[go: nahoru, domu]

1/*
2 * Timer device implementation for SGI SN platforms.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (c) 2001-2006 Silicon Graphics, Inc.  All rights reserved.
9 *
10 * This driver exports an API that should be supportable by any HPET or IA-PC
11 * multimedia timer.  The code below is currently specific to the SGI Altix
12 * SHub RTC, however.
13 *
14 * 11/01/01 - jbarnes - initial revision
15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18 *		support via the posix timer interface
19 */
20
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/ioctl.h>
24#include <linux/module.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/mm.h>
28#include <linux/fs.h>
29#include <linux/mmtimer.h>
30#include <linux/miscdevice.h>
31#include <linux/posix-timers.h>
32#include <linux/interrupt.h>
33#include <linux/time.h>
34#include <linux/math64.h>
35#include <linux/mutex.h>
36#include <linux/slab.h>
37
38#include <asm/uaccess.h>
39#include <asm/sn/addrs.h>
40#include <asm/sn/intr.h>
41#include <asm/sn/shub_mmr.h>
42#include <asm/sn/nodepda.h>
43#include <asm/sn/shubio.h>
44
45MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
46MODULE_DESCRIPTION("SGI Altix RTC Timer");
47MODULE_LICENSE("GPL");
48
49/* name of the device, usually in /dev */
50#define MMTIMER_NAME "mmtimer"
51#define MMTIMER_DESC "SGI Altix RTC Timer"
52#define MMTIMER_VERSION "2.1"
53
54#define RTC_BITS 55 /* 55 bits for this implementation */
55
56static struct k_clock sgi_clock;
57
58extern unsigned long sn_rtc_cycles_per_second;
59
60#define RTC_COUNTER_ADDR        ((long *)LOCAL_MMR_ADDR(SH_RTC))
61
62#define rtc_time()              (*RTC_COUNTER_ADDR)
63
64static DEFINE_MUTEX(mmtimer_mutex);
65static long mmtimer_ioctl(struct file *file, unsigned int cmd,
66						unsigned long arg);
67static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
68
69/*
70 * Period in femtoseconds (10^-15 s)
71 */
72static unsigned long mmtimer_femtoperiod = 0;
73
74static const struct file_operations mmtimer_fops = {
75	.owner = THIS_MODULE,
76	.mmap =	mmtimer_mmap,
77	.unlocked_ioctl = mmtimer_ioctl,
78	.llseek = noop_llseek,
79};
80
81/*
82 * We only have comparison registers RTC1-4 currently available per
83 * node.  RTC0 is used by SAL.
84 */
85/* Check for an RTC interrupt pending */
86static int mmtimer_int_pending(int comparator)
87{
88	if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
89			SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
90		return 1;
91	else
92		return 0;
93}
94
95/* Clear the RTC interrupt pending bit */
96static void mmtimer_clr_int_pending(int comparator)
97{
98	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
99		SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
100}
101
102/* Setup timer on comparator RTC1 */
103static void mmtimer_setup_int_0(int cpu, u64 expires)
104{
105	u64 val;
106
107	/* Disable interrupt */
108	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
109
110	/* Initialize comparator value */
111	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
112
113	/* Clear pending bit */
114	mmtimer_clr_int_pending(0);
115
116	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
117		((u64)cpu_physical_id(cpu) <<
118			SH_RTC1_INT_CONFIG_PID_SHFT);
119
120	/* Set configuration */
121	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
122
123	/* Enable RTC interrupts */
124	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
125
126	/* Initialize comparator value */
127	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
128
129
130}
131
132/* Setup timer on comparator RTC2 */
133static void mmtimer_setup_int_1(int cpu, u64 expires)
134{
135	u64 val;
136
137	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
138
139	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
140
141	mmtimer_clr_int_pending(1);
142
143	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
144		((u64)cpu_physical_id(cpu) <<
145			SH_RTC2_INT_CONFIG_PID_SHFT);
146
147	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
148
149	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
150
151	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
152}
153
154/* Setup timer on comparator RTC3 */
155static void mmtimer_setup_int_2(int cpu, u64 expires)
156{
157	u64 val;
158
159	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
160
161	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
162
163	mmtimer_clr_int_pending(2);
164
165	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
166		((u64)cpu_physical_id(cpu) <<
167			SH_RTC3_INT_CONFIG_PID_SHFT);
168
169	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
170
171	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
172
173	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
174}
175
176/*
177 * This function must be called with interrupts disabled and preemption off
178 * in order to insure that the setup succeeds in a deterministic time frame.
179 * It will check if the interrupt setup succeeded.
180 */
181static int mmtimer_setup(int cpu, int comparator, unsigned long expires,
182	u64 *set_completion_time)
183{
184	switch (comparator) {
185	case 0:
186		mmtimer_setup_int_0(cpu, expires);
187		break;
188	case 1:
189		mmtimer_setup_int_1(cpu, expires);
190		break;
191	case 2:
192		mmtimer_setup_int_2(cpu, expires);
193		break;
194	}
195	/* We might've missed our expiration time */
196	*set_completion_time = rtc_time();
197	if (*set_completion_time <= expires)
198		return 1;
199
200	/*
201	 * If an interrupt is already pending then its okay
202	 * if not then we failed
203	 */
204	return mmtimer_int_pending(comparator);
205}
206
207static int mmtimer_disable_int(long nasid, int comparator)
208{
209	switch (comparator) {
210	case 0:
211		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
212			0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
213		break;
214	case 1:
215		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
216			0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
217		break;
218	case 2:
219		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
220			0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
221		break;
222	default:
223		return -EFAULT;
224	}
225	return 0;
226}
227
228#define COMPARATOR	1		/* The comparator to use */
229
230#define TIMER_OFF	0xbadcabLL	/* Timer is not setup */
231#define TIMER_SET	0		/* Comparator is set for this timer */
232
233#define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40
234
235/* There is one of these for each timer */
236struct mmtimer {
237	struct rb_node list;
238	struct k_itimer *timer;
239	int cpu;
240};
241
242struct mmtimer_node {
243	spinlock_t lock ____cacheline_aligned;
244	struct rb_root timer_head;
245	struct rb_node *next;
246	struct tasklet_struct tasklet;
247};
248static struct mmtimer_node *timers;
249
250static unsigned mmtimer_interval_retry_increment =
251	MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT;
252module_param(mmtimer_interval_retry_increment, uint, 0644);
253MODULE_PARM_DESC(mmtimer_interval_retry_increment,
254	"RTC ticks to add to expiration on interval retry (default 40)");
255
256/*
257 * Add a new mmtimer struct to the node's mmtimer list.
258 * This function assumes the struct mmtimer_node is locked.
259 */
260static void mmtimer_add_list(struct mmtimer *n)
261{
262	int nodeid = n->timer->it.mmtimer.node;
263	unsigned long expires = n->timer->it.mmtimer.expires;
264	struct rb_node **link = &timers[nodeid].timer_head.rb_node;
265	struct rb_node *parent = NULL;
266	struct mmtimer *x;
267
268	/*
269	 * Find the right place in the rbtree:
270	 */
271	while (*link) {
272		parent = *link;
273		x = rb_entry(parent, struct mmtimer, list);
274
275		if (expires < x->timer->it.mmtimer.expires)
276			link = &(*link)->rb_left;
277		else
278			link = &(*link)->rb_right;
279	}
280
281	/*
282	 * Insert the timer to the rbtree and check whether it
283	 * replaces the first pending timer
284	 */
285	rb_link_node(&n->list, parent, link);
286	rb_insert_color(&n->list, &timers[nodeid].timer_head);
287
288	if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
289			struct mmtimer, list)->timer->it.mmtimer.expires)
290		timers[nodeid].next = &n->list;
291}
292
293/*
294 * Set the comparator for the next timer.
295 * This function assumes the struct mmtimer_node is locked.
296 */
297static void mmtimer_set_next_timer(int nodeid)
298{
299	struct mmtimer_node *n = &timers[nodeid];
300	struct mmtimer *x;
301	struct k_itimer *t;
302	u64 expires, exp, set_completion_time;
303	int i;
304
305restart:
306	if (n->next == NULL)
307		return;
308
309	x = rb_entry(n->next, struct mmtimer, list);
310	t = x->timer;
311	if (!t->it.mmtimer.incr) {
312		/* Not an interval timer */
313		if (!mmtimer_setup(x->cpu, COMPARATOR,
314					t->it.mmtimer.expires,
315					&set_completion_time)) {
316			/* Late setup, fire now */
317			tasklet_schedule(&n->tasklet);
318		}
319		return;
320	}
321
322	/* Interval timer */
323	i = 0;
324	expires = exp = t->it.mmtimer.expires;
325	while (!mmtimer_setup(x->cpu, COMPARATOR, expires,
326				&set_completion_time)) {
327		int to;
328
329		i++;
330		expires = set_completion_time +
331				mmtimer_interval_retry_increment + (1 << i);
332		/* Calculate overruns as we go. */
333		to = ((u64)(expires - exp) / t->it.mmtimer.incr);
334		if (to) {
335			t->it_overrun += to;
336			t->it.mmtimer.expires += t->it.mmtimer.incr * to;
337			exp = t->it.mmtimer.expires;
338		}
339		if (i > 20) {
340			printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
341			t->it.mmtimer.clock = TIMER_OFF;
342			n->next = rb_next(&x->list);
343			rb_erase(&x->list, &n->timer_head);
344			kfree(x);
345			goto restart;
346		}
347	}
348}
349
350/**
351 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
352 * @file: file structure for the device
353 * @cmd: command to execute
354 * @arg: optional argument to command
355 *
356 * Executes the command specified by @cmd.  Returns 0 for success, < 0 for
357 * failure.
358 *
359 * Valid commands:
360 *
361 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
362 * of the page where the registers are mapped) for the counter in question.
363 *
364 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
365 * seconds
366 *
367 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
368 * specified by @arg
369 *
370 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
371 *
372 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
373 *
374 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
375 * in the address specified by @arg.
376 */
377static long mmtimer_ioctl(struct file *file, unsigned int cmd,
378						unsigned long arg)
379{
380	int ret = 0;
381
382	mutex_lock(&mmtimer_mutex);
383
384	switch (cmd) {
385	case MMTIMER_GETOFFSET:	/* offset of the counter */
386		/*
387		 * SN RTC registers are on their own 64k page
388		 */
389		if(PAGE_SIZE <= (1 << 16))
390			ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
391		else
392			ret = -ENOSYS;
393		break;
394
395	case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
396		if(copy_to_user((unsigned long __user *)arg,
397				&mmtimer_femtoperiod, sizeof(unsigned long)))
398			ret = -EFAULT;
399		break;
400
401	case MMTIMER_GETFREQ: /* frequency in Hz */
402		if(copy_to_user((unsigned long __user *)arg,
403				&sn_rtc_cycles_per_second,
404				sizeof(unsigned long)))
405			ret = -EFAULT;
406		break;
407
408	case MMTIMER_GETBITS: /* number of bits in the clock */
409		ret = RTC_BITS;
410		break;
411
412	case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
413		ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
414		break;
415
416	case MMTIMER_GETCOUNTER:
417		if(copy_to_user((unsigned long __user *)arg,
418				RTC_COUNTER_ADDR, sizeof(unsigned long)))
419			ret = -EFAULT;
420		break;
421	default:
422		ret = -ENOTTY;
423		break;
424	}
425	mutex_unlock(&mmtimer_mutex);
426	return ret;
427}
428
429/**
430 * mmtimer_mmap - maps the clock's registers into userspace
431 * @file: file structure for the device
432 * @vma: VMA to map the registers into
433 *
434 * Calls remap_pfn_range() to map the clock's registers into
435 * the calling process' address space.
436 */
437static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
438{
439	unsigned long mmtimer_addr;
440
441	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
442		return -EINVAL;
443
444	if (vma->vm_flags & VM_WRITE)
445		return -EPERM;
446
447	if (PAGE_SIZE > (1 << 16))
448		return -ENOSYS;
449
450	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
451
452	mmtimer_addr = __pa(RTC_COUNTER_ADDR);
453	mmtimer_addr &= ~(PAGE_SIZE - 1);
454	mmtimer_addr &= 0xfffffffffffffffUL;
455
456	if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
457					PAGE_SIZE, vma->vm_page_prot)) {
458		printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
459		return -EAGAIN;
460	}
461
462	return 0;
463}
464
465static struct miscdevice mmtimer_miscdev = {
466	SGI_MMTIMER,
467	MMTIMER_NAME,
468	&mmtimer_fops
469};
470
471static struct timespec sgi_clock_offset;
472static int sgi_clock_period;
473
474/*
475 * Posix Timer Interface
476 */
477
478static struct timespec sgi_clock_offset;
479static int sgi_clock_period;
480
481static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
482{
483	u64 nsec;
484
485	nsec = rtc_time() * sgi_clock_period
486			+ sgi_clock_offset.tv_nsec;
487	*tp = ns_to_timespec(nsec);
488	tp->tv_sec += sgi_clock_offset.tv_sec;
489	return 0;
490};
491
492static int sgi_clock_set(const clockid_t clockid, const struct timespec *tp)
493{
494
495	u64 nsec;
496	u32 rem;
497
498	nsec = rtc_time() * sgi_clock_period;
499
500	sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
501
502	if (rem <= tp->tv_nsec)
503		sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
504	else {
505		sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
506		sgi_clock_offset.tv_sec--;
507	}
508	return 0;
509}
510
511/**
512 * mmtimer_interrupt - timer interrupt handler
513 * @irq: irq received
514 * @dev_id: device the irq came from
515 *
516 * Called when one of the comarators matches the counter, This
517 * routine will send signals to processes that have requested
518 * them.
519 *
520 * This interrupt is run in an interrupt context
521 * by the SHUB. It is therefore safe to locally access SHub
522 * registers.
523 */
524static irqreturn_t
525mmtimer_interrupt(int irq, void *dev_id)
526{
527	unsigned long expires = 0;
528	int result = IRQ_NONE;
529	unsigned indx = cpu_to_node(smp_processor_id());
530	struct mmtimer *base;
531
532	spin_lock(&timers[indx].lock);
533	base = rb_entry(timers[indx].next, struct mmtimer, list);
534	if (base == NULL) {
535		spin_unlock(&timers[indx].lock);
536		return result;
537	}
538
539	if (base->cpu == smp_processor_id()) {
540		if (base->timer)
541			expires = base->timer->it.mmtimer.expires;
542		/* expires test won't work with shared irqs */
543		if ((mmtimer_int_pending(COMPARATOR) > 0) ||
544			(expires && (expires <= rtc_time()))) {
545			mmtimer_clr_int_pending(COMPARATOR);
546			tasklet_schedule(&timers[indx].tasklet);
547			result = IRQ_HANDLED;
548		}
549	}
550	spin_unlock(&timers[indx].lock);
551	return result;
552}
553
554static void mmtimer_tasklet(unsigned long data)
555{
556	int nodeid = data;
557	struct mmtimer_node *mn = &timers[nodeid];
558	struct mmtimer *x;
559	struct k_itimer *t;
560	unsigned long flags;
561
562	/* Send signal and deal with periodic signals */
563	spin_lock_irqsave(&mn->lock, flags);
564	if (!mn->next)
565		goto out;
566
567	x = rb_entry(mn->next, struct mmtimer, list);
568	t = x->timer;
569
570	if (t->it.mmtimer.clock == TIMER_OFF)
571		goto out;
572
573	t->it_overrun = 0;
574
575	mn->next = rb_next(&x->list);
576	rb_erase(&x->list, &mn->timer_head);
577
578	if (posix_timer_event(t, 0) != 0)
579		t->it_overrun++;
580
581	if(t->it.mmtimer.incr) {
582		t->it.mmtimer.expires += t->it.mmtimer.incr;
583		mmtimer_add_list(x);
584	} else {
585		/* Ensure we don't false trigger in mmtimer_interrupt */
586		t->it.mmtimer.clock = TIMER_OFF;
587		t->it.mmtimer.expires = 0;
588		kfree(x);
589	}
590	/* Set comparator for next timer, if there is one */
591	mmtimer_set_next_timer(nodeid);
592
593	t->it_overrun_last = t->it_overrun;
594out:
595	spin_unlock_irqrestore(&mn->lock, flags);
596}
597
598static int sgi_timer_create(struct k_itimer *timer)
599{
600	/* Insure that a newly created timer is off */
601	timer->it.mmtimer.clock = TIMER_OFF;
602	return 0;
603}
604
605/* This does not really delete a timer. It just insures
606 * that the timer is not active
607 *
608 * Assumption: it_lock is already held with irq's disabled
609 */
610static int sgi_timer_del(struct k_itimer *timr)
611{
612	cnodeid_t nodeid = timr->it.mmtimer.node;
613	unsigned long irqflags;
614
615	spin_lock_irqsave(&timers[nodeid].lock, irqflags);
616	if (timr->it.mmtimer.clock != TIMER_OFF) {
617		unsigned long expires = timr->it.mmtimer.expires;
618		struct rb_node *n = timers[nodeid].timer_head.rb_node;
619		struct mmtimer *uninitialized_var(t);
620		int r = 0;
621
622		timr->it.mmtimer.clock = TIMER_OFF;
623		timr->it.mmtimer.expires = 0;
624
625		while (n) {
626			t = rb_entry(n, struct mmtimer, list);
627			if (t->timer == timr)
628				break;
629
630			if (expires < t->timer->it.mmtimer.expires)
631				n = n->rb_left;
632			else
633				n = n->rb_right;
634		}
635
636		if (!n) {
637			spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
638			return 0;
639		}
640
641		if (timers[nodeid].next == n) {
642			timers[nodeid].next = rb_next(n);
643			r = 1;
644		}
645
646		rb_erase(n, &timers[nodeid].timer_head);
647		kfree(t);
648
649		if (r) {
650			mmtimer_disable_int(cnodeid_to_nasid(nodeid),
651				COMPARATOR);
652			mmtimer_set_next_timer(nodeid);
653		}
654	}
655	spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
656	return 0;
657}
658
659/* Assumption: it_lock is already held with irq's disabled */
660static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
661{
662
663	if (timr->it.mmtimer.clock == TIMER_OFF) {
664		cur_setting->it_interval.tv_nsec = 0;
665		cur_setting->it_interval.tv_sec = 0;
666		cur_setting->it_value.tv_nsec = 0;
667		cur_setting->it_value.tv_sec =0;
668		return;
669	}
670
671	cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
672	cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
673}
674
675
676static int sgi_timer_set(struct k_itimer *timr, int flags,
677	struct itimerspec * new_setting,
678	struct itimerspec * old_setting)
679{
680	unsigned long when, period, irqflags;
681	int err = 0;
682	cnodeid_t nodeid;
683	struct mmtimer *base;
684	struct rb_node *n;
685
686	if (old_setting)
687		sgi_timer_get(timr, old_setting);
688
689	sgi_timer_del(timr);
690	when = timespec_to_ns(&new_setting->it_value);
691	period = timespec_to_ns(&new_setting->it_interval);
692
693	if (when == 0)
694		/* Clear timer */
695		return 0;
696
697	base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
698	if (base == NULL)
699		return -ENOMEM;
700
701	if (flags & TIMER_ABSTIME) {
702		struct timespec n;
703		unsigned long now;
704
705		getnstimeofday(&n);
706		now = timespec_to_ns(&n);
707		if (when > now)
708			when -= now;
709		else
710			/* Fire the timer immediately */
711			when = 0;
712	}
713
714	/*
715	 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
716	 * to getnstimeofday() in order to be as faithful as possible to the time
717	 * specified.
718	 */
719	when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
720	period = (period + sgi_clock_period - 1)  / sgi_clock_period;
721
722	/*
723	 * We are allocating a local SHub comparator. If we would be moved to another
724	 * cpu then another SHub may be local to us. Prohibit that by switching off
725	 * preemption.
726	 */
727	preempt_disable();
728
729	nodeid =  cpu_to_node(smp_processor_id());
730
731	/* Lock the node timer structure */
732	spin_lock_irqsave(&timers[nodeid].lock, irqflags);
733
734	base->timer = timr;
735	base->cpu = smp_processor_id();
736
737	timr->it.mmtimer.clock = TIMER_SET;
738	timr->it.mmtimer.node = nodeid;
739	timr->it.mmtimer.incr = period;
740	timr->it.mmtimer.expires = when;
741
742	n = timers[nodeid].next;
743
744	/* Add the new struct mmtimer to node's timer list */
745	mmtimer_add_list(base);
746
747	if (timers[nodeid].next == n) {
748		/* No need to reprogram comparator for now */
749		spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
750		preempt_enable();
751		return err;
752	}
753
754	/* We need to reprogram the comparator */
755	if (n)
756		mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
757
758	mmtimer_set_next_timer(nodeid);
759
760	/* Unlock the node timer structure */
761	spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
762
763	preempt_enable();
764
765	return err;
766}
767
768static int sgi_clock_getres(const clockid_t which_clock, struct timespec *tp)
769{
770	tp->tv_sec = 0;
771	tp->tv_nsec = sgi_clock_period;
772	return 0;
773}
774
775static struct k_clock sgi_clock = {
776	.clock_set	= sgi_clock_set,
777	.clock_get	= sgi_clock_get,
778	.clock_getres	= sgi_clock_getres,
779	.timer_create	= sgi_timer_create,
780	.timer_set	= sgi_timer_set,
781	.timer_del	= sgi_timer_del,
782	.timer_get	= sgi_timer_get
783};
784
785/**
786 * mmtimer_init - device initialization routine
787 *
788 * Does initial setup for the mmtimer device.
789 */
790static int __init mmtimer_init(void)
791{
792	cnodeid_t node, maxn = -1;
793
794	if (!ia64_platform_is("sn2"))
795		return 0;
796
797	/*
798	 * Sanity check the cycles/sec variable
799	 */
800	if (sn_rtc_cycles_per_second < 100000) {
801		printk(KERN_ERR "%s: unable to determine clock frequency\n",
802		       MMTIMER_NAME);
803		goto out1;
804	}
805
806	mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
807			       2) / sn_rtc_cycles_per_second;
808
809	if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
810		printk(KERN_WARNING "%s: unable to allocate interrupt.",
811			MMTIMER_NAME);
812		goto out1;
813	}
814
815	if (misc_register(&mmtimer_miscdev)) {
816		printk(KERN_ERR "%s: failed to register device\n",
817		       MMTIMER_NAME);
818		goto out2;
819	}
820
821	/* Get max numbered node, calculate slots needed */
822	for_each_online_node(node) {
823		maxn = node;
824	}
825	maxn++;
826
827	/* Allocate list of node ptrs to mmtimer_t's */
828	timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
829	if (!timers) {
830		printk(KERN_ERR "%s: failed to allocate memory for device\n",
831				MMTIMER_NAME);
832		goto out3;
833	}
834
835	/* Initialize struct mmtimer's for each online node */
836	for_each_online_node(node) {
837		spin_lock_init(&timers[node].lock);
838		tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
839			(unsigned long) node);
840	}
841
842	sgi_clock_period = NSEC_PER_SEC / sn_rtc_cycles_per_second;
843	posix_timers_register_clock(CLOCK_SGI_CYCLE, &sgi_clock);
844
845	printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
846	       sn_rtc_cycles_per_second/(unsigned long)1E6);
847
848	return 0;
849
850out3:
851	misc_deregister(&mmtimer_miscdev);
852out2:
853	free_irq(SGI_MMTIMER_VECTOR, NULL);
854out1:
855	return -1;
856}
857
858module_init(mmtimer_init);
859