[go: nahoru, domu]

1/*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25#include <subdev/bios.h>
26#include <subdev/bios/pll.h>
27
28#include "nv50.h"
29#include "pll.h"
30#include "seq.h"
31
32static u32
33read_div(struct nv50_clock_priv *priv)
34{
35	switch (nv_device(priv)->chipset) {
36	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
37	case 0x84:
38	case 0x86:
39	case 0x98:
40	case 0xa0:
41		return nv_rd32(priv, 0x004700);
42	case 0x92:
43	case 0x94:
44	case 0x96:
45		return nv_rd32(priv, 0x004800);
46	default:
47		return 0x00000000;
48	}
49}
50
51static u32
52read_pll_src(struct nv50_clock_priv *priv, u32 base)
53{
54	struct nouveau_clock *clk = &priv->base;
55	u32 coef, ref = clk->read(clk, nv_clk_src_crystal);
56	u32 rsel = nv_rd32(priv, 0x00e18c);
57	int P, N, M, id;
58
59	switch (nv_device(priv)->chipset) {
60	case 0x50:
61	case 0xa0:
62		switch (base) {
63		case 0x4020:
64		case 0x4028: id = !!(rsel & 0x00000004); break;
65		case 0x4008: id = !!(rsel & 0x00000008); break;
66		case 0x4030: id = 0; break;
67		default:
68			nv_error(priv, "ref: bad pll 0x%06x\n", base);
69			return 0;
70		}
71
72		coef = nv_rd32(priv, 0x00e81c + (id * 0x0c));
73		ref *=  (coef & 0x01000000) ? 2 : 4;
74		P    =  (coef & 0x00070000) >> 16;
75		N    = ((coef & 0x0000ff00) >> 8) + 1;
76		M    = ((coef & 0x000000ff) >> 0) + 1;
77		break;
78	case 0x84:
79	case 0x86:
80	case 0x92:
81		coef = nv_rd32(priv, 0x00e81c);
82		P    = (coef & 0x00070000) >> 16;
83		N    = (coef & 0x0000ff00) >> 8;
84		M    = (coef & 0x000000ff) >> 0;
85		break;
86	case 0x94:
87	case 0x96:
88	case 0x98:
89		rsel = nv_rd32(priv, 0x00c050);
90		switch (base) {
91		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
92		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
93		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
94		case 0x4030: rsel = 3; break;
95		default:
96			nv_error(priv, "ref: bad pll 0x%06x\n", base);
97			return 0;
98		}
99
100		switch (rsel) {
101		case 0: id = 1; break;
102		case 1: return clk->read(clk, nv_clk_src_crystal);
103		case 2: return clk->read(clk, nv_clk_src_href);
104		case 3: id = 0; break;
105		}
106
107		coef =  nv_rd32(priv, 0x00e81c + (id * 0x28));
108		P    = (nv_rd32(priv, 0x00e824 + (id * 0x28)) >> 16) & 7;
109		P   += (coef & 0x00070000) >> 16;
110		N    = (coef & 0x0000ff00) >> 8;
111		M    = (coef & 0x000000ff) >> 0;
112		break;
113	default:
114		BUG_ON(1);
115	}
116
117	if (M)
118		return (ref * N / M) >> P;
119	return 0;
120}
121
122static u32
123read_pll_ref(struct nv50_clock_priv *priv, u32 base)
124{
125	struct nouveau_clock *clk = &priv->base;
126	u32 src, mast = nv_rd32(priv, 0x00c040);
127
128	switch (base) {
129	case 0x004028:
130		src = !!(mast & 0x00200000);
131		break;
132	case 0x004020:
133		src = !!(mast & 0x00400000);
134		break;
135	case 0x004008:
136		src = !!(mast & 0x00010000);
137		break;
138	case 0x004030:
139		src = !!(mast & 0x02000000);
140		break;
141	case 0x00e810:
142		return clk->read(clk, nv_clk_src_crystal);
143	default:
144		nv_error(priv, "bad pll 0x%06x\n", base);
145		return 0;
146	}
147
148	if (src)
149		return clk->read(clk, nv_clk_src_href);
150	return read_pll_src(priv, base);
151}
152
153static u32
154read_pll(struct nv50_clock_priv *priv, u32 base)
155{
156	struct nouveau_clock *clk = &priv->base;
157	u32 mast = nv_rd32(priv, 0x00c040);
158	u32 ctrl = nv_rd32(priv, base + 0);
159	u32 coef = nv_rd32(priv, base + 4);
160	u32 ref = read_pll_ref(priv, base);
161	u32 freq = 0;
162	int N1, N2, M1, M2;
163
164	if (base == 0x004028 && (mast & 0x00100000)) {
165		/* wtf, appears to only disable post-divider on nva0 */
166		if (nv_device(priv)->chipset != 0xa0)
167			return clk->read(clk, nv_clk_src_dom6);
168	}
169
170	N2 = (coef & 0xff000000) >> 24;
171	M2 = (coef & 0x00ff0000) >> 16;
172	N1 = (coef & 0x0000ff00) >> 8;
173	M1 = (coef & 0x000000ff);
174	if ((ctrl & 0x80000000) && M1) {
175		freq = ref * N1 / M1;
176		if ((ctrl & 0x40000100) == 0x40000000) {
177			if (M2)
178				freq = freq * N2 / M2;
179			else
180				freq = 0;
181		}
182	}
183
184	return freq;
185}
186
187static int
188nv50_clock_read(struct nouveau_clock *clk, enum nv_clk_src src)
189{
190	struct nv50_clock_priv *priv = (void *)clk;
191	u32 mast = nv_rd32(priv, 0x00c040);
192	u32 P = 0;
193
194	switch (src) {
195	case nv_clk_src_crystal:
196		return nv_device(priv)->crystal;
197	case nv_clk_src_href:
198		return 100000; /* PCIE reference clock */
199	case nv_clk_src_hclk:
200		return div_u64((u64)clk->read(clk, nv_clk_src_href) * 27778, 10000);
201	case nv_clk_src_hclkm3:
202		return clk->read(clk, nv_clk_src_hclk) * 3;
203	case nv_clk_src_hclkm3d2:
204		return clk->read(clk, nv_clk_src_hclk) * 3 / 2;
205	case nv_clk_src_host:
206		switch (mast & 0x30000000) {
207		case 0x00000000: return clk->read(clk, nv_clk_src_href);
208		case 0x10000000: break;
209		case 0x20000000: /* !0x50 */
210		case 0x30000000: return clk->read(clk, nv_clk_src_hclk);
211		}
212		break;
213	case nv_clk_src_core:
214		if (!(mast & 0x00100000))
215			P = (nv_rd32(priv, 0x004028) & 0x00070000) >> 16;
216		switch (mast & 0x00000003) {
217		case 0x00000000: return clk->read(clk, nv_clk_src_crystal) >> P;
218		case 0x00000001: return clk->read(clk, nv_clk_src_dom6);
219		case 0x00000002: return read_pll(priv, 0x004020) >> P;
220		case 0x00000003: return read_pll(priv, 0x004028) >> P;
221		}
222		break;
223	case nv_clk_src_shader:
224		P = (nv_rd32(priv, 0x004020) & 0x00070000) >> 16;
225		switch (mast & 0x00000030) {
226		case 0x00000000:
227			if (mast & 0x00000080)
228				return clk->read(clk, nv_clk_src_host) >> P;
229			return clk->read(clk, nv_clk_src_crystal) >> P;
230		case 0x00000010: break;
231		case 0x00000020: return read_pll(priv, 0x004028) >> P;
232		case 0x00000030: return read_pll(priv, 0x004020) >> P;
233		}
234		break;
235	case nv_clk_src_mem:
236		P = (nv_rd32(priv, 0x004008) & 0x00070000) >> 16;
237		if (nv_rd32(priv, 0x004008) & 0x00000200) {
238			switch (mast & 0x0000c000) {
239			case 0x00000000:
240				return clk->read(clk, nv_clk_src_crystal) >> P;
241			case 0x00008000:
242			case 0x0000c000:
243				return clk->read(clk, nv_clk_src_href) >> P;
244			}
245		} else {
246			return read_pll(priv, 0x004008) >> P;
247		}
248		break;
249	case nv_clk_src_vdec:
250		P = (read_div(priv) & 0x00000700) >> 8;
251		switch (nv_device(priv)->chipset) {
252		case 0x84:
253		case 0x86:
254		case 0x92:
255		case 0x94:
256		case 0x96:
257		case 0xa0:
258			switch (mast & 0x00000c00) {
259			case 0x00000000:
260				if (nv_device(priv)->chipset == 0xa0) /* wtf?? */
261					return clk->read(clk, nv_clk_src_core) >> P;
262				return clk->read(clk, nv_clk_src_crystal) >> P;
263			case 0x00000400:
264				return 0;
265			case 0x00000800:
266				if (mast & 0x01000000)
267					return read_pll(priv, 0x004028) >> P;
268				return read_pll(priv, 0x004030) >> P;
269			case 0x00000c00:
270				return clk->read(clk, nv_clk_src_core) >> P;
271			}
272			break;
273		case 0x98:
274			switch (mast & 0x00000c00) {
275			case 0x00000000:
276				return clk->read(clk, nv_clk_src_core) >> P;
277			case 0x00000400:
278				return 0;
279			case 0x00000800:
280				return clk->read(clk, nv_clk_src_hclkm3d2) >> P;
281			case 0x00000c00:
282				return clk->read(clk, nv_clk_src_mem) >> P;
283			}
284			break;
285		}
286		break;
287	case nv_clk_src_dom6:
288		switch (nv_device(priv)->chipset) {
289		case 0x50:
290		case 0xa0:
291			return read_pll(priv, 0x00e810) >> 2;
292		case 0x84:
293		case 0x86:
294		case 0x92:
295		case 0x94:
296		case 0x96:
297		case 0x98:
298			P = (read_div(priv) & 0x00000007) >> 0;
299			switch (mast & 0x0c000000) {
300			case 0x00000000: return clk->read(clk, nv_clk_src_href);
301			case 0x04000000: break;
302			case 0x08000000: return clk->read(clk, nv_clk_src_hclk);
303			case 0x0c000000:
304				return clk->read(clk, nv_clk_src_hclkm3) >> P;
305			}
306			break;
307		default:
308			break;
309		}
310	default:
311		break;
312	}
313
314	nv_debug(priv, "unknown clock source %d 0x%08x\n", src, mast);
315	return -EINVAL;
316}
317
318static u32
319calc_pll(struct nv50_clock_priv *priv, u32 reg, u32 clk, int *N, int *M, int *P)
320{
321	struct nouveau_bios *bios = nouveau_bios(priv);
322	struct nvbios_pll pll;
323	int ret;
324
325	ret = nvbios_pll_parse(bios, reg, &pll);
326	if (ret)
327		return 0;
328
329	pll.vco2.max_freq = 0;
330	pll.refclk = read_pll_ref(priv, reg);
331	if (!pll.refclk)
332		return 0;
333
334	return nv04_pll_calc(nv_subdev(priv), &pll, clk, N, M, NULL, NULL, P);
335}
336
337static inline u32
338calc_div(u32 src, u32 target, int *div)
339{
340	u32 clk0 = src, clk1 = src;
341	for (*div = 0; *div <= 7; (*div)++) {
342		if (clk0 <= target) {
343			clk1 = clk0 << (*div ? 1 : 0);
344			break;
345		}
346		clk0 >>= 1;
347	}
348
349	if (target - clk0 <= clk1 - target)
350		return clk0;
351	(*div)--;
352	return clk1;
353}
354
355static inline u32
356clk_same(u32 a, u32 b)
357{
358	return ((a / 1000) == (b / 1000));
359}
360
361static int
362nv50_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate)
363{
364	struct nv50_clock_priv *priv = (void *)clk;
365	struct nv50_clock_hwsq *hwsq = &priv->hwsq;
366	const int shader = cstate->domain[nv_clk_src_shader];
367	const int core = cstate->domain[nv_clk_src_core];
368	const int vdec = cstate->domain[nv_clk_src_vdec];
369	const int dom6 = cstate->domain[nv_clk_src_dom6];
370	u32 mastm = 0, mastv = 0;
371	u32 divsm = 0, divsv = 0;
372	int N, M, P1, P2;
373	int freq, out;
374
375	/* prepare a hwsq script from which we'll perform the reclock */
376	out = clk_init(hwsq, nv_subdev(clk));
377	if (out)
378		return out;
379
380	clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
381	clk_nsec(hwsq, 8000);
382	clk_setf(hwsq, 0x10, 0x00); /* disable fb */
383	clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
384
385	/* vdec: avoid modifying xpll until we know exactly how the other
386	 * clock domains work, i suspect at least some of them can also be
387	 * tied to xpll...
388	 */
389	if (vdec) {
390		/* see how close we can get using nvclk as a source */
391		freq = calc_div(core, vdec, &P1);
392
393		/* see how close we can get using xpll/hclk as a source */
394		if (nv_device(priv)->chipset != 0x98)
395			out = read_pll(priv, 0x004030);
396		else
397			out = clk->read(clk, nv_clk_src_hclkm3d2);
398		out = calc_div(out, vdec, &P2);
399
400		/* select whichever gets us closest */
401		if (abs(vdec - freq) <= abs(vdec - out)) {
402			if (nv_device(priv)->chipset != 0x98)
403				mastv |= 0x00000c00;
404			divsv |= P1 << 8;
405		} else {
406			mastv |= 0x00000800;
407			divsv |= P2 << 8;
408		}
409
410		mastm |= 0x00000c00;
411		divsm |= 0x00000700;
412	}
413
414	/* dom6: nfi what this is, but we're limited to various combinations
415	 * of the host clock frequency
416	 */
417	if (dom6) {
418		if (clk_same(dom6, clk->read(clk, nv_clk_src_href))) {
419			mastv |= 0x00000000;
420		} else
421		if (clk_same(dom6, clk->read(clk, nv_clk_src_hclk))) {
422			mastv |= 0x08000000;
423		} else {
424			freq = clk->read(clk, nv_clk_src_hclk) * 3;
425			freq = calc_div(freq, dom6, &P1);
426
427			mastv |= 0x0c000000;
428			divsv |= P1;
429		}
430
431		mastm |= 0x0c000000;
432		divsm |= 0x00000007;
433	}
434
435	/* vdec/dom6: switch to "safe" clocks temporarily, update dividers
436	 * and then switch to target clocks
437	 */
438	clk_mask(hwsq, mast, mastm, 0x00000000);
439	clk_mask(hwsq, divs, divsm, divsv);
440	clk_mask(hwsq, mast, mastm, mastv);
441
442	/* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
443	 * sclk to hclk) before reprogramming
444	 */
445	if (nv_device(priv)->chipset < 0x92)
446		clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
447	else
448		clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
449
450	/* core: for the moment at least, always use nvpll */
451	freq = calc_pll(priv, 0x4028, core, &N, &M, &P1);
452	if (freq == 0)
453		return -ERANGE;
454
455	clk_mask(hwsq, nvpll[0], 0xc03f0100,
456				 0x80000000 | (P1 << 19) | (P1 << 16));
457	clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
458
459	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
460	 * very careful that the shader clock is at least twice the core, or
461	 * some chipsets will be very unhappy.  i expect most or all of these
462	 * cases will be handled by tying to nvclk, but it's possible there's
463	 * corners
464	 */
465	if (P1-- && shader == (core << 1)) {
466		clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
467		clk_mask(hwsq, mast, 0x00100033, 0x00000023);
468	} else {
469		freq = calc_pll(priv, 0x4020, shader, &N, &M, &P1);
470		if (freq == 0)
471			return -ERANGE;
472
473		clk_mask(hwsq, spll[0], 0xc03f0100,
474					0x80000000 | (P1 << 19) | (P1 << 16));
475		clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
476		clk_mask(hwsq, mast, 0x00100033, 0x00000033);
477	}
478
479	/* restore normal operation */
480	clk_setf(hwsq, 0x10, 0x01); /* enable fb */
481	clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
482	clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
483	return 0;
484}
485
486static int
487nv50_clock_prog(struct nouveau_clock *clk)
488{
489	struct nv50_clock_priv *priv = (void *)clk;
490	return clk_exec(&priv->hwsq, true);
491}
492
493static void
494nv50_clock_tidy(struct nouveau_clock *clk)
495{
496	struct nv50_clock_priv *priv = (void *)clk;
497	clk_exec(&priv->hwsq, false);
498}
499
500int
501nv50_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
502		struct nouveau_oclass *oclass, void *data, u32 size,
503		struct nouveau_object **pobject)
504{
505	struct nv50_clock_oclass *pclass = (void *)oclass;
506	struct nv50_clock_priv *priv;
507	int ret;
508
509	ret = nouveau_clock_create(parent, engine, oclass, pclass->domains,
510				   NULL, 0, false, &priv);
511	*pobject = nv_object(priv);
512	if (ret)
513		return ret;
514
515	priv->hwsq.r_fifo = hwsq_reg(0x002504);
516	priv->hwsq.r_spll[0] = hwsq_reg(0x004020);
517	priv->hwsq.r_spll[1] = hwsq_reg(0x004024);
518	priv->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
519	priv->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
520	switch (nv_device(priv)->chipset) {
521	case 0x92:
522	case 0x94:
523	case 0x96:
524		priv->hwsq.r_divs = hwsq_reg(0x004800);
525		break;
526	default:
527		priv->hwsq.r_divs = hwsq_reg(0x004700);
528		break;
529	}
530	priv->hwsq.r_mast = hwsq_reg(0x00c040);
531
532	priv->base.read = nv50_clock_read;
533	priv->base.calc = nv50_clock_calc;
534	priv->base.prog = nv50_clock_prog;
535	priv->base.tidy = nv50_clock_tidy;
536	return 0;
537}
538
539static struct nouveau_clocks
540nv50_domains[] = {
541	{ nv_clk_src_crystal, 0xff },
542	{ nv_clk_src_href   , 0xff },
543	{ nv_clk_src_core   , 0xff, 0, "core", 1000 },
544	{ nv_clk_src_shader , 0xff, 0, "shader", 1000 },
545	{ nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
546	{ nv_clk_src_max }
547};
548
549struct nouveau_oclass *
550nv50_clock_oclass = &(struct nv50_clock_oclass) {
551	.base.handle = NV_SUBDEV(CLOCK, 0x50),
552	.base.ofuncs = &(struct nouveau_ofuncs) {
553		.ctor = nv50_clock_ctor,
554		.dtor = _nouveau_clock_dtor,
555		.init = _nouveau_clock_init,
556		.fini = _nouveau_clock_fini,
557	},
558	.domains = nv50_domains,
559}.base;
560