT REGEXP_LIKE(UPPER(QUERY_TEXT),'.*INFORMATION_SCHEMA.*','s')
)

SELECT
 QUERY_DATE,
 l.USER_NAME AS USERNAME,
 COUNT(DISTINCT sq.QUERY_HASH) AS UNIQ_QUERIES,S
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APPS,
 COUNT(DISTINCT sq.SESSION_ID) AS UNIQ_SESSION,
 SPLIT_PART(DB_S_TV_STR, '.', 1) AS target_DB,
 SPLIT_PART(DB_S_TV_STR, '.', 2) AS target_schema,
 SPLIT_PART(DB_S_TV_STR, '.', 3) AS target_table,

© Copyright 2024 Mandiant

Unset

12

FROM sq
 JOIN snowflake.account_usage.sessions s ON s.session_id = sq.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
WHERE
 sq.IS_COUNT_Q = 'FALSE' AND
 DB_S_TV_STR IS NOT NULL
GROUP BY
 QUERY_DATE,
 USERNAME,
 target_DB,
 target_schema,
 target_table

Query 3: Stacking Table and DB Access per User, IP, and Operating System
per Unique Application Used and Day

Query

WITH sq AS (
 SELECT
 START_TIME,
 DATE(START_TIME) AS QUERY_DATE,
 QUERY_HASH,
 QUERY_TEXT,
 SESSION_ID,
 REGEXP_REPLACE(REGEXP_SUBSTR(QUERY_TEXT,
$$FROM.*\W([\w]+\.[^\s]+\.[\w]+).*$$,1,1,'mse'),'"','') as DB_S_TV_STR,
 CASE
 WHEN UPPER(QUERY_TEXT) LIKE '%COUNT(%' THEN 'TRUE'
 ELSE 'FALSE'
 END as IS_COUNT_Q
 FROM snowflake.account_usage.query_history q
 WHERE
 EXECUTION_STATUS = 'SUCCESS' AND
 (upper(QUERY_TEXT) LIKE 'SELECT%' OR upper(QUERY_TEXT) LIKE 'COPY
INTO%') AND
 upper(QUERY_TEXT) LIKE '%FROM%' AND
 NOT REGEXP_LIKE(UPPER(QUERY_TEXT),'.*INFORMATION_SCHEMA.*','s')
)

© Copyright 2024 Mandiant

13

SELECT
 QUERY_DATE,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 COUNT(DISTINCT sq.QUERY_HASH) AS UNIQ_QUERIES,
 COUNT(DISTINCT l.USER_NAME) AS UNIQ_USER,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
 COUNT(DISTINCT sq.SESSION_ID) AS UNIQ_SESSION,
 SPLIT_PART(DB_S_TV_STR, '.', 1) AS target_DB,
 SPLIT_PART(DB_S_TV_STR, '.', 2) AS target_schema,
 SPLIT_PART(DB_S_TV_STR, '.', 3) AS target_table,
FROM sq
 JOIN snowflake.account_usage.sessions s ON s.session_id = sq.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
WHERE
 sq.IS_COUNT_Q = 'FALSE' AND
 DB_S_TV_STR IS NOT NULL
GROUP BY
 QUERY_DATE,
 APPLICATION_NAME,
 target_DB,
 target_schema,
 target_table

User Creation and Deletion

Description
The “Snowflake.Account_Usage.Users” view can be utilized to identify all users currently and
historically present the target Snowflake account over the past year. In addition to creation,
deletion, and last password modification timestamps, other properties surrounding the account
such as role, MFA enforcement, and email address are also visible.

Potential Attacker Trends
Depending on the end goal of the attacker, behavior will vary per attack lifecycle. Focusing on
anomalies such as

● Account creations (CREATED_ON) followed by rapid deletions (DELETED_ON)
● Invalid or abnormal domains present in email addresses (EMAIL)

© Copyright 2024 Mandiant

Unset

14

● Abnormal password reset times (PASSWORD_LAST_SET_TIME)
● Disabled MFA (EXT_AUTHN_DUO) in an environment where it is normally required

Field Definition
The field definition for the users view can be found in the following Snowflake documentation:
https://docs.snowflake.com/en/sql-reference/account-usage/users

Query 1: Full export of Users View

Query

SELECT * FROM snowflake.account_usage.users

© Copyright 2024 Mandiant

15

Query Analysis

Frequency Analysis

Description
When performing recon on the environment, the number of queries performed by the attacker
were observed as a spike comparatively to those seen across normal days within the
environment. The queries below break out different ways of stacking the number of queries
based on User, Application Name, IP, and Operating System.

Potential Attacker Trends
Look for abnormal spikes across user accounts and IP addresses (specifically for service
accounts with relatively fixed rates of queries day per day due to automations).

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

© Copyright 2024 Mandiant

Unset

16

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

Query 1: Spikes in Query Count per Day (Showing Distinct and Count of
Users, Application Names, Operating System, and IP)

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 ARRAY_UNIQUE_AGG(l.CLIENT_IP)AS ARR_IP,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history ON l.EVENT_ID = s.LOGIN_EVENT_ID
GROUP BY
 QUERY_DATE

© Copyright 2024 Mandiant

Unset

Unset

17

Query 2: Query Frequency & Behavior per User

Query

SELECT
 q.USER_NAME AS USERNAME,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 ARRAY_UNIQUE_AGG(l.CLIENT_IP)AS ARR_IP,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history ON l.EVENT_ID = s.LOGIN_EVENT_ID
GROUP BY
 USERNAME

Query 3: Query Frequency & Behavior per IP

Query

SELECT
 l.CLIENT_IP AS IP,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,

© Copyright 2024 Mandiant

Unset

18

 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history ON l.EVENT_ID = s.LOGIN_EVENT_ID
GROUP BY
 IP

Query 4: Query Frequency & Behavior per Application Used

Query

SELECT
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 ARRAY_UNIQUE_AGG(l.CLIENT_IP)AS ARR_IP,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions ON s.session_id = q.session_id

© Copyright 2024 Mandiant

19

 JOIN snowflake.account_usage.login_history ON l.EVENT_ID = s.LOGIN_EVENT_ID
GROUP BY
 APPLICATION_NAME

Error Rate Analysis

Description
Similar to query frequency analysis, attackers often have abnormal failure/success rates as
compared to service and user account norms. Attacker brute force tools and fuzzers generate
failures while enumerating the DB schemas, while on the flipside a misconfigured service
account dropping in error % per day for a short span of time without explanation can be
indicative of interactive user activity on the account.

Observations
After identifying the error codes of interest (the top 4 with deviations during the time of interest),
failed transactions were filtered by user, date, and code. These can then be post-processed to
timechart the errors by user, and filtered by codes.

Warnings About FP/Noise
Error codes are 6 digit, zero padded, but the padded zeros are not visible in the output results.
Padded zeros must be explicitly specified if using IN/NOT IN conditions within the WHERE
statement.

An initial stack on error codes by DATE only will help identify the noisiest codes, which can then
be filtered out.

Since the user count can be very high, it is worth running different filters to check named-user
and non-named-user separately. In our case, named users had the format F.L, so NOT
USERNAME LIKE ‘%.%’ will remove named users.

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

© Copyright 2024 Mandiant

20

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

UNIQ_CODES Count of unique error codes

UNIQ_MSG Count of unique error messages

UNIQ_CODE_MSG_RATE UNIQ_CODES divided by the UNIQ_MSG

UNIQ_MSG_TOTAL_RATE UNIQ_MSG divided by the ERR_COUNT

Q_ERR_CODE Query error code

FAIL_COUNT Count of total "fail" results for queries run

SUCCESS_COUNT Count of total "success" results for queries run

FAIL_DAY_COUNT Count of unique days on which a fail occurred

AVG_QUERY_PER_DAY Average queries run per day

© Copyright 2024 Mandiant

Unset

Unset

21

Query 1: Identifying Which Queries Result in the Highest Error Rate

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 COUNT(DISTINCT CLIENT_IP) AS UNIQ_IP,
 COUNT(DISTINCT q.ERROR_CODE) AS UNIQ_CODES,
 COUNT(DISTINCT q.ERROR_MESSAGE) AS UNIQ_MSG,
 COUNT(q.ERROR_MESSAGE) AS ERR_COUNT,
 TO_NUMBER((UNIQ_CODES/UNIQ_MSG)*100, 10, 2) AS UNIQ_CODE_MSG_RATE,
 TO_NUMBER((UNIQ_MSG/ERR_COUNT)*100, 10, 2) AS UNIQ_MSG_TOTAL_RATE

FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
WHERE
 EXECUTION_STATUS = 'FAIL' AND NOT q.ERROR_CODE IN ('090106', '002129')
GROUP BY
 QUERY_DATE
ORDER BY
 QUERY_DATE

Query 2: Frequency of Errors by Error Reason Type (Codes, etc.)

Query

SELECT
 q.ERROR_CODE AS Q_ERR_CODE,
 COUNT(DISTINCT q.ERROR_MESSAGE) AS UNIQ_ERR_MSG,
 COUNT(EXECUTION_STATUS) AS HIT_COUNT,
 COUNT(DISTINCT CLIENT_IP) AS UNIQ_IP,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID

© Copyright 2024 Mandiant

Unset

22

WHERE
 EXECUTION_STATUS = 'FAIL'
GROUP BY
 Q_ERR_CODE
ORDER BY
 Q_ERR_CODE

Query 3: Frequency of Errors per IP

Query

WITH
 FAIL_DATES AS (
 SELECT
 l.CLIENT_IP AS IP,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_FAIL_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_FAIL_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS FAIL_DAY_COUNT,
 FROM
 snowflake.account_usage.query_history
 JOIN snowflake.account_usage.sessions s ON s.session_id =
q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
 WHERE EXECUTION_STATUS = 'FAIL'
 GROUP BY IP
)

SELECT * FROM
 (
 SELECT
 CLIENT_IP,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 SUM(FAIL_DAY_COUNT) AS FAIL_DAY_COUNT,
 COUNT_IF(EXECUTION_STATUS = 'FAIL') AS FAIL_COUNT,
 COUNT_IF(EXECUTION_STATUS = 'SUCCESS') AS SUCCESS_COUNT,
 COUNT(EXECUTION_STATUS) AS HIT_COUNT,
 TO_NUMBER((FAIL_COUNT/HIT_COUNT)*100, 10, 2) AS FAIL_RATE,

© Copyright 2024 Mandiant

Unset

23

 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 MIN(EARLIEST_FAIL_UTC) AS EARLIEST_FAIL_UTC,
 MAX(LATEST_FAIL_UTC) AS LATEST_FAIL_UTC,
 FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
 JOIN FAIL_DATES ON FAIL_DATES.IP = l.CLIENT_IP
 GROUP BY
 CLIENT_IP
)
ORDER BY
 CLIENT_IP

Query 4: Frequency of Errors per User

Query

WITH
 FAIL_DATES AS (
 SELECT
 l.USER_NAME AS USERNAME,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_FAIL_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_FAIL_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS FAIL_DAY_COUNT,
 FROM
 snowflake.account_usage.query_history
 JOIN snowflake.account_usage.sessions s ON s.session_id =
q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
 WHERE EXECUTION_STATUS = 'FAIL'
 GROUP BY USERNAME
)

© Copyright 2024 Mandiant

Unset

24

SELECT * FROM
 (
 SELECT
 USERNAME,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 SUM(FAIL_DAY_COUNT) AS FAIL_DAY_COUNT,
 COUNT_IF(EXECUTION_STATUS = 'FAIL') AS FAIL_COUNT,
 COUNT_IF(EXECUTION_STATUS = 'SUCCESS') AS SUCCESS_COUNT,
 COUNT(EXECUTION_STATUS) AS HIT_COUNT,
 TO_NUMBER((FAIL_COUNT/HIT_COUNT)*100, 10, 2) AS FAIL_RATE,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 MIN(EARLIEST_FAIL_UTC) AS EARLIEST_FAIL_UTC,
 MAX(LATEST_FAIL_UTC) AS LATEST_FAIL_UTC
 FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
 JOIN FAIL_DATES ON FAIL_DATES.USERNAME = l.USER_NAME
 GROUP BY
 USERNAME
)
ORDER BY
 USERNAME

Query 5: Frequency of Errors per Application Name

Query

WITH
 FAIL_DATES AS (
 SELECT
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 s.CLIENT_ENVIRONMENT AS JSON_BLOB,

© Copyright 2024 Mandiant

25

 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_FAIL_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_FAIL_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS FAIL_DAY_COUNT,
 FROM
 snowflake.account_usage.query_history
 JOIN snowflake.account_usage.sessions s ON s.session_id =
q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
 WHERE EXECUTION_STATUS = 'FAIL'
 GROUP BY APPLICATION_NAME, JSON_BLOB
)
SELECT
 APPLICATION_NAME,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 SUM(FAIL_DAY_COUNT) AS FAIL_DAY_COUNT,
 COUNT_IF(EXECUTION_STATUS = 'FAIL') AS FAIL_COUNT,
 COUNT_IF(EXECUTION_STATUS = 'SUCCESS') AS SUCCESS_COUNT,
 COUNT(EXECUTION_STATUS) AS HIT_COUNT,
 TO_NUMBER((FAIL_COUNT/HIT_COUNT)*100, 10, 2) AS FAIL_RATE,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 MIN(EARLIEST_FAIL_UTC) AS EARLIEST_FAIL_UTC,
 MAX(LATEST_FAIL_UTC) AS LATEST_FAIL_UTC
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
 JOIN FAIL_DATES ON FAIL_DATES.JSON_BLOB = s.CLIENT_ENVIRONMENT
GROUP BY
 APPLICATION_NAME
ORDER BY
 APPLICATION_NAME

© Copyright 2024 Mandiant

Unset

26

Query 6: Error Count, Code by User, Date, Select Code Inclusions

Query

SELECT
 l.USER_NAME AS USERNAME,
 DATE(START_TIME) AS QUERY_DATE,
 q.ERROR_CODE AS Q_ERR_CODE,
 COUNT(DISTINCT CLIENT_IP) AS UNIQ_IP,
 COUNT(DISTINCT q.ERROR_CODE) AS UNIQ_CODES,
 COUNT(DISTINCT q.ERROR_MESSAGE) AS UNIQ_MSG,
 COUNT(q.ERROR_MESSAGE) AS ERR_COUNT,
 TO_NUMBER((UNIQ_CODES/UNIQ_MSG)*100, 10, 2) AS UNIQ_CODE_MSG_RATE,
 TO_NUMBER((UNIQ_MSG/ERR_COUNT)*100, 10, 2) AS UNIQ_MSG_TOTAL_RATE
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
WHERE
 EXECUTION_STATUS = 'FAIL' AND q.ERROR_CODE IN ('<Code 1>','<Code 2>','<Code
3>','<Code 4>')
GROUP BY
 QUERY_DATE,
 USERNAME,
 Q_ERR_CODE

High Resource Consumption

Description
Analysis of resources and cloud credits used for queries. When attackers aim to exfiltrate large
amounts of data, the resources used to perform the queries/compression/exfil increase the
compute resources required above the norm.

Warnings About FP/Noise
Metrics for CREDITS_USED_CLOUD_SERVICES are often directly related to the computational
power needed to run a query; however, computational power is not always indicative of attacker
queries. Since an attacker is often enumerating and exfiltrating data, ROWS_PRODUCED and
ROWS_WRITTEN_TO_RESULT fields are more likely to help identify the latter.

© Copyright 2024 Mandiant

27

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

QUERY_LOAD_PERCENT Summation of the query load percent per grouped variation

QUERY_ACCELERATION_BY
TES_SCANNED

Summation of the query acceleration bytes scanned per grouped variation

QUERY_ACCELERATION_PA
RTITIONS_SCANNED

Summation of the query acceleration partitions scanned per grouped variation

QUERY_ACCELERATION_UP
PER_LIMIT_SCALE_FACTOR

Summation of the query acceleration scale factor per grouped variation

ARR_OUTBOUND_DATA_TR
ANSFER_CLOUD

Array of unique values for outbound data transfer cloud (AWS, AZURE etc.)

© Copyright 2024 Mandiant

28

ARR_OUTBOUND_DATA_TR
ANSFER_REGION

Array of unique values for outbound cloud regions (east, west, etc.)

OUTBOUND_DATA_TRANSF
ER_BYTES

Summation of the outbound data transfer bytes

ARR_INBOUND_DATA_TRA
NSFER_CLOUD

Array of unique values for inbound data transfer cloud (AWS, AZURE etc.)

ARR_INBOUND_DATA_TRA
NSFER_REGION

Array of unique values for inbound cloud regions (east, west, etc.)

INBOUND_DATA_TRANSFE
R_BYTES

Summation of the inbound data transfer bytes

CREDITS_USED_CLOUD_SE
RVICES

Summation of the cloud credits used

BYTES_WRITTEN Summation of the bytes written

BYTES_WRITTEN_TO_RESU
LT

Summation of the bytes written to result

BYTES_READ_FROM_RESUL
T

Summation of the bytes read from result

ROWS_PRODUCED Summation of the rows produced

ROWS_INSERTED Summation of the rows inserted

ROWS_UPDATED Summation of the rows updated

ROWS_DELETED Summation of the rows deleted

ROWS_UNLOADED Summation of the rows unloaded

ROWS_WRITTEN_TO_RESU
LT

Summation of the rows written to result

© Copyright 2024 Mandiant

Unset

Unset

29

Query 1: Identifying Count of Queries with High Resource Consumption

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 SUM(QUERY_LOAD_PERCENT) AS QUERY_LOAD_PERCENT,
 SUM(QUERY_ACCELERATION_BYTES_SCANNED) AS QUERY_ACCELERATION_BYTES_SCANNED,
 SUM(QUERY_ACCELERATION_PARTITIONS_SCANNED) AS
QUERY_ACCELERATION_PARTITIONS_SCANNED,
 SUM(QUERY_ACCELERATION_UPPER_LIMIT_SCALE_FACTOR) AS
QUERY_ACCELERATION_UPPER_LIMIT_SCALE_FACTOR,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
GROUP BY
 QUERY_DATE

Query 2: Identifying High Credit Usage

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,

© Copyright 2024 Mandiant

Unset

30

 ARRAY_UNIQUE_AGG(OUTBOUND_DATA_TRANSFER_CLOUD) AS
ARR_OUTBOUND_DATA_TRANSFER_CLOUD,
 ARRAY_UNIQUE_AGG(OUTBOUND_DATA_TRANSFER_REGION) AS
ARR_OUTBOUND_DATA_TRANSFER_REGION,
 SUM(OUTBOUND_DATA_TRANSFER_BYTES) AS OUTBOUND_DATA_TRANSFER_BYTES,
 ARRAY_UNIQUE_AGG(INBOUND_DATA_TRANSFER_CLOUD) AS
ARR_INBOUND_DATA_TRANSFER_CLOUD,
 ARRAY_UNIQUE_AGG(INBOUND_DATA_TRANSFER_REGION) AS
ARR_INBOUND_DATA_TRANSFER_REGION,
 SUM(INBOUND_DATA_TRANSFER_BYTES) AS INBOUND_DATA_TRANSFER_BYTES,
 SUM(CREDITS_USED_CLOUD_SERVICES) AS CREDITS_USED_CLOUD_SERVICES,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
GROUP BY
 QUERY_DATE

Query 3: Identify Resource Consumption per IP

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 l.CLIENT_IP AS IP,
 SUM(BYTES_WRITTEN) AS BYTES_WRITTEN,
 SUM(BYTES_WRITTEN_TO_RESULT) AS BYTES_WRITTEN_TO_RESULT,

© Copyright 2024 Mandiant

Unset

31

 SUM(BYTES_READ_FROM_RESULT) AS BYTES_READ_FROM_RESULT,
 SUM(ROWS_PRODUCED) AS ROWS_PRODUCED,
 SUM(ROWS_INSERTED) AS ROWS_INSERTED,
 SUM(ROWS_UPDATED) AS ROWS_UPDATED,
 SUM(ROWS_DELETED) AS ROWS_DELETED,
 SUM(ROWS_UNLOADED) AS ROWS_UNLOADED,
 SUM(ROWS_WRITTEN_TO_RESULT) AS ROWS_WRITTEN_TO_RESULT,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
GROUP BY
 QUERY_DATE,
 IP

Query 4: Identify Resource Consumption per User

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 l.USER_NAME AS USERNAME,
 SUM(BYTES_WRITTEN) AS BYTES_WRITTEN,
 SUM(BYTES_WRITTEN_TO_RESULT) AS BYTES_WRITTEN_TO_RESULT,
 SUM(BYTES_READ_FROM_RESULT) AS BYTES_READ_FROM_RESULT,
 SUM(ROWS_PRODUCED) AS ROWS_PRODUCED,

© Copyright 2024 Mandiant

Unset

32

 SUM(ROWS_INSERTED) AS ROWS_INSERTED,
 SUM(ROWS_UPDATED) AS ROWS_UPDATED,
 SUM(ROWS_DELETED) AS ROWS_DELETED,
 SUM(ROWS_UNLOADED) AS ROWS_UNLOADED,
 SUM(ROWS_WRITTEN_TO_RESULT) AS ROWS_WRITTEN_TO_RESULT,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
GROUP BY
 QUERY_DATE,
 USERNAME

Query 5: Stack by App

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 SUM(BYTES_WRITTEN) AS BYTES_WRITTEN,
 SUM(BYTES_WRITTEN_TO_RESULT) AS BYTES_WRITTEN_TO_RESULT,
 SUM(BYTES_READ_FROM_RESULT) AS BYTES_READ_FROM_RESULT,
 SUM(ROWS_PRODUCED) AS ROWS_PRODUCED,
 SUM(ROWS_INSERTED) AS ROWS_INSERTED,
 SUM(ROWS_UPDATED) AS ROWS_UPDATED,

© Copyright 2024 Mandiant

33

 SUM(ROWS_DELETED) AS ROWS_DELETED,
 SUM(ROWS_UNLOADED) AS ROWS_UNLOADED,
 SUM(ROWS_WRITTEN_TO_RESULT) AS ROWS_WRITTEN_TO_RESULT,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
GROUP BY
 QUERY_DATE,
 APPLICATION_NAME

Long Running Queries

Description
The following queries were designed to identify queries with abnormally long run times
compared to the average run within the snowflake environment. Two separate queries were
designed to break out Long Running Query Usage - Large amounts of abnormally long queries
from any single user or IP address.

Potential Attacker Trends
Please see the "Indicators of Compromise (IOCs)" section of the blog post for an actively
updated list of Applications observed by UNC5537.

All Observed Variations (If Relevant)
● Snowflake logging/app parsing is not bulletproof. In some cases, the application name

"C:\\Program" is seen in the s.CLIENT_ENVIRONMENT JSON blob, potentially caused by

© Copyright 2024 Mandiant

https://cloud.google.com/blog/topics/threat-intelligence/unc5537-snowflake-data-theft-extortion

34

the space in "Program Files." We have seen situations where the Windows Server 2022
compromised account and bad IP use this application name and believe it might be
truncating the DBeaver app name during logging.

● For reference, the functions PARSE_JSON() and JSON_EXTRACT_PATH_TEXT can be
used to extract/transform these fields.

Warnings About FP/Noise
● Although SnowSQL was observed linked to TA activity, we saw historic use of SnowSQL

for additional uncompromised accounts back in early 2023. This app name alone is not
a high-fidelity indicator, but should be paired with other findings.

● com.amazonaws.services.glue.ProcessLauncher and PythonConnector were our two
noisiest app names, and filtering these out reduced our dataset from 60k down to
around 500.

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

© Copyright 2024 Mandiant

Unset

35

UNIQ_IP Count of unique IPs per grouped variation

Query 1: Stack by IP

Query

SELECT
 CLIENT_IP,
 COUNT(DISTINCT QUERY_TEXT) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 ARRAY_UNIQUE_AGG(l.USER_NAME) AS ARR_USER,
 COUNT(DISTINCT l.USER_NAME) AS UNIQ_USER
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
WHERE
 q.total_elapsed_time >
 (SELECT AVG(TOTAL_ELAPSED_TIME) FROM
snowflake.account_usage.query_history q)
GROUP BY CLIENT_IP

© Copyright 2024 Mandiant

Unset

36

Query 2: Stack by User

Query

SELECT
 q.USER_NAME,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 ARRAY_UNIQUE_AGG(l.CLIENT_IP)AS ARR_IP,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
WHERE
 q.total_elapsed_time >
 (SELECT AVG(TOTAL_ELAPSED_TIME) FROM
snowflake.account_usage.query_history q)
GROUP BY q.USER_NAME

Multi-Day Duplicate Queries

Description
Several engagements have shown the attacker running many of the same queries across a
small selection of days. The below query can be run with your known bad IPs to identify if this
multi-day repeat pattern of queries exists in a client environment.

© Copyright 2024 Mandiant

Unset

37

Potential Attacker Trends
We observed the attacker running several thousand duplicate queries across three distinct days.
These will clearly stick out from the rest of the attacker’s activity.

Warnings About FP/Noise
Caution should be taken not to stack this query by username. Since the attacker may be using
an existing account, which itself may be used to run recurring queries, it will have a tendency to
show a high amount of noise.

Query 1: Multi-day repeats

Query

WITH sq AS (
 SELECT
 QUERY_HASH,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT
 FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
 WHERE l.CLIENT_IP IN ('IP-1', 'IP-2', ... 'IP-n')
 GROUP BY QUERY_HASH
)
SELECT // pull queries from 1, dates from 2, stack by 1) date 2) raw
query text
 DATE(START_TIME) AS QUERY_DATE,
 COUNT(DISTINCT q.QUERY_HASH) AS UNIQUE_QUERIES,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 ARRAY_UNIQUE_AGG(l.CLIENT_IP) AS ARR_IP,
 ARRAY_UNIQUE_AGG(l.USER_NAME) AS ARR_USERNAME
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
 JOIN sq ON sq.QUERY_HASH = q.QUERY_HASH
WHERE

© Copyright 2024 Mandiant

38

 sq.DAY_COUNT > 1
 AND
 l.CLIENT_IP IN ('IP-1', 'IP-2', ... 'IP-n')
GROUP BY
 QUERY_DATE
ORDER BY
 QUERY_DATE ASC

© Copyright 2024 Mandiant

39

Staging/Exfil

Data Compression

Description
Analysis of queries that use commands associated with compression, often seen prior to exfil.

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

© Copyright 2024 Mandiant

Unset

40

Query 1: Stats on Queries with Data Compression per User

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 l.USER_NAME AS USERNAME,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS') AS OP_SYS,
 COUNT(DISTINCT l.USER_NAME) AS UNIQ_USER,
 ARRAY_UNIQUE_AGG(l.USER_NAME) AS ARR_USER,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history ON l.EVENT_ID = s.LOGIN_EVENT_ID
WHERE
 (
 (upper(QUERY_TEXT) LIKE '%COPY FILE%') OR
 (upper(QUERY_TEXT) LIKE '%COPY INTO%')
)
GROUP BY
 QUERY_DATE,
 USERNAME

© Copyright 2024 Mandiant

Unset

41

Query 2: Stats on Queries with Data Compression per IP Address

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 l.CLIENT_IP AS IP,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS') AS OP_SYS,
 COUNT(DISTINCT l.USER_NAME) AS UNIQ_USER,
 ARRAY_UNIQUE_AGG(l.USER_NAME) AS ARR_USER,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history ON l.EVENT_ID = s.LOGIN_EVENT_ID
WHERE
 (
 (upper(QUERY_TEXT) LIKE '%COPY FILE%') OR
 (upper(QUERY_TEXT) LIKE '%COPY INTO%')
)
GROUP BY
 QUERY_DATE,
 IP

© Copyright 2024 Mandiant

Unset

42

Query 3: Stats on Queries with Data Compression per Applications Used

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS') AS OP_SYS,
 COUNT(DISTINCT l.USER_NAME) AS UNIQ_USER,
 ARRAY_UNIQUE_AGG(l.USER_NAME) AS ARR_USER,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history ON l.EVENT_ID = s.LOGIN_EVENT_ID
WHERE
 (
 (upper(QUERY_TEXT) LIKE '%COPY FILE%') OR
 (upper(QUERY_TEXT) LIKE '%COPY INTO%')
)
GROUP BY
 QUERY_DATE,
 APPLICATION_NAME

© Copyright 2024 Mandiant

43

Data Staging

Description
Analysis of queries with commands that are often associated with data staging prior to exfil.

Warnings About FP/Noise
In-house services and accounts may have back-up tasks associated with the staging
commands (also with the compression commands in another section). We had to filter out for
QUERY_TEXT LIKE ‘%NOISE%’ for Kafka, spark_connector, S3, and others. Additional useful
stacks to help with this can be stacking on date and OUTBOUND_DATA_TRANSFER_CLOUD, and
looking for spikes in AWS/AZURE etc. and then pivoting from there.

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

© Copyright 2024 Mandiant

Unset

44

Query 1: Stats on Queries with Data Staging per User

Query

SELECT
 l.USER_NAME AS USERNAME,
 QUERY_TYPE,
 DATE(START_TIME) AS QUERY_DATE,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
WHERE
 (
 upper(QUERY_TEXT) LIKE '%ALTER STAGE%' OR
 upper(QUERY_TEXT) LIKE '%ALTER VOLUME%' OR
 upper(QUERY_TEXT) LIKE '%CREATE STAGE%' OR
 upper(QUERY_TEXT) LIKE '%CREATE VOLUME%' OR
 upper(QUERY_TEXT) LIKE '%LS %' OR
 upper(QUERY_TEXT) LIKE '%DROP %'
)
GROUP BY
 USERNAME

© Copyright 2024 Mandiant

Unset

45

Query 2: Stats on Queries with Data Staging per IP Address

Query

SELECT
 l.CLIENT_IP AS IP,
 QUERY_TYPE,
 DATE(START_TIME) AS QUERY_DATE,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
 COUNT(DISTINCT l.USER_NAME) AS UNIQ_USER,
 ARRAY_UNIQUE_AGG(l.USER_NAME) AS ARR_USER,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
WHERE
 (
 upper(QUERY_TEXT) LIKE '%ALTER STAGE%' OR
 upper(QUERY_TEXT) LIKE '%ALTER VOLUME%' OR
 upper(QUERY_TEXT) LIKE '%CREATE STAGE%' OR
 upper(QUERY_TEXT) LIKE '%CREATE VOLUME%' OR
 upper(QUERY_TEXT) LIKE '%LS %' OR
 upper(QUERY_TEXT) LIKE '%DROP %'
)
GROUP BY
 IP

© Copyright 2024 Mandiant

Unset

46

Query 3: Stats on Queries with Data Staging per Applications Used

Query

SELECT
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 QUERY_TYPE,
 DATE(START_TIME) AS QUERY_DATE,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
 COUNT(DISTINCT l.USER_NAME) AS UNIQ_USER,
 ARRAY_UNIQUE_AGG(l.USER_NAME) AS ARR_USER,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
WHERE
 (
 upper(QUERY_TEXT) LIKE '%ALTER STAGE%' OR
 upper(QUERY_TEXT) LIKE '%ALTER VOLUME%' OR
 upper(QUERY_TEXT) LIKE '%CREATE STAGE%' OR
 upper(QUERY_TEXT) LIKE '%CREATE VOLUME%' OR
 upper(QUERY_TEXT) LIKE '%LS %' OR
 upper(QUERY_TEXT) LIKE '%DROP %'
)
GROUP BY
 APPLICATION_NAME

© Copyright 2024 Mandiant

47

Data Streams Outbound

Description
Analysis of queries to identify CREATE or ALTER STREAMS commands to detect the
configuration and potential use of outbound data streams.

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

© Copyright 2024 Mandiant

Unset

Unset

48

Query 1: Stats on Queries Involving Data Streams per User

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 l.USER_NAME AS USERNAME,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history ON l.EVENT_ID = s.LOGIN_EVENT_ID
WHERE
 ((upper(QUERY_TEXT) LIKE '%CREATE STREAM%') OR (upper(QUERY_TEXT) LIKE
'%ALTER STREAM%')) OR
 QUERY_TYPE IN ('CREATE_STREAM', 'ALTER_STREAM')
GROUP BY
 QUERY_DATE,
 USERNAME

Query 2: Stats on Queries Involving Data Streams per IP Address

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 l.CLIENT_IP AS IP,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,

© Copyright 2024 Mandiant

Unset

49

 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history ON l.EVENT_ID = s.LOGIN_EVENT_ID
WHERE
 ((upper(QUERY_TEXT) LIKE '%CREATE STREAM%') OR (upper(QUERY_TEXT) LIKE
'%ALTER STREAM%')) OR
 QUERY_TYPE IN ('CREATE_STREAM', 'ALTER_STREAM')
GROUP BY
 QUERY_DATE,
 IP

Query 3: Stats on Queries Involving Data Streams per Applications name

Query

SELECT
 DATE(START_TIME) AS QUERY_DATE,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,

© Copyright 2024 Mandiant

50

 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history ON l.EVENT_ID = s.LOGIN_EVENT_ID
WHERE
 ((upper(QUERY_TEXT) LIKE '%CREATE STREAM%') OR (upper(QUERY_TEXT) LIKE
'%ALTER STREAM%')) OR
 QUERY_TYPE IN ('CREATE_STREAM', 'ALTER_STREAM')
GROUP BY
 QUERY_DATE,
 APPLICATION_NAME

Manual Data Retrieval

Description
Analysis of queries containing commands often associated with manual exfiltration of data or
fetching of files that have been compressed/staged.

Warnings About FP/Noise
Check query type by stacking on filtered as GET_FILES to filter out noise, then re-run unstacked.

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

© Copyright 2024 Mandiant

Unset

51

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

Query 1: Stats on Queries Involving Data Retrieval per User

Query

SELECT
 l.USER_NAME AS USERNAME,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 TO_NUMBER((TOTAL_QUERIES/DAY_COUNT), 10, 2) AS AVG_QUERY_PER_DAY,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id

© Copyright 2024 Mandiant

Unset

52

 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
WHERE
 (upper(QUERY_TEXT) LIKE '%PUT FILES%')
 OR upper(QUERY_TEXT) LIKE '%GET FILES%'
 OR QUERY_TYPE = 'GET_FILES'
GROUP BY
 USERNAME

Query 2: Stats on Queries Involving Data Retrieval per IP Address

Query

SELECT
 l.CLIENT_IP AS IP,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 TO_NUMBER((TOTAL_QUERIES/DAY_COUNT), 10, 2) AS AVG_QUERY_PER_DAY,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(l.USER_NAME) AS ARR_USER,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
WHERE
 (upper(QUERY_TEXT) LIKE '%PUT FILES%')

© Copyright 2024 Mandiant

Unset

53

 OR upper(QUERY_TEXT) LIKE '%GET FILES%'
 OR QUERY_TYPE = 'GET_FILES'
GROUP BY
 IP

Query 3: Stats on Queries Involving Data Retrieval per Application Name

Query

SELECT
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 TO_NUMBER((TOTAL_QUERIES/DAY_COUNT), 10, 2) AS AVG_QUERY_PER_DAY,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(l.USER_NAME) AS ARR_USER,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
WHERE
 (upper(QUERY_TEXT) LIKE '%PUT FILES%')
 OR upper(QUERY_TEXT) LIKE '%GET FILES%'
 OR QUERY_TYPE = 'GET_FILES'
GROUP BY
 APPLICATION_NAME

© Copyright 2024 Mandiant

54

Network Analysis

Network Traffic Spikes

Description
Originally set to be various network-based analysis; however, after a few passes it was deemed
that brute force and logon fail-rate analysis were the only high-fidelity approaches.

Warnings About FP/Noise
Later evaluation of data and discussion with Snowflake showed that values for
BYTES_SENT_OVER_NETWORK and other seemingly network-based metrics are not entirely
accurate. For this reason they were omitted from this section. The fields tend to be populated so
you can search away as you desire; just know that those metrics should not be used as a basis
for byte-count reported to client regarding exfiltration.

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

© Copyright 2024 Mandiant

Unset

55

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

Query 1: Identify Logon Attempts (Failed and Successful)

Query

WITH FAIL_IPS AS (
 SELECT l.CLIENT_IP AS IP
 FROM snowflake.account_usage.login_history
 WHERE NOT IS_SUCCESS = 'YES'
 GROUP BY IP
)
SELECT
 DATE(EVENT_TIMESTAMP) AS QUERY_DATE,
 CLIENT_IP AS IP,
 COUNT(DISTINCT USER_NAME) AS UNIQ_USERS,
 COUNT_IF(IS_SUCCESS = 'YES') AS SUCCEED_COUNT,
 COUNT_IF(IS_SUCCESS = 'NO') AS FAIL_COUNT,
FROM snowflake.account_usage.login_history l
 JOIN FAIL_IPS f ON f.IP = l.CLIENT_IP
GROUP BY
 QUERY_DATE,
 IP

© Copyright 2024 Mandiant

56

User Analysis

Abnormal Application Names

Description
Frequency analysis of the application names used in running queries.

Potential Attacker Trends
Combined analysis (these methodologies and others in this document) revealed the attacker
using multiple applications for different stages of their attack. In our particular engagement, we
observed DBeaver being used for the initial enumeration (primarily "SHOW" commands), with
more fine-tuned queries executed by a .jar file, and finally large exfiltration executed by the
SnowSQL app.

Warnings About FP/Noise
Snowflake has some parsing issues with the values stored in their CLIENT_ENVIRONMENT json
blob. One value was stored as "C:\Program", which is believed to have resulted from parsing
issues with the space in "program files". For values that parse wrong for application name, the
json blob also includes versions of java/python etc. (as appropriate), and we were able to get
the specific version of the jar file used by the attacker.

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

© Copyright 2024 Mandiant

Unset

57

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

Query 1: Pivot on OS

Query

TH2-A USER, IP, OS by app name, version

SELECT
 REPORTED_CLIENT_TYPE,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 SPLIT_PART(CLIENT_APPLICATION_ID, ' ', 1) AS APP_NAME_TMP,
 CASE
 WHEN REGEXP_LIKE(CLIENT_APPLICATION_ID, 'Snowflake UI .+') THEN 'N/A'
 ELSE CLIENT_APPLICATION_VERSION
 END AS APP_VERSION,
 COUNT(CLIENT_APPLICATION_VERSION) AS HIT_COUNT,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 ARRAY_UNIQUE_AGG(l.CLIENT_IP)AS ARR_IP,
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,
 ARRAY_UNIQUE_AGG(l.USER_NAME) AS ARR_USER,
 COUNT(DISTINCT l.USER_NAME) AS UNIQ_USER
FROM snowflake.account_usage.query_history q

© Copyright 2024 Mandiant

Unset

58

 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
GROUP BY
 REPORTED_CLIENT_TYPE,
 APPLICATION_NAME,
 APP_NAME_TMP,
 APP_VERSION
ORDER BY
 REPORTED_CLIENT_TYPE,
 APPLICATION_NAME,
 APP_NAME_TMP,
 APP_VERSION

Query 2: Identify/Pivot per IP

Query

SELECT
 REPORTED_CLIENT_TYPE,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 SPLIT_PART(CLIENT_APPLICATION_ID, ' ', 1) AS APP_NAME_TMP,
 CASE
 WHEN REGEXP_LIKE(CLIENT_APPLICATION_ID, 'Snowflake UI .+') THEN 'N/A'
 ELSE CLIENT_APPLICATION_VERSION
 END AS APP_VERSION,
 l.CLIENT_IP AS IP_ADDR,
 COUNT(CLIENT_APPLICATION_VERSION) AS HIT_COUNT,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 ARRAY_UNIQUE_AGG(l.USER_NAME),

© Copyright 2024 Mandiant

Unset

59

 COUNT(DISTINCT l.USER_NAME) AS UNIQ_USER
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
GROUP BY
 REPORTED_CLIENT_TYPE,
 APPLICATION_NAME,
 APP_NAME_TMP,
 APP_VERSION,
 IP_ADDR
ORDER BY
 UNIQ_USER DESC

Query 3: Identify/Pivot per User

Query

SELECT
 REPORTED_CLIENT_TYPE,
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 SPLIT_PART(CLIENT_APPLICATION_ID, ' ', 1) AS APP_NAME_TMP,
 CASE
 WHEN REGEXP_LIKE(CLIENT_APPLICATION_ID, 'Snowflake UI .+') THEN 'N/A'
 ELSE CLIENT_APPLICATION_VERSION
 END AS APP_VERSION,
 l.USER_NAME AS USERNAME,
 COUNT(CLIENT_APPLICATION_VERSION) AS HIT_COUNT,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
UNIQ_OS,
 ARRAY_UNIQUE_AGG(l.CLIENT_IP),
 COUNT(DISTINCT l.CLIENT_IP) AS UNIQ_IP,

© Copyright 2024 Mandiant

60

FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
q.LOGIN_EVENT_ID
GROUP BY
 REPORTED_CLIENT_TYPE,
 APPLICATION_NAME,
 APP_NAME_TMP,
 APP_VERSION,
 USERNAME
ORDER BY
 UNIQ_IP DESC

Average User Sessions

Description
Sessions are tied to individual user logons, so multiple logins for any given username will
generate multiple session IDs. Given that most client services are crafted to login and execute a
specific purpose on a recurring basis, an attacker may logon multiple times for various different
reasons. Sessions per username spikes may indicate anomalous use.

Warnings About FP/Noise
A count of unique session IDs per IP per day can also show meaningful data for analysis. Care
should be taken as to the volume of IPs in your dataset before proceeding.

Running a distinct count of IPs, or distinct IPs per day/week/month, can help identify whether
your IP volume will be problematic for an extended query or not. An additional WHERE filter to
exclude all IPs where distinct session ID count <2 can also remove high volumes.

Stacking Field Definition

Field Name Field Definition

CLIENT_IP / IP IP address running queries

USERNAME Name of the user account that ran the query

APPLICATION_NAME The name of the application that ran queries, from CLIENT_ENVIRONMENT

© Copyright 2024 Mandiant

Unset

61

EARLIEST_UTC First time, grouped variation was observed, normalized to UTC as a string

LATEST_UTC Last time, grouped variation was observed, normalized to UTC as a string

UNIQUE_QUERIES Count of unique queries per grouped variation

TOTAL_QUERIES Count of total queries per grouped variation

DAY_COUNT Count of unique days active per grouped variation

UNIQ_USER Count of unique users per grouped variation

ARR_UNIQ_USER Array of users that ran queries per grouped variation

UNIQ_APP_NAME Count of unique application names per grouped variation

ARR_APP_NAME Array of application names per grouped variation

UNIQ_OS Count of unique operating systems per grouped variation

ARR_OP_SYS Array of operating systems per grouped variation

UNIQ_IP Count of unique IPs per grouped variation

Query 1: Stack by User

Query

SELECT
 l.USER_NAME AS USERNAME,
 DATE(START_TIME) AS QUERY_DATE,
 COUNT(DISTINCT s.SESSION_ID) AS UNIQ_SESSIONS,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,

© Copyright 2024 Mandiant

Unset

62

 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
GROUP BY
 QUERY_DATE,
 USERNAME

Query 2: Stack by IP

Query

SELECT
 l.CLIENT_IP AS IP,
 DATE(START_TIME) AS QUERY_DATE,
 COUNT(DISTINCT s.SESSION_ID) AS UNIQ_SESSIONS,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
GROUP BY
 QUERY_DATE,
 IP

© Copyright 2024 Mandiant

Unset

63

Query 3: Stack by App

Query

SELECT
 JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION') AS
APPLICATION_NAME,
 DATE(START_TIME) AS QUERY_DATE,
 COUNT(DISTINCT s.SESSION_ID) AS UNIQ_SESSIONS,
 COUNT(DISTINCT QUERY_HASH) AS UNIQUE_QUERIES,
 COUNT(QUERY_TEXT) AS TOTAL_QUERIES,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS EARLIEST_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', START_TIME)) ,'yyyy-mm-dd
hh24:mi:ss') AS LATEST_UTC,
 COUNT(DISTINCT DATE(START_TIME)) AS DAY_COUNT,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT,
'APPLICATION')) AS ARR_APP_NAME,
 COUNT(DISTINCT JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'APPLICATION'))
AS UNIQ_APP_NAME,
 ARRAY_UNIQUE_AGG(JSON_EXTRACT_PATH_TEXT(s.CLIENT_ENVIRONMENT, 'OS')) AS
ARR_OP_SYS
FROM snowflake.account_usage.query_history q
 JOIN snowflake.account_usage.sessions s ON s.session_id = q.session_id
 JOIN snowflake.account_usage.login_history l ON l.EVENT_ID =
s.LOGIN_EVENT_ID
GROUP BY
 QUERY_DATE,
 APPLICATION_NAME

© Copyright 2024 Mandiant

Unset

64

Query for Temporary Stages and External URLs
Description
Unlike the majority of the tables in “snowflake.account_usage,” the “stages” view will show a
table of all stages (Internal and External) historically created in that particular Snowflake
instance. Columns include timestamps showing creation date, modification date, and deletion
date, but most importantly the URL used to connect to a cloud environment if the stage was
external. A review of these distinct stage URLs can quickly identify unauthorized connections
previously or currently being made in the Snowflake environment.

The below query pulls out all external URLs used for stages. STAGE_TYPE can include AWS,
AZURE, etc. These can then be validated with the client to look for rogue stages.

Note that this table also includes the names of stages that have been deleted. If the attacker
creates and deletes a stage, the client will not necessarily be able to recover the stage, but there
will be evidence of the creation/deletion of the stage and the URL it was pointed to.

Query 1: Stage Name URL Where URL Is not NULL

Query

SELECT
 STAGE_NAME,
 STAGE_SCHEMA,
 STAGE_CATALOG,
 STAGE_URL,
 STAGE_REGION,
 STAGE_TYPE,
 STAGE_OWNER,
 TO_VARCHAR(MIN(CONVERT_TIMEZONE('UTC', CREATED)) ,'yyyy-mm-dd hh24:mi:ss')
AS CREATE_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', LAST_ALTERED)) ,'yyyy-mm-dd
hh24:mi:ss') AS LAST_ALTERED_UTC,
 TO_VARCHAR(MAX(CONVERT_TIMEZONE('UTC', DELETED)) ,'yyyy-mm-dd hh24:mi:ss')
AS DELETED_UTC,
 COUNT(DISTINCT STAGE_ID) AS UNIQ_STAGE_ID,
 ARRAY_UNIQUE_AGG(STAGE_ID) AS ARR_STAGE_ID
FROM snowflake.account_usage.stages
WHERE
 STAGE_URL IS NOT NULL
GROUP BY

© Copyright 2024 Mandiant

65

 STAGE_NAME,
 STAGE_SCHEMA,
 STAGE_CATALOG,
 STAGE_URL,
 STAGE_REGION,
 STAGE_TYPE,
 STAGE_OWNER

© Copyright 2024 Mandiant

