[go: nahoru, domu]

1/*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25#include <subdev/clock.h>
26#include <subdev/timer.h>
27#include <subdev/bios.h>
28#include <subdev/bios/pll.h>
29
30#include "pll.h"
31
32struct nve0_clock_info {
33	u32 freq;
34	u32 ssel;
35	u32 mdiv;
36	u32 dsrc;
37	u32 ddiv;
38	u32 coef;
39};
40
41struct nve0_clock_priv {
42	struct nouveau_clock base;
43	struct nve0_clock_info eng[16];
44};
45
46static u32 read_div(struct nve0_clock_priv *, int, u32, u32);
47static u32 read_pll(struct nve0_clock_priv *, u32);
48
49static u32
50read_vco(struct nve0_clock_priv *priv, u32 dsrc)
51{
52	u32 ssrc = nv_rd32(priv, dsrc);
53	if (!(ssrc & 0x00000100))
54		return read_pll(priv, 0x00e800);
55	return read_pll(priv, 0x00e820);
56}
57
58static u32
59read_pll(struct nve0_clock_priv *priv, u32 pll)
60{
61	u32 ctrl = nv_rd32(priv, pll + 0x00);
62	u32 coef = nv_rd32(priv, pll + 0x04);
63	u32 P = (coef & 0x003f0000) >> 16;
64	u32 N = (coef & 0x0000ff00) >> 8;
65	u32 M = (coef & 0x000000ff) >> 0;
66	u32 sclk;
67	u16 fN = 0xf000;
68
69	if (!(ctrl & 0x00000001))
70		return 0;
71
72	switch (pll) {
73	case 0x00e800:
74	case 0x00e820:
75		sclk = nv_device(priv)->crystal;
76		P = 1;
77		break;
78	case 0x132000:
79		sclk = read_pll(priv, 0x132020);
80		P = (coef & 0x10000000) ? 2 : 1;
81		break;
82	case 0x132020:
83		sclk = read_div(priv, 0, 0x137320, 0x137330);
84		fN   = nv_rd32(priv, pll + 0x10) >> 16;
85		break;
86	case 0x137000:
87	case 0x137020:
88	case 0x137040:
89	case 0x1370e0:
90		sclk = read_div(priv, (pll & 0xff) / 0x20, 0x137120, 0x137140);
91		break;
92	default:
93		return 0;
94	}
95
96	if (P == 0)
97		P = 1;
98
99	sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13);
100	return sclk / (M * P);
101}
102
103static u32
104read_div(struct nve0_clock_priv *priv, int doff, u32 dsrc, u32 dctl)
105{
106	u32 ssrc = nv_rd32(priv, dsrc + (doff * 4));
107	u32 sctl = nv_rd32(priv, dctl + (doff * 4));
108
109	switch (ssrc & 0x00000003) {
110	case 0:
111		if ((ssrc & 0x00030000) != 0x00030000)
112			return nv_device(priv)->crystal;
113		return 108000;
114	case 2:
115		return 100000;
116	case 3:
117		if (sctl & 0x80000000) {
118			u32 sclk = read_vco(priv, dsrc + (doff * 4));
119			u32 sdiv = (sctl & 0x0000003f) + 2;
120			return (sclk * 2) / sdiv;
121		}
122
123		return read_vco(priv, dsrc + (doff * 4));
124	default:
125		return 0;
126	}
127}
128
129static u32
130read_mem(struct nve0_clock_priv *priv)
131{
132	switch (nv_rd32(priv, 0x1373f4) & 0x0000000f) {
133	case 1: return read_pll(priv, 0x132020);
134	case 2: return read_pll(priv, 0x132000);
135	default:
136		return 0;
137	}
138}
139
140static u32
141read_clk(struct nve0_clock_priv *priv, int clk)
142{
143	u32 sctl = nv_rd32(priv, 0x137250 + (clk * 4));
144	u32 sclk, sdiv;
145
146	if (clk < 7) {
147		u32 ssel = nv_rd32(priv, 0x137100);
148		if (ssel & (1 << clk)) {
149			sclk = read_pll(priv, 0x137000 + (clk * 0x20));
150			sdiv = 1;
151		} else {
152			sclk = read_div(priv, clk, 0x137160, 0x1371d0);
153			sdiv = 0;
154		}
155	} else {
156		u32 ssrc = nv_rd32(priv, 0x137160 + (clk * 0x04));
157		if ((ssrc & 0x00000003) == 0x00000003) {
158			sclk = read_div(priv, clk, 0x137160, 0x1371d0);
159			if (ssrc & 0x00000100) {
160				if (ssrc & 0x40000000)
161					sclk = read_pll(priv, 0x1370e0);
162				sdiv = 1;
163			} else {
164				sdiv = 0;
165			}
166		} else {
167			sclk = read_div(priv, clk, 0x137160, 0x1371d0);
168			sdiv = 0;
169		}
170	}
171
172	if (sctl & 0x80000000) {
173		if (sdiv)
174			sdiv = ((sctl & 0x00003f00) >> 8) + 2;
175		else
176			sdiv = ((sctl & 0x0000003f) >> 0) + 2;
177		return (sclk * 2) / sdiv;
178	}
179
180	return sclk;
181}
182
183static int
184nve0_clock_read(struct nouveau_clock *clk, enum nv_clk_src src)
185{
186	struct nouveau_device *device = nv_device(clk);
187	struct nve0_clock_priv *priv = (void *)clk;
188
189	switch (src) {
190	case nv_clk_src_crystal:
191		return device->crystal;
192	case nv_clk_src_href:
193		return 100000;
194	case nv_clk_src_mem:
195		return read_mem(priv);
196	case nv_clk_src_gpc:
197		return read_clk(priv, 0x00);
198	case nv_clk_src_rop:
199		return read_clk(priv, 0x01);
200	case nv_clk_src_hubk07:
201		return read_clk(priv, 0x02);
202	case nv_clk_src_hubk06:
203		return read_clk(priv, 0x07);
204	case nv_clk_src_hubk01:
205		return read_clk(priv, 0x08);
206	case nv_clk_src_daemon:
207		return read_clk(priv, 0x0c);
208	case nv_clk_src_vdec:
209		return read_clk(priv, 0x0e);
210	default:
211		nv_error(clk, "invalid clock source %d\n", src);
212		return -EINVAL;
213	}
214}
215
216static u32
217calc_div(struct nve0_clock_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv)
218{
219	u32 div = min((ref * 2) / freq, (u32)65);
220	if (div < 2)
221		div = 2;
222
223	*ddiv = div - 2;
224	return (ref * 2) / div;
225}
226
227static u32
228calc_src(struct nve0_clock_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
229{
230	u32 sclk;
231
232	/* use one of the fixed frequencies if possible */
233	*ddiv = 0x00000000;
234	switch (freq) {
235	case  27000:
236	case 108000:
237		*dsrc = 0x00000000;
238		if (freq == 108000)
239			*dsrc |= 0x00030000;
240		return freq;
241	case 100000:
242		*dsrc = 0x00000002;
243		return freq;
244	default:
245		*dsrc = 0x00000003;
246		break;
247	}
248
249	/* otherwise, calculate the closest divider */
250	sclk = read_vco(priv, 0x137160 + (clk * 4));
251	if (clk < 7)
252		sclk = calc_div(priv, clk, sclk, freq, ddiv);
253	return sclk;
254}
255
256static u32
257calc_pll(struct nve0_clock_priv *priv, int clk, u32 freq, u32 *coef)
258{
259	struct nouveau_bios *bios = nouveau_bios(priv);
260	struct nvbios_pll limits;
261	int N, M, P, ret;
262
263	ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
264	if (ret)
265		return 0;
266
267	limits.refclk = read_div(priv, clk, 0x137120, 0x137140);
268	if (!limits.refclk)
269		return 0;
270
271	ret = nva3_pll_calc(nv_subdev(priv), &limits, freq, &N, NULL, &M, &P);
272	if (ret <= 0)
273		return 0;
274
275	*coef = (P << 16) | (N << 8) | M;
276	return ret;
277}
278
279static int
280calc_clk(struct nve0_clock_priv *priv,
281	 struct nouveau_cstate *cstate, int clk, int dom)
282{
283	struct nve0_clock_info *info = &priv->eng[clk];
284	u32 freq = cstate->domain[dom];
285	u32 src0, div0, div1D, div1P = 0;
286	u32 clk0, clk1 = 0;
287
288	/* invalid clock domain */
289	if (!freq)
290		return 0;
291
292	/* first possible path, using only dividers */
293	clk0 = calc_src(priv, clk, freq, &src0, &div0);
294	clk0 = calc_div(priv, clk, clk0, freq, &div1D);
295
296	/* see if we can get any closer using PLLs */
297	if (clk0 != freq && (0x0000ff87 & (1 << clk))) {
298		if (clk <= 7)
299			clk1 = calc_pll(priv, clk, freq, &info->coef);
300		else
301			clk1 = cstate->domain[nv_clk_src_hubk06];
302		clk1 = calc_div(priv, clk, clk1, freq, &div1P);
303	}
304
305	/* select the method which gets closest to target freq */
306	if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
307		info->dsrc = src0;
308		if (div0) {
309			info->ddiv |= 0x80000000;
310			info->ddiv |= div0;
311		}
312		if (div1D) {
313			info->mdiv |= 0x80000000;
314			info->mdiv |= div1D;
315		}
316		info->ssel = 0;
317		info->freq = clk0;
318	} else {
319		if (div1P) {
320			info->mdiv |= 0x80000000;
321			info->mdiv |= div1P << 8;
322		}
323		info->ssel = (1 << clk);
324		info->dsrc = 0x40000100;
325		info->freq = clk1;
326	}
327
328	return 0;
329}
330
331static int
332nve0_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate)
333{
334	struct nve0_clock_priv *priv = (void *)clk;
335	int ret;
336
337	if ((ret = calc_clk(priv, cstate, 0x00, nv_clk_src_gpc)) ||
338	    (ret = calc_clk(priv, cstate, 0x01, nv_clk_src_rop)) ||
339	    (ret = calc_clk(priv, cstate, 0x02, nv_clk_src_hubk07)) ||
340	    (ret = calc_clk(priv, cstate, 0x07, nv_clk_src_hubk06)) ||
341	    (ret = calc_clk(priv, cstate, 0x08, nv_clk_src_hubk01)) ||
342	    (ret = calc_clk(priv, cstate, 0x0c, nv_clk_src_daemon)) ||
343	    (ret = calc_clk(priv, cstate, 0x0e, nv_clk_src_vdec)))
344		return ret;
345
346	return 0;
347}
348
349static void
350nve0_clock_prog_0(struct nve0_clock_priv *priv, int clk)
351{
352	struct nve0_clock_info *info = &priv->eng[clk];
353	if (!info->ssel) {
354		nv_mask(priv, 0x1371d0 + (clk * 0x04), 0x8000003f, info->ddiv);
355		nv_wr32(priv, 0x137160 + (clk * 0x04), info->dsrc);
356	}
357}
358
359static void
360nve0_clock_prog_1_0(struct nve0_clock_priv *priv, int clk)
361{
362	nv_mask(priv, 0x137100, (1 << clk), 0x00000000);
363	nv_wait(priv, 0x137100, (1 << clk), 0x00000000);
364}
365
366static void
367nve0_clock_prog_1_1(struct nve0_clock_priv *priv, int clk)
368{
369	nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000000);
370}
371
372static void
373nve0_clock_prog_2(struct nve0_clock_priv *priv, int clk)
374{
375	struct nve0_clock_info *info = &priv->eng[clk];
376	const u32 addr = 0x137000 + (clk * 0x20);
377	nv_mask(priv, addr + 0x00, 0x00000004, 0x00000000);
378	nv_mask(priv, addr + 0x00, 0x00000001, 0x00000000);
379	if (info->coef) {
380		nv_wr32(priv, addr + 0x04, info->coef);
381		nv_mask(priv, addr + 0x00, 0x00000001, 0x00000001);
382		nv_wait(priv, addr + 0x00, 0x00020000, 0x00020000);
383		nv_mask(priv, addr + 0x00, 0x00020004, 0x00000004);
384	}
385}
386
387static void
388nve0_clock_prog_3(struct nve0_clock_priv *priv, int clk)
389{
390	struct nve0_clock_info *info = &priv->eng[clk];
391	if (info->ssel)
392		nv_mask(priv, 0x137250 + (clk * 0x04), 0x00003f00, info->mdiv);
393	else
394		nv_mask(priv, 0x137250 + (clk * 0x04), 0x0000003f, info->mdiv);
395}
396
397static void
398nve0_clock_prog_4_0(struct nve0_clock_priv *priv, int clk)
399{
400	struct nve0_clock_info *info = &priv->eng[clk];
401	if (info->ssel) {
402		nv_mask(priv, 0x137100, (1 << clk), info->ssel);
403		nv_wait(priv, 0x137100, (1 << clk), info->ssel);
404	}
405}
406
407static void
408nve0_clock_prog_4_1(struct nve0_clock_priv *priv, int clk)
409{
410	struct nve0_clock_info *info = &priv->eng[clk];
411	if (info->ssel) {
412		nv_mask(priv, 0x137160 + (clk * 0x04), 0x40000000, 0x40000000);
413		nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000100);
414	}
415}
416
417static int
418nve0_clock_prog(struct nouveau_clock *clk)
419{
420	struct nve0_clock_priv *priv = (void *)clk;
421	struct {
422		u32 mask;
423		void (*exec)(struct nve0_clock_priv *, int);
424	} stage[] = {
425		{ 0x007f, nve0_clock_prog_0   }, /* div programming */
426		{ 0x007f, nve0_clock_prog_1_0 }, /* select div mode */
427		{ 0xff80, nve0_clock_prog_1_1 },
428		{ 0x00ff, nve0_clock_prog_2   }, /* (maybe) program pll */
429		{ 0xff80, nve0_clock_prog_3   }, /* final divider */
430		{ 0x007f, nve0_clock_prog_4_0 }, /* (maybe) select pll mode */
431		{ 0xff80, nve0_clock_prog_4_1 },
432	};
433	int i, j;
434
435	for (i = 0; i < ARRAY_SIZE(stage); i++) {
436		for (j = 0; j < ARRAY_SIZE(priv->eng); j++) {
437			if (!(stage[i].mask & (1 << j)))
438				continue;
439			if (!priv->eng[j].freq)
440				continue;
441			stage[i].exec(priv, j);
442		}
443	}
444
445	return 0;
446}
447
448static void
449nve0_clock_tidy(struct nouveau_clock *clk)
450{
451	struct nve0_clock_priv *priv = (void *)clk;
452	memset(priv->eng, 0x00, sizeof(priv->eng));
453}
454
455static struct nouveau_clocks
456nve0_domain[] = {
457	{ nv_clk_src_crystal, 0xff },
458	{ nv_clk_src_href   , 0xff },
459	{ nv_clk_src_gpc    , 0x00, NVKM_CLK_DOM_FLAG_CORE, "core", 2000 },
460	{ nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE },
461	{ nv_clk_src_rop    , 0x02, NVKM_CLK_DOM_FLAG_CORE },
462	{ nv_clk_src_mem    , 0x03, 0, "memory", 500 },
463	{ nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE },
464	{ nv_clk_src_hubk01 , 0x05 },
465	{ nv_clk_src_vdec   , 0x06 },
466	{ nv_clk_src_daemon , 0x07 },
467	{ nv_clk_src_max }
468};
469
470static int
471nve0_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
472		struct nouveau_oclass *oclass, void *data, u32 size,
473		struct nouveau_object **pobject)
474{
475	struct nve0_clock_priv *priv;
476	int ret;
477
478	ret = nouveau_clock_create(parent, engine, oclass, nve0_domain, NULL, 0,
479				   true, &priv);
480	*pobject = nv_object(priv);
481	if (ret)
482		return ret;
483
484	priv->base.read = nve0_clock_read;
485	priv->base.calc = nve0_clock_calc;
486	priv->base.prog = nve0_clock_prog;
487	priv->base.tidy = nve0_clock_tidy;
488	return 0;
489}
490
491struct nouveau_oclass
492nve0_clock_oclass = {
493	.handle = NV_SUBDEV(CLOCK, 0xe0),
494	.ofuncs = &(struct nouveau_ofuncs) {
495		.ctor = nve0_clock_ctor,
496		.dtor = _nouveau_clock_dtor,
497		.init = _nouveau_clock_init,
498		.fini = _nouveau_clock_fini,
499	},
500};
501