[go: nahoru, domu]

1/*
2 * Copyright (c) 2013 Intel Corporation. All rights reserved.
3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34/*
35 * This file contains all of the code that is specific to the SerDes
36 * on the QLogic_IB 7220 chip.
37 */
38
39#include <linux/pci.h>
40#include <linux/delay.h>
41#include <linux/module.h>
42#include <linux/firmware.h>
43
44#include "qib.h"
45#include "qib_7220.h"
46
47#define SD7220_FW_NAME "qlogic/sd7220.fw"
48MODULE_FIRMWARE(SD7220_FW_NAME);
49
50/*
51 * Same as in qib_iba7220.c, but just the registers needed here.
52 * Could move whole set to qib_7220.h, but decided better to keep
53 * local.
54 */
55#define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
56#define kr_hwerrclear KREG_IDX(HwErrClear)
57#define kr_hwerrmask KREG_IDX(HwErrMask)
58#define kr_hwerrstatus KREG_IDX(HwErrStatus)
59#define kr_ibcstatus KREG_IDX(IBCStatus)
60#define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
61#define kr_scratch KREG_IDX(Scratch)
62#define kr_xgxs_cfg KREG_IDX(XGXSCfg)
63/* these are used only here, not in qib_iba7220.c */
64#define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
65#define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
66#define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
67#define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
68#define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
69
70/*
71 * The IBSerDesMappTable is a memory that holds values to be stored in
72 * various SerDes registers by IBC.
73 */
74#define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
75
76/*
77 * Below used for sdnum parameter, selecting one of the two sections
78 * used for PCIe, or the single SerDes used for IB.
79 */
80#define PCIE_SERDES0 0
81#define PCIE_SERDES1 1
82
83/*
84 * The EPB requires addressing in a particular form. EPB_LOC() is intended
85 * to make #definitions a little more readable.
86 */
87#define EPB_ADDR_SHF 8
88#define EPB_LOC(chn, elt, reg) \
89	(((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
90	 EPB_ADDR_SHF)
91#define EPB_IB_QUAD0_CS_SHF (25)
92#define EPB_IB_QUAD0_CS (1U <<  EPB_IB_QUAD0_CS_SHF)
93#define EPB_IB_UC_CS_SHF (26)
94#define EPB_PCIE_UC_CS_SHF (27)
95#define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
96
97/* Forward declarations. */
98static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
99			      u32 data, u32 mask);
100static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
101			     int mask);
102static int qib_sd_trimdone_poll(struct qib_devdata *dd);
103static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
104static int qib_sd_setvals(struct qib_devdata *dd);
105static int qib_sd_early(struct qib_devdata *dd);
106static int qib_sd_dactrim(struct qib_devdata *dd);
107static int qib_internal_presets(struct qib_devdata *dd);
108/* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
109static int qib_sd_trimself(struct qib_devdata *dd, int val);
110static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
111static int qib_sd7220_ib_load(struct qib_devdata *dd,
112			      const struct firmware *fw);
113static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
114			     const struct firmware *fw);
115
116/*
117 * Below keeps track of whether the "once per power-on" initialization has
118 * been done, because uC code Version 1.32.17 or higher allows the uC to
119 * be reset at will, and Automatic Equalization may require it. So the
120 * state of the reset "pin", is no longer valid. Instead, we check for the
121 * actual uC code having been loaded.
122 */
123static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
124				 const struct firmware *fw)
125{
126	struct qib_devdata *dd = ppd->dd;
127
128	if (!dd->cspec->serdes_first_init_done &&
129	    qib_sd7220_ib_vfy(dd, fw) > 0)
130		dd->cspec->serdes_first_init_done = 1;
131	return dd->cspec->serdes_first_init_done;
132}
133
134/* repeat #define for local use. "Real" #define is in qib_iba7220.c */
135#define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR      0x0000004000000000ULL
136#define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
137#define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
138#define UC_PAR_CLR_D 8
139#define UC_PAR_CLR_M 0xC
140#define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
141#define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
142
143void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
144{
145	int ret;
146
147	/* clear, then re-enable parity errs */
148	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
149		UC_PAR_CLR_D, UC_PAR_CLR_M);
150	if (ret < 0) {
151		qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
152		goto bail;
153	}
154	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
155		UC_PAR_CLR_M);
156
157	qib_read_kreg32(dd, kr_scratch);
158	udelay(4);
159	qib_write_kreg(dd, kr_hwerrclear,
160		QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
161	qib_read_kreg32(dd, kr_scratch);
162bail:
163	return;
164}
165
166/*
167 * After a reset or other unusual event, the epb interface may need
168 * to be re-synchronized, between the host and the uC.
169 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
170 */
171#define IBSD_RESYNC_TRIES 3
172#define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
173#define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
174
175static int qib_resync_ibepb(struct qib_devdata *dd)
176{
177	int ret, pat, tries, chn;
178	u32 loc;
179
180	ret = -1;
181	chn = 0;
182	for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
183		loc = IB_PGUDP(chn);
184		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
185		if (ret < 0) {
186			qib_dev_err(dd, "Failed read in resync\n");
187			continue;
188		}
189		if (ret != 0xF0 && ret != 0x55 && tries == 0)
190			qib_dev_err(dd, "unexpected pattern in resync\n");
191		pat = ret ^ 0xA5; /* alternate F0 and 55 */
192		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
193		if (ret < 0) {
194			qib_dev_err(dd, "Failed write in resync\n");
195			continue;
196		}
197		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
198		if (ret < 0) {
199			qib_dev_err(dd, "Failed re-read in resync\n");
200			continue;
201		}
202		if (ret != pat) {
203			qib_dev_err(dd, "Failed compare1 in resync\n");
204			continue;
205		}
206		loc = IB_CMUDONE(chn);
207		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
208		if (ret < 0) {
209			qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
210			continue;
211		}
212		if ((ret & 0x70) != ((chn << 4) | 0x40)) {
213			qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
214				    ret, chn);
215			continue;
216		}
217		if (++chn == 4)
218			break;  /* Success */
219	}
220	return (ret > 0) ? 0 : ret;
221}
222
223/*
224 * Localize the stuff that should be done to change IB uC reset
225 * returns <0 for errors.
226 */
227static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
228{
229	u64 rst_val;
230	int ret = 0;
231	unsigned long flags;
232
233	rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
234	if (assert_rst) {
235		/*
236		 * Vendor recommends "interrupting" uC before reset, to
237		 * minimize possible glitches.
238		 */
239		spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
240		epb_access(dd, IB_7220_SERDES, 1);
241		rst_val |= 1ULL;
242		/* Squelch possible parity error from _asserting_ reset */
243		qib_write_kreg(dd, kr_hwerrmask,
244			       dd->cspec->hwerrmask &
245			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
246		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
247		/* flush write, delay to ensure it took effect */
248		qib_read_kreg32(dd, kr_scratch);
249		udelay(2);
250		/* once it's reset, can remove interrupt */
251		epb_access(dd, IB_7220_SERDES, -1);
252		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
253	} else {
254		/*
255		 * Before we de-assert reset, we need to deal with
256		 * possible glitch on the Parity-error line.
257		 * Suppress it around the reset, both in chip-level
258		 * hwerrmask and in IB uC control reg. uC will allow
259		 * it again during startup.
260		 */
261		u64 val;
262		rst_val &= ~(1ULL);
263		qib_write_kreg(dd, kr_hwerrmask,
264			       dd->cspec->hwerrmask &
265			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
266
267		ret = qib_resync_ibepb(dd);
268		if (ret < 0)
269			qib_dev_err(dd, "unable to re-sync IB EPB\n");
270
271		/* set uC control regs to suppress parity errs */
272		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
273		if (ret < 0)
274			goto bail;
275		/* IB uC code past Version 1.32.17 allow suppression of wdog */
276		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
277			0x80);
278		if (ret < 0) {
279			qib_dev_err(dd, "Failed to set WDOG disable\n");
280			goto bail;
281		}
282		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
283		/* flush write, delay for startup */
284		qib_read_kreg32(dd, kr_scratch);
285		udelay(1);
286		/* clear, then re-enable parity errs */
287		qib_sd7220_clr_ibpar(dd);
288		val = qib_read_kreg64(dd, kr_hwerrstatus);
289		if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
290			qib_dev_err(dd, "IBUC Parity still set after RST\n");
291			dd->cspec->hwerrmask &=
292				~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
293		}
294		qib_write_kreg(dd, kr_hwerrmask,
295			dd->cspec->hwerrmask);
296	}
297
298bail:
299	return ret;
300}
301
302static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
303	const char *where)
304{
305	int ret, chn, baduns;
306	u64 val;
307
308	if (!where)
309		where = "?";
310
311	/* give time for reset to settle out in EPB */
312	udelay(2);
313
314	ret = qib_resync_ibepb(dd);
315	if (ret < 0)
316		qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
317
318	/* Do "sacrificial read" to get EPB in sane state after reset */
319	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
320	if (ret < 0)
321		qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
322
323	/* Check/show "summary" Trim-done bit in IBCStatus */
324	val = qib_read_kreg64(dd, kr_ibcstatus);
325	if (!(val & (1ULL << 11)))
326		qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
327	/*
328	 * Do "dummy read/mod/wr" to get EPB in sane state after reset
329	 * The default value for MPREG6 is 0.
330	 */
331	udelay(2);
332
333	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
334	if (ret < 0)
335		qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
336	udelay(10);
337
338	baduns = 0;
339
340	for (chn = 3; chn >= 0; --chn) {
341		/* Read CTRL reg for each channel to check TRIMDONE */
342		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
343			IB_CTRL2(chn), 0, 0);
344		if (ret < 0)
345			qib_dev_err(dd,
346				"Failed checking TRIMDONE, chn %d (%s)\n",
347				chn, where);
348
349		if (!(ret & 0x10)) {
350			int probe;
351
352			baduns |= (1 << chn);
353			qib_dev_err(dd,
354				"TRIMDONE cleared on chn %d (%02X). (%s)\n",
355				chn, ret, where);
356			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
357				IB_PGUDP(0), 0, 0);
358			qib_dev_err(dd, "probe is %d (%02X)\n",
359				probe, probe);
360			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
361				IB_CTRL2(chn), 0, 0);
362			qib_dev_err(dd, "re-read: %d (%02X)\n",
363				probe, probe);
364			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
365				IB_CTRL2(chn), 0x10, 0x10);
366			if (ret < 0)
367				qib_dev_err(dd,
368					"Err on TRIMDONE rewrite1\n");
369		}
370	}
371	for (chn = 3; chn >= 0; --chn) {
372		/* Read CTRL reg for each channel to check TRIMDONE */
373		if (baduns & (1 << chn)) {
374			qib_dev_err(dd,
375				"Resetting TRIMDONE on chn %d (%s)\n",
376				chn, where);
377			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
378				IB_CTRL2(chn), 0x10, 0x10);
379			if (ret < 0)
380				qib_dev_err(dd,
381					"Failed re-setting TRIMDONE, chn %d (%s)\n",
382					chn, where);
383		}
384	}
385}
386
387/*
388 * Below is portion of IBA7220-specific bringup_serdes() that actually
389 * deals with registers and memory within the SerDes itself.
390 * Post IB uC code version 1.32.17, was_reset being 1 is not really
391 * informative, so we double-check.
392 */
393int qib_sd7220_init(struct qib_devdata *dd)
394{
395	const struct firmware *fw;
396	int ret = 1; /* default to failure */
397	int first_reset, was_reset;
398
399	/* SERDES MPU reset recorded in D0 */
400	was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
401	if (!was_reset) {
402		/* entered with reset not asserted, we need to do it */
403		qib_ibsd_reset(dd, 1);
404		qib_sd_trimdone_monitor(dd, "Driver-reload");
405	}
406
407	ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
408	if (ret) {
409		qib_dev_err(dd, "Failed to load IB SERDES image\n");
410		goto done;
411	}
412
413	/* Substitute our deduced value for was_reset */
414	ret = qib_ibsd_ucode_loaded(dd->pport, fw);
415	if (ret < 0)
416		goto bail;
417
418	first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
419	/*
420	 * Alter some regs per vendor latest doc, reset-defaults
421	 * are not right for IB.
422	 */
423	ret = qib_sd_early(dd);
424	if (ret < 0) {
425		qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
426		goto bail;
427	}
428	/*
429	 * Set DAC manual trim IB.
430	 * We only do this once after chip has been reset (usually
431	 * same as once per system boot).
432	 */
433	if (first_reset) {
434		ret = qib_sd_dactrim(dd);
435		if (ret < 0) {
436			qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
437			goto bail;
438		}
439	}
440	/*
441	 * Set various registers (DDS and RXEQ) that will be
442	 * controlled by IBC (in 1.2 mode) to reasonable preset values
443	 * Calling the "internal" version avoids the "check for needed"
444	 * and "trimdone monitor" that might be counter-productive.
445	 */
446	ret = qib_internal_presets(dd);
447	if (ret < 0) {
448		qib_dev_err(dd, "Failed to set IB SERDES presets\n");
449		goto bail;
450	}
451	ret = qib_sd_trimself(dd, 0x80);
452	if (ret < 0) {
453		qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
454		goto bail;
455	}
456
457	/* Load image, then try to verify */
458	ret = 0;        /* Assume success */
459	if (first_reset) {
460		int vfy;
461		int trim_done;
462
463		ret = qib_sd7220_ib_load(dd, fw);
464		if (ret < 0) {
465			qib_dev_err(dd, "Failed to load IB SERDES image\n");
466			goto bail;
467		} else {
468			/* Loaded image, try to verify */
469			vfy = qib_sd7220_ib_vfy(dd, fw);
470			if (vfy != ret) {
471				qib_dev_err(dd, "SERDES PRAM VFY failed\n");
472				goto bail;
473			} /* end if verified */
474		} /* end if loaded */
475
476		/*
477		 * Loaded and verified. Almost good...
478		 * hold "success" in ret
479		 */
480		ret = 0;
481		/*
482		 * Prev steps all worked, continue bringup
483		 * De-assert RESET to uC, only in first reset, to allow
484		 * trimming.
485		 *
486		 * Since our default setup sets START_EQ1 to
487		 * PRESET, we need to clear that for this very first run.
488		 */
489		ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
490		if (ret < 0) {
491			qib_dev_err(dd, "Failed clearing START_EQ1\n");
492			goto bail;
493		}
494
495		qib_ibsd_reset(dd, 0);
496		/*
497		 * If this is not the first reset, trimdone should be set
498		 * already. We may need to check about this.
499		 */
500		trim_done = qib_sd_trimdone_poll(dd);
501		/*
502		 * Whether or not trimdone succeeded, we need to put the
503		 * uC back into reset to avoid a possible fight with the
504		 * IBC state-machine.
505		 */
506		qib_ibsd_reset(dd, 1);
507
508		if (!trim_done) {
509			qib_dev_err(dd, "No TRIMDONE seen\n");
510			goto bail;
511		}
512		/*
513		 * DEBUG: check each time we reset if trimdone bits have
514		 * gotten cleared, and re-set them.
515		 */
516		qib_sd_trimdone_monitor(dd, "First-reset");
517		/* Remember so we do not re-do the load, dactrim, etc. */
518		dd->cspec->serdes_first_init_done = 1;
519	}
520	/*
521	 * setup for channel training and load values for
522	 * RxEq and DDS in tables used by IBC in IB1.2 mode
523	 */
524	ret = 0;
525	if (qib_sd_setvals(dd) >= 0)
526		goto done;
527bail:
528	ret = 1;
529done:
530	/* start relock timer regardless, but start at 1 second */
531	set_7220_relock_poll(dd, -1);
532
533	release_firmware(fw);
534	return ret;
535}
536
537#define EPB_ACC_REQ 1
538#define EPB_ACC_GNT 0x100
539#define EPB_DATA_MASK 0xFF
540#define EPB_RD (1ULL << 24)
541#define EPB_TRANS_RDY (1ULL << 31)
542#define EPB_TRANS_ERR (1ULL << 30)
543#define EPB_TRANS_TRIES 5
544
545/*
546 * query, claim, release ownership of the EPB (External Parallel Bus)
547 * for a specified SERDES.
548 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
549 * Returns <0 for errors, >0 if we had ownership, else 0.
550 */
551static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
552{
553	u16 acc;
554	u64 accval;
555	int owned = 0;
556	u64 oct_sel = 0;
557
558	switch (sdnum) {
559	case IB_7220_SERDES:
560		/*
561		 * The IB SERDES "ownership" is fairly simple. A single each
562		 * request/grant.
563		 */
564		acc = kr_ibsd_epb_access_ctrl;
565		break;
566
567	case PCIE_SERDES0:
568	case PCIE_SERDES1:
569		/* PCIe SERDES has two "octants", need to select which */
570		acc = kr_pciesd_epb_access_ctrl;
571		oct_sel = (2 << (sdnum - PCIE_SERDES0));
572		break;
573
574	default:
575		return 0;
576	}
577
578	/* Make sure any outstanding transaction was seen */
579	qib_read_kreg32(dd, kr_scratch);
580	udelay(15);
581
582	accval = qib_read_kreg32(dd, acc);
583
584	owned = !!(accval & EPB_ACC_GNT);
585	if (claim < 0) {
586		/* Need to release */
587		u64 pollval;
588		/*
589		 * The only writeable bits are the request and CS.
590		 * Both should be clear
591		 */
592		u64 newval = 0;
593		qib_write_kreg(dd, acc, newval);
594		/* First read after write is not trustworthy */
595		pollval = qib_read_kreg32(dd, acc);
596		udelay(5);
597		pollval = qib_read_kreg32(dd, acc);
598		if (pollval & EPB_ACC_GNT)
599			owned = -1;
600	} else if (claim > 0) {
601		/* Need to claim */
602		u64 pollval;
603		u64 newval = EPB_ACC_REQ | oct_sel;
604		qib_write_kreg(dd, acc, newval);
605		/* First read after write is not trustworthy */
606		pollval = qib_read_kreg32(dd, acc);
607		udelay(5);
608		pollval = qib_read_kreg32(dd, acc);
609		if (!(pollval & EPB_ACC_GNT))
610			owned = -1;
611	}
612	return owned;
613}
614
615/*
616 * Lemma to deal with race condition of write..read to epb regs
617 */
618static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
619{
620	int tries;
621	u64 transval;
622
623	qib_write_kreg(dd, reg, i_val);
624	/* Throw away first read, as RDY bit may be stale */
625	transval = qib_read_kreg64(dd, reg);
626
627	for (tries = EPB_TRANS_TRIES; tries; --tries) {
628		transval = qib_read_kreg32(dd, reg);
629		if (transval & EPB_TRANS_RDY)
630			break;
631		udelay(5);
632	}
633	if (transval & EPB_TRANS_ERR)
634		return -1;
635	if (tries > 0 && o_vp)
636		*o_vp = transval;
637	return tries;
638}
639
640/**
641 * qib_sd7220_reg_mod - modify SERDES register
642 * @dd: the qlogic_ib device
643 * @sdnum: which SERDES to access
644 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
645 * @wd: Write Data - value to set in register
646 * @mask: ones where data should be spliced into reg.
647 *
648 * Basic register read/modify/write, with un-needed acesses elided. That is,
649 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
650 * returns current (presumed, if a write was done) contents of selected
651 * register, or <0 if errors.
652 */
653static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
654			      u32 wd, u32 mask)
655{
656	u16 trans;
657	u64 transval;
658	int owned;
659	int tries, ret;
660	unsigned long flags;
661
662	switch (sdnum) {
663	case IB_7220_SERDES:
664		trans = kr_ibsd_epb_transaction_reg;
665		break;
666
667	case PCIE_SERDES0:
668	case PCIE_SERDES1:
669		trans = kr_pciesd_epb_transaction_reg;
670		break;
671
672	default:
673		return -1;
674	}
675
676	/*
677	 * All access is locked in software (vs other host threads) and
678	 * hardware (vs uC access).
679	 */
680	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
681
682	owned = epb_access(dd, sdnum, 1);
683	if (owned < 0) {
684		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
685		return -1;
686	}
687	ret = 0;
688	for (tries = EPB_TRANS_TRIES; tries; --tries) {
689		transval = qib_read_kreg32(dd, trans);
690		if (transval & EPB_TRANS_RDY)
691			break;
692		udelay(5);
693	}
694
695	if (tries > 0) {
696		tries = 1;      /* to make read-skip work */
697		if (mask != 0xFF) {
698			/*
699			 * Not a pure write, so need to read.
700			 * loc encodes chip-select as well as address
701			 */
702			transval = loc | EPB_RD;
703			tries = epb_trans(dd, trans, transval, &transval);
704		}
705		if (tries > 0 && mask != 0) {
706			/*
707			 * Not a pure read, so need to write.
708			 */
709			wd = (wd & mask) | (transval & ~mask);
710			transval = loc | (wd & EPB_DATA_MASK);
711			tries = epb_trans(dd, trans, transval, &transval);
712		}
713	}
714	/* else, failed to see ready, what error-handling? */
715
716	/*
717	 * Release bus. Failure is an error.
718	 */
719	if (epb_access(dd, sdnum, -1) < 0)
720		ret = -1;
721	else
722		ret = transval & EPB_DATA_MASK;
723
724	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
725	if (tries <= 0)
726		ret = -1;
727	return ret;
728}
729
730#define EPB_ROM_R (2)
731#define EPB_ROM_W (1)
732/*
733 * Below, all uC-related, use appropriate UC_CS, depending
734 * on which SerDes is used.
735 */
736#define EPB_UC_CTL EPB_LOC(6, 0, 0)
737#define EPB_MADDRL EPB_LOC(6, 0, 2)
738#define EPB_MADDRH EPB_LOC(6, 0, 3)
739#define EPB_ROMDATA EPB_LOC(6, 0, 4)
740#define EPB_RAMDATA EPB_LOC(6, 0, 5)
741
742/* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
743static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
744			       u8 *buf, int cnt, int rd_notwr)
745{
746	u16 trans;
747	u64 transval;
748	u64 csbit;
749	int owned;
750	int tries;
751	int sofar;
752	int addr;
753	int ret;
754	unsigned long flags;
755	const char *op;
756
757	/* Pick appropriate transaction reg and "Chip select" for this serdes */
758	switch (sdnum) {
759	case IB_7220_SERDES:
760		csbit = 1ULL << EPB_IB_UC_CS_SHF;
761		trans = kr_ibsd_epb_transaction_reg;
762		break;
763
764	case PCIE_SERDES0:
765	case PCIE_SERDES1:
766		/* PCIe SERDES has uC "chip select" in different bit, too */
767		csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
768		trans = kr_pciesd_epb_transaction_reg;
769		break;
770
771	default:
772		return -1;
773	}
774
775	op = rd_notwr ? "Rd" : "Wr";
776	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
777
778	owned = epb_access(dd, sdnum, 1);
779	if (owned < 0) {
780		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
781		return -1;
782	}
783
784	/*
785	 * In future code, we may need to distinguish several address ranges,
786	 * and select various memories based on this. For now, just trim
787	 * "loc" (location including address and memory select) to
788	 * "addr" (address within memory). we will only support PRAM
789	 * The memory is 8KB.
790	 */
791	addr = loc & 0x1FFF;
792	for (tries = EPB_TRANS_TRIES; tries; --tries) {
793		transval = qib_read_kreg32(dd, trans);
794		if (transval & EPB_TRANS_RDY)
795			break;
796		udelay(5);
797	}
798
799	sofar = 0;
800	if (tries > 0) {
801		/*
802		 * Every "memory" access is doubly-indirect.
803		 * We set two bytes of address, then read/write
804		 * one or mores bytes of data.
805		 */
806
807		/* First, we set control to "Read" or "Write" */
808		transval = csbit | EPB_UC_CTL |
809			(rd_notwr ? EPB_ROM_R : EPB_ROM_W);
810		tries = epb_trans(dd, trans, transval, &transval);
811		while (tries > 0 && sofar < cnt) {
812			if (!sofar) {
813				/* Only set address at start of chunk */
814				int addrbyte = (addr + sofar) >> 8;
815				transval = csbit | EPB_MADDRH | addrbyte;
816				tries = epb_trans(dd, trans, transval,
817						  &transval);
818				if (tries <= 0)
819					break;
820				addrbyte = (addr + sofar) & 0xFF;
821				transval = csbit | EPB_MADDRL | addrbyte;
822				tries = epb_trans(dd, trans, transval,
823						 &transval);
824				if (tries <= 0)
825					break;
826			}
827
828			if (rd_notwr)
829				transval = csbit | EPB_ROMDATA | EPB_RD;
830			else
831				transval = csbit | EPB_ROMDATA | buf[sofar];
832			tries = epb_trans(dd, trans, transval, &transval);
833			if (tries <= 0)
834				break;
835			if (rd_notwr)
836				buf[sofar] = transval & EPB_DATA_MASK;
837			++sofar;
838		}
839		/* Finally, clear control-bit for Read or Write */
840		transval = csbit | EPB_UC_CTL;
841		tries = epb_trans(dd, trans, transval, &transval);
842	}
843
844	ret = sofar;
845	/* Release bus. Failure is an error */
846	if (epb_access(dd, sdnum, -1) < 0)
847		ret = -1;
848
849	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
850	if (tries <= 0)
851		ret = -1;
852	return ret;
853}
854
855#define PROG_CHUNK 64
856
857static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
858			      const u8 *img, int len, int offset)
859{
860	int cnt, sofar, req;
861
862	sofar = 0;
863	while (sofar < len) {
864		req = len - sofar;
865		if (req > PROG_CHUNK)
866			req = PROG_CHUNK;
867		cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
868					  (u8 *)img + sofar, req, 0);
869		if (cnt < req) {
870			sofar = -1;
871			break;
872		}
873		sofar += req;
874	}
875	return sofar;
876}
877
878#define VFY_CHUNK 64
879#define SD_PRAM_ERROR_LIMIT 42
880
881static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
882			       const u8 *img, int len, int offset)
883{
884	int cnt, sofar, req, idx, errors;
885	unsigned char readback[VFY_CHUNK];
886
887	errors = 0;
888	sofar = 0;
889	while (sofar < len) {
890		req = len - sofar;
891		if (req > VFY_CHUNK)
892			req = VFY_CHUNK;
893		cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
894					  readback, req, 1);
895		if (cnt < req) {
896			/* failed in read itself */
897			sofar = -1;
898			break;
899		}
900		for (idx = 0; idx < cnt; ++idx) {
901			if (readback[idx] != img[idx+sofar])
902				++errors;
903		}
904		sofar += cnt;
905	}
906	return errors ? -errors : sofar;
907}
908
909static int
910qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
911{
912	return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
913}
914
915static int
916qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
917{
918	return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
919}
920
921/*
922 * IRQ not set up at this point in init, so we poll.
923 */
924#define IB_SERDES_TRIM_DONE (1ULL << 11)
925#define TRIM_TMO (30)
926
927static int qib_sd_trimdone_poll(struct qib_devdata *dd)
928{
929	int trim_tmo, ret;
930	uint64_t val;
931
932	/*
933	 * Default to failure, so IBC will not start
934	 * without IB_SERDES_TRIM_DONE.
935	 */
936	ret = 0;
937	for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
938		val = qib_read_kreg64(dd, kr_ibcstatus);
939		if (val & IB_SERDES_TRIM_DONE) {
940			ret = 1;
941			break;
942		}
943		msleep(10);
944	}
945	if (trim_tmo >= TRIM_TMO) {
946		qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
947		ret = 0;
948	}
949	return ret;
950}
951
952#define TX_FAST_ELT (9)
953
954/*
955 * Set the "negotiation" values for SERDES. These are used by the IB1.2
956 * link negotiation. Macros below are attempt to keep the values a
957 * little more human-editable.
958 * First, values related to Drive De-emphasis Settings.
959 */
960
961#define NUM_DDS_REGS 6
962#define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
963
964#define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
965	{ { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
966	  (main_d << 3) | 4 | (ipre_d >> 2), \
967	  (main_s << 3) | 4 | (ipre_s >> 2), \
968	  ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
969	  ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
970
971static struct dds_init {
972	uint8_t reg_vals[NUM_DDS_REGS];
973} dds_init_vals[] = {
974	/*       DDR(FDR)       SDR(HDR)   */
975	/* Vendor recommends below for 3m cable */
976#define DDS_3M 0
977	DDS_VAL(31, 19, 12, 0, 29, 22,  9, 0),
978	DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
979	DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
980	DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
981	DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
982	DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
983	DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
984	DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
985	DDS_VAL(31, 20, 11, 0, 28, 23,  8, 0),
986	DDS_VAL(31, 21, 10, 0, 27, 24,  7, 0),
987	DDS_VAL(31, 22,  9, 0, 26, 25,  6, 0),
988	DDS_VAL(30, 23,  8, 0, 25, 26,  5, 0),
989	DDS_VAL(29, 24,  7, 0, 23, 27,  4, 0),
990	/* Vendor recommends below for 1m cable */
991#define DDS_1M 13
992	DDS_VAL(28, 25,  6, 0, 21, 28,  3, 0),
993	DDS_VAL(27, 26,  5, 0, 19, 29,  2, 0),
994	DDS_VAL(25, 27,  4, 0, 17, 30,  1, 0)
995};
996
997/*
998 * Now the RXEQ section of the table.
999 */
1000/* Hardware packs an element number and register address thus: */
1001#define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
1002#define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1003	{RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1004
1005#define RXEQ_VAL_ALL(elt, adr, val)  \
1006	{RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1007
1008#define RXEQ_SDR_DFELTH 0
1009#define RXEQ_SDR_TLTH 0
1010#define RXEQ_SDR_G1CNT_Z1CNT 0x11
1011#define RXEQ_SDR_ZCNT 23
1012
1013static struct rxeq_init {
1014	u16 rdesc;      /* in form used in SerDesDDSRXEQ */
1015	u8  rdata[4];
1016} rxeq_init_vals[] = {
1017	/* Set Rcv Eq. to Preset node */
1018	RXEQ_VAL_ALL(7, 0x27, 0x10),
1019	/* Set DFELTHFDR/HDR thresholds */
1020	RXEQ_VAL(7, 8,    0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1021	RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1022	/* Set TLTHFDR/HDR theshold */
1023	RXEQ_VAL(7, 9,    2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1024	RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was  0, 1, 2, 3 */
1025	/* Set Preamp setting 2 (ZFR/ZCNT) */
1026	RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1027	RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1028	/* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1029	RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1030	RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1031	/* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1032	RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1033	RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1034};
1035
1036/* There are 17 values from vendor, but IBC only accesses the first 16 */
1037#define DDS_ROWS (16)
1038#define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1039
1040static int qib_sd_setvals(struct qib_devdata *dd)
1041{
1042	int idx, midx;
1043	int min_idx;     /* Minimum index for this portion of table */
1044	uint32_t dds_reg_map;
1045	u64 __iomem *taddr, *iaddr;
1046	uint64_t data;
1047	uint64_t sdctl;
1048
1049	taddr = dd->kregbase + kr_serdes_maptable;
1050	iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1051
1052	/*
1053	 * Init the DDS section of the table.
1054	 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1055	 * registers indicated in DDS_REG_MAP.
1056	 */
1057	sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1058	sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1059	sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1060	qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1061
1062	/*
1063	 * Iterate down table within loop for each register to store.
1064	 */
1065	dds_reg_map = DDS_REG_MAP;
1066	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1067		data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1068		writeq(data, iaddr + idx);
1069		mmiowb();
1070		qib_read_kreg32(dd, kr_scratch);
1071		dds_reg_map >>= 4;
1072		for (midx = 0; midx < DDS_ROWS; ++midx) {
1073			u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1074			data = dds_init_vals[midx].reg_vals[idx];
1075			writeq(data, daddr);
1076			mmiowb();
1077			qib_read_kreg32(dd, kr_scratch);
1078		} /* End inner for (vals for this reg, each row) */
1079	} /* end outer for (regs to be stored) */
1080
1081	/*
1082	 * Init the RXEQ section of the table.
1083	 * This runs in a different order, as the pattern of
1084	 * register references is more complex, but there are only
1085	 * four "data" values per register.
1086	 */
1087	min_idx = idx; /* RXEQ indices pick up where DDS left off */
1088	taddr += 0x100; /* RXEQ data is in second half of table */
1089	/* Iterate through RXEQ register addresses */
1090	for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1091		int didx; /* "destination" */
1092		int vidx;
1093
1094		/* didx is offset by min_idx to address RXEQ range of regs */
1095		didx = idx + min_idx;
1096		/* Store the next RXEQ register address */
1097		writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1098		mmiowb();
1099		qib_read_kreg32(dd, kr_scratch);
1100		/* Iterate through RXEQ values */
1101		for (vidx = 0; vidx < 4; vidx++) {
1102			data = rxeq_init_vals[idx].rdata[vidx];
1103			writeq(data, taddr + (vidx << 6) + idx);
1104			mmiowb();
1105			qib_read_kreg32(dd, kr_scratch);
1106		}
1107	} /* end outer for (Reg-writes for RXEQ) */
1108	return 0;
1109}
1110
1111#define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1112#define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1113#define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1114#define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1115#define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1116#define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1117
1118/*
1119 * Repeat a "store" across all channels of the IB SerDes.
1120 * Although nominally it inherits the "read value" of the last
1121 * channel it modified, the only really useful return is <0 for
1122 * failure, >= 0 for success. The parameter 'loc' is assumed to
1123 * be the location in some channel of the register to be modified
1124 * The caller can specify use of the "gang write" option of EPB,
1125 * in which case we use the specified channel data for any fields
1126 * not explicitely written.
1127 */
1128static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1129			     int mask)
1130{
1131	int ret = -1;
1132	int chnl;
1133
1134	if (loc & EPB_GLOBAL_WR) {
1135		/*
1136		 * Our caller has assured us that we can set all four
1137		 * channels at once. Trust that. If mask is not 0xFF,
1138		 * we will read the _specified_ channel for our starting
1139		 * value.
1140		 */
1141		loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1142		chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1143		if (mask != 0xFF) {
1144			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1145						 loc & ~EPB_GLOBAL_WR, 0, 0);
1146			if (ret < 0) {
1147				int sloc = loc >> EPB_ADDR_SHF;
1148
1149				qib_dev_err(dd,
1150					"pre-read failed: elt %d, addr 0x%X, chnl %d\n",
1151					(sloc & 0xF),
1152					(sloc >> 9) & 0x3f, chnl);
1153				return ret;
1154			}
1155			val = (ret & ~mask) | (val & mask);
1156		}
1157		loc &=  ~(7 << (4+EPB_ADDR_SHF));
1158		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1159		if (ret < 0) {
1160			int sloc = loc >> EPB_ADDR_SHF;
1161
1162			qib_dev_err(dd,
1163				"Global WR failed: elt %d, addr 0x%X, val %02X\n",
1164				(sloc & 0xF), (sloc >> 9) & 0x3f, val);
1165		}
1166		return ret;
1167	}
1168	/* Clear "channel" and set CS so we can simply iterate */
1169	loc &=  ~(7 << (4+EPB_ADDR_SHF));
1170	loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1171	for (chnl = 0; chnl < 4; ++chnl) {
1172		int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1173
1174		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1175		if (ret < 0) {
1176			int sloc = loc >> EPB_ADDR_SHF;
1177
1178			qib_dev_err(dd,
1179				"Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n",
1180				(sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1181				val & 0xFF, mask & 0xFF);
1182			break;
1183		}
1184	}
1185	return ret;
1186}
1187
1188/*
1189 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1190 * values, as gotten from first row of init table.
1191 */
1192static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1193{
1194	int ret;
1195	int idx, reg, data;
1196	uint32_t regmap;
1197
1198	regmap = DDS_REG_MAP;
1199	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1200		reg = (regmap & 0xF);
1201		regmap >>= 4;
1202		data = ddi->reg_vals[idx];
1203		/* Vendor says RMW not needed for these regs, use 0xFF mask */
1204		ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1205		if (ret < 0)
1206			break;
1207	}
1208	return ret;
1209}
1210
1211/*
1212 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1213 * values, as gotten from selected column of init table.
1214 */
1215static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1216{
1217	int ret;
1218	int ridx;
1219	int cnt = ARRAY_SIZE(rxeq_init_vals);
1220
1221	for (ridx = 0; ridx < cnt; ++ridx) {
1222		int elt, reg, val, loc;
1223
1224		elt = rxeq_init_vals[ridx].rdesc & 0xF;
1225		reg = rxeq_init_vals[ridx].rdesc >> 4;
1226		loc = EPB_LOC(0, elt, reg);
1227		val = rxeq_init_vals[ridx].rdata[vsel];
1228		/* mask of 0xFF, because hardware does full-byte store. */
1229		ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1230		if (ret < 0)
1231			break;
1232	}
1233	return ret;
1234}
1235
1236/*
1237 * Set the default values (row 0) for DDR Driver Demphasis.
1238 * we do this initially and whenever we turn off IB-1.2
1239 *
1240 * The "default" values for Rx equalization are also stored to
1241 * SerDes registers. Formerly (and still default), we used set 2.
1242 * For experimenting with cables and link-partners, we allow changing
1243 * that via a module parameter.
1244 */
1245static unsigned qib_rxeq_set = 2;
1246module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1247		   S_IWUSR | S_IRUGO);
1248MODULE_PARM_DESC(rxeq_default_set,
1249		 "Which set [0..3] of Rx Equalization values is default");
1250
1251static int qib_internal_presets(struct qib_devdata *dd)
1252{
1253	int ret = 0;
1254
1255	ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1256
1257	if (ret < 0)
1258		qib_dev_err(dd, "Failed to set default DDS values\n");
1259	ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1260	if (ret < 0)
1261		qib_dev_err(dd, "Failed to set default RXEQ values\n");
1262	return ret;
1263}
1264
1265int qib_sd7220_presets(struct qib_devdata *dd)
1266{
1267	int ret = 0;
1268
1269	if (!dd->cspec->presets_needed)
1270		return ret;
1271	dd->cspec->presets_needed = 0;
1272	/* Assert uC reset, so we don't clash with it. */
1273	qib_ibsd_reset(dd, 1);
1274	udelay(2);
1275	qib_sd_trimdone_monitor(dd, "link-down");
1276
1277	ret = qib_internal_presets(dd);
1278	return ret;
1279}
1280
1281static int qib_sd_trimself(struct qib_devdata *dd, int val)
1282{
1283	int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1284
1285	return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1286}
1287
1288static int qib_sd_early(struct qib_devdata *dd)
1289{
1290	int ret;
1291
1292	ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1293	if (ret < 0)
1294		goto bail;
1295	ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1296	if (ret < 0)
1297		goto bail;
1298	ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1299bail:
1300	return ret;
1301}
1302
1303#define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1304#define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1305#define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1306
1307static int qib_sd_dactrim(struct qib_devdata *dd)
1308{
1309	int ret;
1310
1311	ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1312	if (ret < 0)
1313		goto bail;
1314
1315	/* more fine-tuning of what will be default */
1316	ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1317	if (ret < 0)
1318		goto bail;
1319
1320	ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1321	if (ret < 0)
1322		goto bail;
1323
1324	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1325	if (ret < 0)
1326		goto bail;
1327
1328	ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1329	if (ret < 0)
1330		goto bail;
1331
1332	/*
1333	 * Delay for max possible number of steps, with slop.
1334	 * Each step is about 4usec.
1335	 */
1336	udelay(415);
1337
1338	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1339
1340bail:
1341	return ret;
1342}
1343
1344#define RELOCK_FIRST_MS 3
1345#define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1346void toggle_7220_rclkrls(struct qib_devdata *dd)
1347{
1348	int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1349	int ret;
1350
1351	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1352	if (ret < 0)
1353		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1354	else {
1355		udelay(1);
1356		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1357	}
1358	/* And again for good measure */
1359	udelay(1);
1360	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1361	if (ret < 0)
1362		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1363	else {
1364		udelay(1);
1365		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1366	}
1367	/* Now reset xgxs and IBC to complete the recovery */
1368	dd->f_xgxs_reset(dd->pport);
1369}
1370
1371/*
1372 * Shut down the timer that polls for relock occasions, if needed
1373 * this is "hooked" from qib_7220_quiet_serdes(), which is called
1374 * just before qib_shutdown_device() in qib_driver.c shuts down all
1375 * the other timers
1376 */
1377void shutdown_7220_relock_poll(struct qib_devdata *dd)
1378{
1379	if (dd->cspec->relock_timer_active)
1380		del_timer_sync(&dd->cspec->relock_timer);
1381}
1382
1383static unsigned qib_relock_by_timer = 1;
1384module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1385		   S_IWUSR | S_IRUGO);
1386MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1387
1388static void qib_run_relock(unsigned long opaque)
1389{
1390	struct qib_devdata *dd = (struct qib_devdata *)opaque;
1391	struct qib_pportdata *ppd = dd->pport;
1392	struct qib_chip_specific *cs = dd->cspec;
1393	int timeoff;
1394
1395	/*
1396	 * Check link-training state for "stuck" state, when down.
1397	 * if found, try relock and schedule another try at
1398	 * exponentially growing delay, maxed at one second.
1399	 * if not stuck, our work is done.
1400	 */
1401	if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1402	    (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1403	     QIBL_LINKACTIVE))) {
1404		if (qib_relock_by_timer) {
1405			if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1406				toggle_7220_rclkrls(dd);
1407		}
1408		/* re-set timer for next check */
1409		timeoff = cs->relock_interval << 1;
1410		if (timeoff > HZ)
1411			timeoff = HZ;
1412		cs->relock_interval = timeoff;
1413	} else
1414		timeoff = HZ;
1415	mod_timer(&cs->relock_timer, jiffies + timeoff);
1416}
1417
1418void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1419{
1420	struct qib_chip_specific *cs = dd->cspec;
1421
1422	if (ibup) {
1423		/* We are now up, relax timer to 1 second interval */
1424		if (cs->relock_timer_active) {
1425			cs->relock_interval = HZ;
1426			mod_timer(&cs->relock_timer, jiffies + HZ);
1427		}
1428	} else {
1429		/* Transition to down, (re-)set timer to short interval. */
1430		unsigned int timeout;
1431
1432		timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1433		if (timeout == 0)
1434			timeout = 1;
1435		/* If timer has not yet been started, do so. */
1436		if (!cs->relock_timer_active) {
1437			cs->relock_timer_active = 1;
1438			init_timer(&cs->relock_timer);
1439			cs->relock_timer.function = qib_run_relock;
1440			cs->relock_timer.data = (unsigned long) dd;
1441			cs->relock_interval = timeout;
1442			cs->relock_timer.expires = jiffies + timeout;
1443			add_timer(&cs->relock_timer);
1444		} else {
1445			cs->relock_interval = timeout;
1446			mod_timer(&cs->relock_timer, jiffies + timeout);
1447		}
1448	}
1449}
1450