[go: nahoru, domu]

1/*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25#include <subdev/clock.h>
26#include <subdev/bios.h>
27#include <subdev/bios/pll.h>
28#include <subdev/timer.h>
29
30#include "pll.h"
31
32struct nvc0_clock_info {
33	u32 freq;
34	u32 ssel;
35	u32 mdiv;
36	u32 dsrc;
37	u32 ddiv;
38	u32 coef;
39};
40
41struct nvc0_clock_priv {
42	struct nouveau_clock base;
43	struct nvc0_clock_info eng[16];
44};
45
46static u32 read_div(struct nvc0_clock_priv *, int, u32, u32);
47
48static u32
49read_vco(struct nvc0_clock_priv *priv, u32 dsrc)
50{
51	struct nouveau_clock *clk = &priv->base;
52	u32 ssrc = nv_rd32(priv, dsrc);
53	if (!(ssrc & 0x00000100))
54		return clk->read(clk, nv_clk_src_sppll0);
55	return clk->read(clk, nv_clk_src_sppll1);
56}
57
58static u32
59read_pll(struct nvc0_clock_priv *priv, u32 pll)
60{
61	struct nouveau_clock *clk = &priv->base;
62	u32 ctrl = nv_rd32(priv, pll + 0x00);
63	u32 coef = nv_rd32(priv, pll + 0x04);
64	u32 P = (coef & 0x003f0000) >> 16;
65	u32 N = (coef & 0x0000ff00) >> 8;
66	u32 M = (coef & 0x000000ff) >> 0;
67	u32 sclk;
68
69	if (!(ctrl & 0x00000001))
70		return 0;
71
72	switch (pll) {
73	case 0x00e800:
74	case 0x00e820:
75		sclk = nv_device(priv)->crystal;
76		P = 1;
77		break;
78	case 0x132000:
79		sclk = clk->read(clk, nv_clk_src_mpllsrc);
80		break;
81	case 0x132020:
82		sclk = clk->read(clk, nv_clk_src_mpllsrcref);
83		break;
84	case 0x137000:
85	case 0x137020:
86	case 0x137040:
87	case 0x1370e0:
88		sclk = read_div(priv, (pll & 0xff) / 0x20, 0x137120, 0x137140);
89		break;
90	default:
91		return 0;
92	}
93
94	return sclk * N / M / P;
95}
96
97static u32
98read_div(struct nvc0_clock_priv *priv, int doff, u32 dsrc, u32 dctl)
99{
100	u32 ssrc = nv_rd32(priv, dsrc + (doff * 4));
101	u32 sctl = nv_rd32(priv, dctl + (doff * 4));
102
103	switch (ssrc & 0x00000003) {
104	case 0:
105		if ((ssrc & 0x00030000) != 0x00030000)
106			return nv_device(priv)->crystal;
107		return 108000;
108	case 2:
109		return 100000;
110	case 3:
111		if (sctl & 0x80000000) {
112			u32 sclk = read_vco(priv, dsrc + (doff * 4));
113			u32 sdiv = (sctl & 0x0000003f) + 2;
114			return (sclk * 2) / sdiv;
115		}
116
117		return read_vco(priv, dsrc + (doff * 4));
118	default:
119		return 0;
120	}
121}
122
123static u32
124read_clk(struct nvc0_clock_priv *priv, int clk)
125{
126	u32 sctl = nv_rd32(priv, 0x137250 + (clk * 4));
127	u32 ssel = nv_rd32(priv, 0x137100);
128	u32 sclk, sdiv;
129
130	if (ssel & (1 << clk)) {
131		if (clk < 7)
132			sclk = read_pll(priv, 0x137000 + (clk * 0x20));
133		else
134			sclk = read_pll(priv, 0x1370e0);
135		sdiv = ((sctl & 0x00003f00) >> 8) + 2;
136	} else {
137		sclk = read_div(priv, clk, 0x137160, 0x1371d0);
138		sdiv = ((sctl & 0x0000003f) >> 0) + 2;
139	}
140
141	if (sctl & 0x80000000)
142		return (sclk * 2) / sdiv;
143
144	return sclk;
145}
146
147static int
148nvc0_clock_read(struct nouveau_clock *clk, enum nv_clk_src src)
149{
150	struct nouveau_device *device = nv_device(clk);
151	struct nvc0_clock_priv *priv = (void *)clk;
152
153	switch (src) {
154	case nv_clk_src_crystal:
155		return device->crystal;
156	case nv_clk_src_href:
157		return 100000;
158	case nv_clk_src_sppll0:
159		return read_pll(priv, 0x00e800);
160	case nv_clk_src_sppll1:
161		return read_pll(priv, 0x00e820);
162
163	case nv_clk_src_mpllsrcref:
164		return read_div(priv, 0, 0x137320, 0x137330);
165	case nv_clk_src_mpllsrc:
166		return read_pll(priv, 0x132020);
167	case nv_clk_src_mpll:
168		return read_pll(priv, 0x132000);
169	case nv_clk_src_mdiv:
170		return read_div(priv, 0, 0x137300, 0x137310);
171	case nv_clk_src_mem:
172		if (nv_rd32(priv, 0x1373f0) & 0x00000002)
173			return clk->read(clk, nv_clk_src_mpll);
174		return clk->read(clk, nv_clk_src_mdiv);
175
176	case nv_clk_src_gpc:
177		return read_clk(priv, 0x00);
178	case nv_clk_src_rop:
179		return read_clk(priv, 0x01);
180	case nv_clk_src_hubk07:
181		return read_clk(priv, 0x02);
182	case nv_clk_src_hubk06:
183		return read_clk(priv, 0x07);
184	case nv_clk_src_hubk01:
185		return read_clk(priv, 0x08);
186	case nv_clk_src_copy:
187		return read_clk(priv, 0x09);
188	case nv_clk_src_daemon:
189		return read_clk(priv, 0x0c);
190	case nv_clk_src_vdec:
191		return read_clk(priv, 0x0e);
192	default:
193		nv_error(clk, "invalid clock source %d\n", src);
194		return -EINVAL;
195	}
196}
197
198static u32
199calc_div(struct nvc0_clock_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv)
200{
201	u32 div = min((ref * 2) / freq, (u32)65);
202	if (div < 2)
203		div = 2;
204
205	*ddiv = div - 2;
206	return (ref * 2) / div;
207}
208
209static u32
210calc_src(struct nvc0_clock_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
211{
212	u32 sclk;
213
214	/* use one of the fixed frequencies if possible */
215	*ddiv = 0x00000000;
216	switch (freq) {
217	case  27000:
218	case 108000:
219		*dsrc = 0x00000000;
220		if (freq == 108000)
221			*dsrc |= 0x00030000;
222		return freq;
223	case 100000:
224		*dsrc = 0x00000002;
225		return freq;
226	default:
227		*dsrc = 0x00000003;
228		break;
229	}
230
231	/* otherwise, calculate the closest divider */
232	sclk = read_vco(priv, 0x137160 + (clk * 4));
233	if (clk < 7)
234		sclk = calc_div(priv, clk, sclk, freq, ddiv);
235	return sclk;
236}
237
238static u32
239calc_pll(struct nvc0_clock_priv *priv, int clk, u32 freq, u32 *coef)
240{
241	struct nouveau_bios *bios = nouveau_bios(priv);
242	struct nvbios_pll limits;
243	int N, M, P, ret;
244
245	ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
246	if (ret)
247		return 0;
248
249	limits.refclk = read_div(priv, clk, 0x137120, 0x137140);
250	if (!limits.refclk)
251		return 0;
252
253	ret = nva3_pll_calc(nv_subdev(priv), &limits, freq, &N, NULL, &M, &P);
254	if (ret <= 0)
255		return 0;
256
257	*coef = (P << 16) | (N << 8) | M;
258	return ret;
259}
260
261static int
262calc_clk(struct nvc0_clock_priv *priv,
263	 struct nouveau_cstate *cstate, int clk, int dom)
264{
265	struct nvc0_clock_info *info = &priv->eng[clk];
266	u32 freq = cstate->domain[dom];
267	u32 src0, div0, div1D, div1P = 0;
268	u32 clk0, clk1 = 0;
269
270	/* invalid clock domain */
271	if (!freq)
272		return 0;
273
274	/* first possible path, using only dividers */
275	clk0 = calc_src(priv, clk, freq, &src0, &div0);
276	clk0 = calc_div(priv, clk, clk0, freq, &div1D);
277
278	/* see if we can get any closer using PLLs */
279	if (clk0 != freq && (0x00004387 & (1 << clk))) {
280		if (clk <= 7)
281			clk1 = calc_pll(priv, clk, freq, &info->coef);
282		else
283			clk1 = cstate->domain[nv_clk_src_hubk06];
284		clk1 = calc_div(priv, clk, clk1, freq, &div1P);
285	}
286
287	/* select the method which gets closest to target freq */
288	if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
289		info->dsrc = src0;
290		if (div0) {
291			info->ddiv |= 0x80000000;
292			info->ddiv |= div0 << 8;
293			info->ddiv |= div0;
294		}
295		if (div1D) {
296			info->mdiv |= 0x80000000;
297			info->mdiv |= div1D;
298		}
299		info->ssel = info->coef = 0;
300		info->freq = clk0;
301	} else {
302		if (div1P) {
303			info->mdiv |= 0x80000000;
304			info->mdiv |= div1P << 8;
305		}
306		info->ssel = (1 << clk);
307		info->freq = clk1;
308	}
309
310	return 0;
311}
312
313static int
314nvc0_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate)
315{
316	struct nvc0_clock_priv *priv = (void *)clk;
317	int ret;
318
319	if ((ret = calc_clk(priv, cstate, 0x00, nv_clk_src_gpc)) ||
320	    (ret = calc_clk(priv, cstate, 0x01, nv_clk_src_rop)) ||
321	    (ret = calc_clk(priv, cstate, 0x02, nv_clk_src_hubk07)) ||
322	    (ret = calc_clk(priv, cstate, 0x07, nv_clk_src_hubk06)) ||
323	    (ret = calc_clk(priv, cstate, 0x08, nv_clk_src_hubk01)) ||
324	    (ret = calc_clk(priv, cstate, 0x09, nv_clk_src_copy)) ||
325	    (ret = calc_clk(priv, cstate, 0x0c, nv_clk_src_daemon)) ||
326	    (ret = calc_clk(priv, cstate, 0x0e, nv_clk_src_vdec)))
327		return ret;
328
329	return 0;
330}
331
332static void
333nvc0_clock_prog_0(struct nvc0_clock_priv *priv, int clk)
334{
335	struct nvc0_clock_info *info = &priv->eng[clk];
336	if (clk < 7 && !info->ssel) {
337		nv_mask(priv, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
338		nv_wr32(priv, 0x137160 + (clk * 0x04), info->dsrc);
339	}
340}
341
342static void
343nvc0_clock_prog_1(struct nvc0_clock_priv *priv, int clk)
344{
345	nv_mask(priv, 0x137100, (1 << clk), 0x00000000);
346	nv_wait(priv, 0x137100, (1 << clk), 0x00000000);
347}
348
349static void
350nvc0_clock_prog_2(struct nvc0_clock_priv *priv, int clk)
351{
352	struct nvc0_clock_info *info = &priv->eng[clk];
353	const u32 addr = 0x137000 + (clk * 0x20);
354	if (clk <= 7) {
355		nv_mask(priv, addr + 0x00, 0x00000004, 0x00000000);
356		nv_mask(priv, addr + 0x00, 0x00000001, 0x00000000);
357		if (info->coef) {
358			nv_wr32(priv, addr + 0x04, info->coef);
359			nv_mask(priv, addr + 0x00, 0x00000001, 0x00000001);
360			nv_wait(priv, addr + 0x00, 0x00020000, 0x00020000);
361			nv_mask(priv, addr + 0x00, 0x00020004, 0x00000004);
362		}
363	}
364}
365
366static void
367nvc0_clock_prog_3(struct nvc0_clock_priv *priv, int clk)
368{
369	struct nvc0_clock_info *info = &priv->eng[clk];
370	if (info->ssel) {
371		nv_mask(priv, 0x137100, (1 << clk), info->ssel);
372		nv_wait(priv, 0x137100, (1 << clk), info->ssel);
373	}
374}
375
376static void
377nvc0_clock_prog_4(struct nvc0_clock_priv *priv, int clk)
378{
379	struct nvc0_clock_info *info = &priv->eng[clk];
380	nv_mask(priv, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
381}
382
383static int
384nvc0_clock_prog(struct nouveau_clock *clk)
385{
386	struct nvc0_clock_priv *priv = (void *)clk;
387	struct {
388		void (*exec)(struct nvc0_clock_priv *, int);
389	} stage[] = {
390		{ nvc0_clock_prog_0 }, /* div programming */
391		{ nvc0_clock_prog_1 }, /* select div mode */
392		{ nvc0_clock_prog_2 }, /* (maybe) program pll */
393		{ nvc0_clock_prog_3 }, /* (maybe) select pll mode */
394		{ nvc0_clock_prog_4 }, /* final divider */
395	};
396	int i, j;
397
398	for (i = 0; i < ARRAY_SIZE(stage); i++) {
399		for (j = 0; j < ARRAY_SIZE(priv->eng); j++) {
400			if (!priv->eng[j].freq)
401				continue;
402			stage[i].exec(priv, j);
403		}
404	}
405
406	return 0;
407}
408
409static void
410nvc0_clock_tidy(struct nouveau_clock *clk)
411{
412	struct nvc0_clock_priv *priv = (void *)clk;
413	memset(priv->eng, 0x00, sizeof(priv->eng));
414}
415
416static struct nouveau_clocks
417nvc0_domain[] = {
418	{ nv_clk_src_crystal, 0xff },
419	{ nv_clk_src_href   , 0xff },
420	{ nv_clk_src_hubk06 , 0x00 },
421	{ nv_clk_src_hubk01 , 0x01 },
422	{ nv_clk_src_copy   , 0x02 },
423	{ nv_clk_src_gpc    , 0x03, 0, "core", 2000 },
424	{ nv_clk_src_rop    , 0x04 },
425	{ nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
426	{ nv_clk_src_vdec   , 0x06 },
427	{ nv_clk_src_daemon , 0x0a },
428	{ nv_clk_src_hubk07 , 0x0b },
429	{ nv_clk_src_max }
430};
431
432static int
433nvc0_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
434		struct nouveau_oclass *oclass, void *data, u32 size,
435		struct nouveau_object **pobject)
436{
437	struct nvc0_clock_priv *priv;
438	int ret;
439
440	ret = nouveau_clock_create(parent, engine, oclass, nvc0_domain, NULL, 0,
441				   false, &priv);
442	*pobject = nv_object(priv);
443	if (ret)
444		return ret;
445
446	priv->base.read = nvc0_clock_read;
447	priv->base.calc = nvc0_clock_calc;
448	priv->base.prog = nvc0_clock_prog;
449	priv->base.tidy = nvc0_clock_tidy;
450	return 0;
451}
452
453struct nouveau_oclass
454nvc0_clock_oclass = {
455	.handle = NV_SUBDEV(CLOCK, 0xc0),
456	.ofuncs = &(struct nouveau_ofuncs) {
457		.ctor = nvc0_clock_ctor,
458		.dtor = _nouveau_clock_dtor,
459		.init = _nouveau_clock_init,
460		.fini = _nouveau_clock_fini,
461	},
462};
463