[go: nahoru, domu]

1/*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "dm-bio-prison.h"
9#include "dm.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/list.h>
15#include <linux/rculist.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/rbtree.h>
20
21#define	DM_MSG_PREFIX	"thin"
22
23/*
24 * Tunable constants
25 */
26#define ENDIO_HOOK_POOL_SIZE 1024
27#define MAPPING_POOL_SIZE 1024
28#define PRISON_CELLS 1024
29#define COMMIT_PERIOD HZ
30#define NO_SPACE_TIMEOUT_SECS 60
31
32static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33
34DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35		"A percentage of time allocated for copy on write");
36
37/*
38 * The block size of the device holding pool data must be
39 * between 64KB and 1GB.
40 */
41#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43
44/*
45 * Device id is restricted to 24 bits.
46 */
47#define MAX_DEV_ID ((1 << 24) - 1)
48
49/*
50 * How do we handle breaking sharing of data blocks?
51 * =================================================
52 *
53 * We use a standard copy-on-write btree to store the mappings for the
54 * devices (note I'm talking about copy-on-write of the metadata here, not
55 * the data).  When you take an internal snapshot you clone the root node
56 * of the origin btree.  After this there is no concept of an origin or a
57 * snapshot.  They are just two device trees that happen to point to the
58 * same data blocks.
59 *
60 * When we get a write in we decide if it's to a shared data block using
61 * some timestamp magic.  If it is, we have to break sharing.
62 *
63 * Let's say we write to a shared block in what was the origin.  The
64 * steps are:
65 *
66 * i) plug io further to this physical block. (see bio_prison code).
67 *
68 * ii) quiesce any read io to that shared data block.  Obviously
69 * including all devices that share this block.  (see dm_deferred_set code)
70 *
71 * iii) copy the data block to a newly allocate block.  This step can be
72 * missed out if the io covers the block. (schedule_copy).
73 *
74 * iv) insert the new mapping into the origin's btree
75 * (process_prepared_mapping).  This act of inserting breaks some
76 * sharing of btree nodes between the two devices.  Breaking sharing only
77 * effects the btree of that specific device.  Btrees for the other
78 * devices that share the block never change.  The btree for the origin
79 * device as it was after the last commit is untouched, ie. we're using
80 * persistent data structures in the functional programming sense.
81 *
82 * v) unplug io to this physical block, including the io that triggered
83 * the breaking of sharing.
84 *
85 * Steps (ii) and (iii) occur in parallel.
86 *
87 * The metadata _doesn't_ need to be committed before the io continues.  We
88 * get away with this because the io is always written to a _new_ block.
89 * If there's a crash, then:
90 *
91 * - The origin mapping will point to the old origin block (the shared
92 * one).  This will contain the data as it was before the io that triggered
93 * the breaking of sharing came in.
94 *
95 * - The snap mapping still points to the old block.  As it would after
96 * the commit.
97 *
98 * The downside of this scheme is the timestamp magic isn't perfect, and
99 * will continue to think that data block in the snapshot device is shared
100 * even after the write to the origin has broken sharing.  I suspect data
101 * blocks will typically be shared by many different devices, so we're
102 * breaking sharing n + 1 times, rather than n, where n is the number of
103 * devices that reference this data block.  At the moment I think the
104 * benefits far, far outweigh the disadvantages.
105 */
106
107/*----------------------------------------------------------------*/
108
109/*
110 * Key building.
111 */
112static void build_data_key(struct dm_thin_device *td,
113			   dm_block_t b, struct dm_cell_key *key)
114{
115	key->virtual = 0;
116	key->dev = dm_thin_dev_id(td);
117	key->block = b;
118}
119
120static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121			      struct dm_cell_key *key)
122{
123	key->virtual = 1;
124	key->dev = dm_thin_dev_id(td);
125	key->block = b;
126}
127
128/*----------------------------------------------------------------*/
129
130/*
131 * A pool device ties together a metadata device and a data device.  It
132 * also provides the interface for creating and destroying internal
133 * devices.
134 */
135struct dm_thin_new_mapping;
136
137/*
138 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
139 */
140enum pool_mode {
141	PM_WRITE,		/* metadata may be changed */
142	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
143	PM_READ_ONLY,		/* metadata may not be changed */
144	PM_FAIL,		/* all I/O fails */
145};
146
147struct pool_features {
148	enum pool_mode mode;
149
150	bool zero_new_blocks:1;
151	bool discard_enabled:1;
152	bool discard_passdown:1;
153	bool error_if_no_space:1;
154};
155
156struct thin_c;
157typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
158typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
159
160struct pool {
161	struct list_head list;
162	struct dm_target *ti;	/* Only set if a pool target is bound */
163
164	struct mapped_device *pool_md;
165	struct block_device *md_dev;
166	struct dm_pool_metadata *pmd;
167
168	dm_block_t low_water_blocks;
169	uint32_t sectors_per_block;
170	int sectors_per_block_shift;
171
172	struct pool_features pf;
173	bool low_water_triggered:1;	/* A dm event has been sent */
174
175	struct dm_bio_prison *prison;
176	struct dm_kcopyd_client *copier;
177
178	struct workqueue_struct *wq;
179	struct work_struct worker;
180	struct delayed_work waker;
181	struct delayed_work no_space_timeout;
182
183	unsigned long last_commit_jiffies;
184	unsigned ref_count;
185
186	spinlock_t lock;
187	struct bio_list deferred_flush_bios;
188	struct list_head prepared_mappings;
189	struct list_head prepared_discards;
190	struct list_head active_thins;
191
192	struct dm_deferred_set *shared_read_ds;
193	struct dm_deferred_set *all_io_ds;
194
195	struct dm_thin_new_mapping *next_mapping;
196	mempool_t *mapping_pool;
197
198	process_bio_fn process_bio;
199	process_bio_fn process_discard;
200
201	process_mapping_fn process_prepared_mapping;
202	process_mapping_fn process_prepared_discard;
203};
204
205static enum pool_mode get_pool_mode(struct pool *pool);
206static void metadata_operation_failed(struct pool *pool, const char *op, int r);
207
208/*
209 * Target context for a pool.
210 */
211struct pool_c {
212	struct dm_target *ti;
213	struct pool *pool;
214	struct dm_dev *data_dev;
215	struct dm_dev *metadata_dev;
216	struct dm_target_callbacks callbacks;
217
218	dm_block_t low_water_blocks;
219	struct pool_features requested_pf; /* Features requested during table load */
220	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
221};
222
223/*
224 * Target context for a thin.
225 */
226struct thin_c {
227	struct list_head list;
228	struct dm_dev *pool_dev;
229	struct dm_dev *origin_dev;
230	sector_t origin_size;
231	dm_thin_id dev_id;
232
233	struct pool *pool;
234	struct dm_thin_device *td;
235	bool requeue_mode:1;
236	spinlock_t lock;
237	struct bio_list deferred_bio_list;
238	struct bio_list retry_on_resume_list;
239	struct rb_root sort_bio_list; /* sorted list of deferred bios */
240
241	/*
242	 * Ensures the thin is not destroyed until the worker has finished
243	 * iterating the active_thins list.
244	 */
245	atomic_t refcount;
246	struct completion can_destroy;
247};
248
249/*----------------------------------------------------------------*/
250
251/*
252 * wake_worker() is used when new work is queued and when pool_resume is
253 * ready to continue deferred IO processing.
254 */
255static void wake_worker(struct pool *pool)
256{
257	queue_work(pool->wq, &pool->worker);
258}
259
260/*----------------------------------------------------------------*/
261
262static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
263		      struct dm_bio_prison_cell **cell_result)
264{
265	int r;
266	struct dm_bio_prison_cell *cell_prealloc;
267
268	/*
269	 * Allocate a cell from the prison's mempool.
270	 * This might block but it can't fail.
271	 */
272	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
273
274	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
275	if (r)
276		/*
277		 * We reused an old cell; we can get rid of
278		 * the new one.
279		 */
280		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
281
282	return r;
283}
284
285static void cell_release(struct pool *pool,
286			 struct dm_bio_prison_cell *cell,
287			 struct bio_list *bios)
288{
289	dm_cell_release(pool->prison, cell, bios);
290	dm_bio_prison_free_cell(pool->prison, cell);
291}
292
293static void cell_release_no_holder(struct pool *pool,
294				   struct dm_bio_prison_cell *cell,
295				   struct bio_list *bios)
296{
297	dm_cell_release_no_holder(pool->prison, cell, bios);
298	dm_bio_prison_free_cell(pool->prison, cell);
299}
300
301static void cell_defer_no_holder_no_free(struct thin_c *tc,
302					 struct dm_bio_prison_cell *cell)
303{
304	struct pool *pool = tc->pool;
305	unsigned long flags;
306
307	spin_lock_irqsave(&tc->lock, flags);
308	dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
309	spin_unlock_irqrestore(&tc->lock, flags);
310
311	wake_worker(pool);
312}
313
314static void cell_error_with_code(struct pool *pool,
315				 struct dm_bio_prison_cell *cell, int error_code)
316{
317	dm_cell_error(pool->prison, cell, error_code);
318	dm_bio_prison_free_cell(pool->prison, cell);
319}
320
321static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
322{
323	cell_error_with_code(pool, cell, -EIO);
324}
325
326/*----------------------------------------------------------------*/
327
328/*
329 * A global list of pools that uses a struct mapped_device as a key.
330 */
331static struct dm_thin_pool_table {
332	struct mutex mutex;
333	struct list_head pools;
334} dm_thin_pool_table;
335
336static void pool_table_init(void)
337{
338	mutex_init(&dm_thin_pool_table.mutex);
339	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
340}
341
342static void __pool_table_insert(struct pool *pool)
343{
344	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
345	list_add(&pool->list, &dm_thin_pool_table.pools);
346}
347
348static void __pool_table_remove(struct pool *pool)
349{
350	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351	list_del(&pool->list);
352}
353
354static struct pool *__pool_table_lookup(struct mapped_device *md)
355{
356	struct pool *pool = NULL, *tmp;
357
358	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
359
360	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
361		if (tmp->pool_md == md) {
362			pool = tmp;
363			break;
364		}
365	}
366
367	return pool;
368}
369
370static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
371{
372	struct pool *pool = NULL, *tmp;
373
374	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
375
376	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
377		if (tmp->md_dev == md_dev) {
378			pool = tmp;
379			break;
380		}
381	}
382
383	return pool;
384}
385
386/*----------------------------------------------------------------*/
387
388struct dm_thin_endio_hook {
389	struct thin_c *tc;
390	struct dm_deferred_entry *shared_read_entry;
391	struct dm_deferred_entry *all_io_entry;
392	struct dm_thin_new_mapping *overwrite_mapping;
393	struct rb_node rb_node;
394};
395
396static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
397{
398	struct bio *bio;
399	struct bio_list bios;
400	unsigned long flags;
401
402	bio_list_init(&bios);
403
404	spin_lock_irqsave(&tc->lock, flags);
405	bio_list_merge(&bios, master);
406	bio_list_init(master);
407	spin_unlock_irqrestore(&tc->lock, flags);
408
409	while ((bio = bio_list_pop(&bios)))
410		bio_endio(bio, DM_ENDIO_REQUEUE);
411}
412
413static void requeue_io(struct thin_c *tc)
414{
415	requeue_bio_list(tc, &tc->deferred_bio_list);
416	requeue_bio_list(tc, &tc->retry_on_resume_list);
417}
418
419static void error_thin_retry_list(struct thin_c *tc)
420{
421	struct bio *bio;
422	unsigned long flags;
423	struct bio_list bios;
424
425	bio_list_init(&bios);
426
427	spin_lock_irqsave(&tc->lock, flags);
428	bio_list_merge(&bios, &tc->retry_on_resume_list);
429	bio_list_init(&tc->retry_on_resume_list);
430	spin_unlock_irqrestore(&tc->lock, flags);
431
432	while ((bio = bio_list_pop(&bios)))
433		bio_io_error(bio);
434}
435
436static void error_retry_list(struct pool *pool)
437{
438	struct thin_c *tc;
439
440	rcu_read_lock();
441	list_for_each_entry_rcu(tc, &pool->active_thins, list)
442		error_thin_retry_list(tc);
443	rcu_read_unlock();
444}
445
446/*
447 * This section of code contains the logic for processing a thin device's IO.
448 * Much of the code depends on pool object resources (lists, workqueues, etc)
449 * but most is exclusively called from the thin target rather than the thin-pool
450 * target.
451 */
452
453static bool block_size_is_power_of_two(struct pool *pool)
454{
455	return pool->sectors_per_block_shift >= 0;
456}
457
458static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
459{
460	struct pool *pool = tc->pool;
461	sector_t block_nr = bio->bi_iter.bi_sector;
462
463	if (block_size_is_power_of_two(pool))
464		block_nr >>= pool->sectors_per_block_shift;
465	else
466		(void) sector_div(block_nr, pool->sectors_per_block);
467
468	return block_nr;
469}
470
471static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
472{
473	struct pool *pool = tc->pool;
474	sector_t bi_sector = bio->bi_iter.bi_sector;
475
476	bio->bi_bdev = tc->pool_dev->bdev;
477	if (block_size_is_power_of_two(pool))
478		bio->bi_iter.bi_sector =
479			(block << pool->sectors_per_block_shift) |
480			(bi_sector & (pool->sectors_per_block - 1));
481	else
482		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
483				 sector_div(bi_sector, pool->sectors_per_block);
484}
485
486static void remap_to_origin(struct thin_c *tc, struct bio *bio)
487{
488	bio->bi_bdev = tc->origin_dev->bdev;
489}
490
491static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
492{
493	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
494		dm_thin_changed_this_transaction(tc->td);
495}
496
497static void inc_all_io_entry(struct pool *pool, struct bio *bio)
498{
499	struct dm_thin_endio_hook *h;
500
501	if (bio->bi_rw & REQ_DISCARD)
502		return;
503
504	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
505	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
506}
507
508static void issue(struct thin_c *tc, struct bio *bio)
509{
510	struct pool *pool = tc->pool;
511	unsigned long flags;
512
513	if (!bio_triggers_commit(tc, bio)) {
514		generic_make_request(bio);
515		return;
516	}
517
518	/*
519	 * Complete bio with an error if earlier I/O caused changes to
520	 * the metadata that can't be committed e.g, due to I/O errors
521	 * on the metadata device.
522	 */
523	if (dm_thin_aborted_changes(tc->td)) {
524		bio_io_error(bio);
525		return;
526	}
527
528	/*
529	 * Batch together any bios that trigger commits and then issue a
530	 * single commit for them in process_deferred_bios().
531	 */
532	spin_lock_irqsave(&pool->lock, flags);
533	bio_list_add(&pool->deferred_flush_bios, bio);
534	spin_unlock_irqrestore(&pool->lock, flags);
535}
536
537static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
538{
539	remap_to_origin(tc, bio);
540	issue(tc, bio);
541}
542
543static void remap_and_issue(struct thin_c *tc, struct bio *bio,
544			    dm_block_t block)
545{
546	remap(tc, bio, block);
547	issue(tc, bio);
548}
549
550/*----------------------------------------------------------------*/
551
552/*
553 * Bio endio functions.
554 */
555struct dm_thin_new_mapping {
556	struct list_head list;
557
558	bool pass_discard:1;
559	bool definitely_not_shared:1;
560
561	/*
562	 * Track quiescing, copying and zeroing preparation actions.  When this
563	 * counter hits zero the block is prepared and can be inserted into the
564	 * btree.
565	 */
566	atomic_t prepare_actions;
567
568	int err;
569	struct thin_c *tc;
570	dm_block_t virt_block;
571	dm_block_t data_block;
572	struct dm_bio_prison_cell *cell, *cell2;
573
574	/*
575	 * If the bio covers the whole area of a block then we can avoid
576	 * zeroing or copying.  Instead this bio is hooked.  The bio will
577	 * still be in the cell, so care has to be taken to avoid issuing
578	 * the bio twice.
579	 */
580	struct bio *bio;
581	bio_end_io_t *saved_bi_end_io;
582};
583
584static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
585{
586	struct pool *pool = m->tc->pool;
587
588	if (atomic_dec_and_test(&m->prepare_actions)) {
589		list_add_tail(&m->list, &pool->prepared_mappings);
590		wake_worker(pool);
591	}
592}
593
594static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
595{
596	unsigned long flags;
597	struct pool *pool = m->tc->pool;
598
599	spin_lock_irqsave(&pool->lock, flags);
600	__complete_mapping_preparation(m);
601	spin_unlock_irqrestore(&pool->lock, flags);
602}
603
604static void copy_complete(int read_err, unsigned long write_err, void *context)
605{
606	struct dm_thin_new_mapping *m = context;
607
608	m->err = read_err || write_err ? -EIO : 0;
609	complete_mapping_preparation(m);
610}
611
612static void overwrite_endio(struct bio *bio, int err)
613{
614	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
615	struct dm_thin_new_mapping *m = h->overwrite_mapping;
616
617	m->err = err;
618	complete_mapping_preparation(m);
619}
620
621/*----------------------------------------------------------------*/
622
623/*
624 * Workqueue.
625 */
626
627/*
628 * Prepared mapping jobs.
629 */
630
631/*
632 * This sends the bios in the cell back to the deferred_bios list.
633 */
634static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
635{
636	struct pool *pool = tc->pool;
637	unsigned long flags;
638
639	spin_lock_irqsave(&tc->lock, flags);
640	cell_release(pool, cell, &tc->deferred_bio_list);
641	spin_unlock_irqrestore(&tc->lock, flags);
642
643	wake_worker(pool);
644}
645
646/*
647 * Same as cell_defer above, except it omits the original holder of the cell.
648 */
649static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
650{
651	struct pool *pool = tc->pool;
652	unsigned long flags;
653
654	spin_lock_irqsave(&tc->lock, flags);
655	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
656	spin_unlock_irqrestore(&tc->lock, flags);
657
658	wake_worker(pool);
659}
660
661static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
662{
663	if (m->bio) {
664		m->bio->bi_end_io = m->saved_bi_end_io;
665		atomic_inc(&m->bio->bi_remaining);
666	}
667	cell_error(m->tc->pool, m->cell);
668	list_del(&m->list);
669	mempool_free(m, m->tc->pool->mapping_pool);
670}
671
672static void process_prepared_mapping(struct dm_thin_new_mapping *m)
673{
674	struct thin_c *tc = m->tc;
675	struct pool *pool = tc->pool;
676	struct bio *bio;
677	int r;
678
679	bio = m->bio;
680	if (bio) {
681		bio->bi_end_io = m->saved_bi_end_io;
682		atomic_inc(&bio->bi_remaining);
683	}
684
685	if (m->err) {
686		cell_error(pool, m->cell);
687		goto out;
688	}
689
690	/*
691	 * Commit the prepared block into the mapping btree.
692	 * Any I/O for this block arriving after this point will get
693	 * remapped to it directly.
694	 */
695	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
696	if (r) {
697		metadata_operation_failed(pool, "dm_thin_insert_block", r);
698		cell_error(pool, m->cell);
699		goto out;
700	}
701
702	/*
703	 * Release any bios held while the block was being provisioned.
704	 * If we are processing a write bio that completely covers the block,
705	 * we already processed it so can ignore it now when processing
706	 * the bios in the cell.
707	 */
708	if (bio) {
709		cell_defer_no_holder(tc, m->cell);
710		bio_endio(bio, 0);
711	} else
712		cell_defer(tc, m->cell);
713
714out:
715	list_del(&m->list);
716	mempool_free(m, pool->mapping_pool);
717}
718
719static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
720{
721	struct thin_c *tc = m->tc;
722
723	bio_io_error(m->bio);
724	cell_defer_no_holder(tc, m->cell);
725	cell_defer_no_holder(tc, m->cell2);
726	mempool_free(m, tc->pool->mapping_pool);
727}
728
729static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
730{
731	struct thin_c *tc = m->tc;
732
733	inc_all_io_entry(tc->pool, m->bio);
734	cell_defer_no_holder(tc, m->cell);
735	cell_defer_no_holder(tc, m->cell2);
736
737	if (m->pass_discard)
738		if (m->definitely_not_shared)
739			remap_and_issue(tc, m->bio, m->data_block);
740		else {
741			bool used = false;
742			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
743				bio_endio(m->bio, 0);
744			else
745				remap_and_issue(tc, m->bio, m->data_block);
746		}
747	else
748		bio_endio(m->bio, 0);
749
750	mempool_free(m, tc->pool->mapping_pool);
751}
752
753static void process_prepared_discard(struct dm_thin_new_mapping *m)
754{
755	int r;
756	struct thin_c *tc = m->tc;
757
758	r = dm_thin_remove_block(tc->td, m->virt_block);
759	if (r)
760		DMERR_LIMIT("dm_thin_remove_block() failed");
761
762	process_prepared_discard_passdown(m);
763}
764
765static void process_prepared(struct pool *pool, struct list_head *head,
766			     process_mapping_fn *fn)
767{
768	unsigned long flags;
769	struct list_head maps;
770	struct dm_thin_new_mapping *m, *tmp;
771
772	INIT_LIST_HEAD(&maps);
773	spin_lock_irqsave(&pool->lock, flags);
774	list_splice_init(head, &maps);
775	spin_unlock_irqrestore(&pool->lock, flags);
776
777	list_for_each_entry_safe(m, tmp, &maps, list)
778		(*fn)(m);
779}
780
781/*
782 * Deferred bio jobs.
783 */
784static int io_overlaps_block(struct pool *pool, struct bio *bio)
785{
786	return bio->bi_iter.bi_size ==
787		(pool->sectors_per_block << SECTOR_SHIFT);
788}
789
790static int io_overwrites_block(struct pool *pool, struct bio *bio)
791{
792	return (bio_data_dir(bio) == WRITE) &&
793		io_overlaps_block(pool, bio);
794}
795
796static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
797			       bio_end_io_t *fn)
798{
799	*save = bio->bi_end_io;
800	bio->bi_end_io = fn;
801}
802
803static int ensure_next_mapping(struct pool *pool)
804{
805	if (pool->next_mapping)
806		return 0;
807
808	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
809
810	return pool->next_mapping ? 0 : -ENOMEM;
811}
812
813static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
814{
815	struct dm_thin_new_mapping *m = pool->next_mapping;
816
817	BUG_ON(!pool->next_mapping);
818
819	memset(m, 0, sizeof(struct dm_thin_new_mapping));
820	INIT_LIST_HEAD(&m->list);
821	m->bio = NULL;
822
823	pool->next_mapping = NULL;
824
825	return m;
826}
827
828static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
829		    sector_t begin, sector_t end)
830{
831	int r;
832	struct dm_io_region to;
833
834	to.bdev = tc->pool_dev->bdev;
835	to.sector = begin;
836	to.count = end - begin;
837
838	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
839	if (r < 0) {
840		DMERR_LIMIT("dm_kcopyd_zero() failed");
841		copy_complete(1, 1, m);
842	}
843}
844
845/*
846 * A partial copy also needs to zero the uncopied region.
847 */
848static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
849			  struct dm_dev *origin, dm_block_t data_origin,
850			  dm_block_t data_dest,
851			  struct dm_bio_prison_cell *cell, struct bio *bio,
852			  sector_t len)
853{
854	int r;
855	struct pool *pool = tc->pool;
856	struct dm_thin_new_mapping *m = get_next_mapping(pool);
857
858	m->tc = tc;
859	m->virt_block = virt_block;
860	m->data_block = data_dest;
861	m->cell = cell;
862
863	/*
864	 * quiesce action + copy action + an extra reference held for the
865	 * duration of this function (we may need to inc later for a
866	 * partial zero).
867	 */
868	atomic_set(&m->prepare_actions, 3);
869
870	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
871		complete_mapping_preparation(m); /* already quiesced */
872
873	/*
874	 * IO to pool_dev remaps to the pool target's data_dev.
875	 *
876	 * If the whole block of data is being overwritten, we can issue the
877	 * bio immediately. Otherwise we use kcopyd to clone the data first.
878	 */
879	if (io_overwrites_block(pool, bio)) {
880		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
881
882		h->overwrite_mapping = m;
883		m->bio = bio;
884		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
885		inc_all_io_entry(pool, bio);
886		remap_and_issue(tc, bio, data_dest);
887	} else {
888		struct dm_io_region from, to;
889
890		from.bdev = origin->bdev;
891		from.sector = data_origin * pool->sectors_per_block;
892		from.count = len;
893
894		to.bdev = tc->pool_dev->bdev;
895		to.sector = data_dest * pool->sectors_per_block;
896		to.count = len;
897
898		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
899				   0, copy_complete, m);
900		if (r < 0) {
901			DMERR_LIMIT("dm_kcopyd_copy() failed");
902			copy_complete(1, 1, m);
903
904			/*
905			 * We allow the zero to be issued, to simplify the
906			 * error path.  Otherwise we'd need to start
907			 * worrying about decrementing the prepare_actions
908			 * counter.
909			 */
910		}
911
912		/*
913		 * Do we need to zero a tail region?
914		 */
915		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
916			atomic_inc(&m->prepare_actions);
917			ll_zero(tc, m,
918				data_dest * pool->sectors_per_block + len,
919				(data_dest + 1) * pool->sectors_per_block);
920		}
921	}
922
923	complete_mapping_preparation(m); /* drop our ref */
924}
925
926static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
927				   dm_block_t data_origin, dm_block_t data_dest,
928				   struct dm_bio_prison_cell *cell, struct bio *bio)
929{
930	schedule_copy(tc, virt_block, tc->pool_dev,
931		      data_origin, data_dest, cell, bio,
932		      tc->pool->sectors_per_block);
933}
934
935static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
936			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
937			  struct bio *bio)
938{
939	struct pool *pool = tc->pool;
940	struct dm_thin_new_mapping *m = get_next_mapping(pool);
941
942	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
943	m->tc = tc;
944	m->virt_block = virt_block;
945	m->data_block = data_block;
946	m->cell = cell;
947
948	/*
949	 * If the whole block of data is being overwritten or we are not
950	 * zeroing pre-existing data, we can issue the bio immediately.
951	 * Otherwise we use kcopyd to zero the data first.
952	 */
953	if (!pool->pf.zero_new_blocks)
954		process_prepared_mapping(m);
955
956	else if (io_overwrites_block(pool, bio)) {
957		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
958
959		h->overwrite_mapping = m;
960		m->bio = bio;
961		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
962		inc_all_io_entry(pool, bio);
963		remap_and_issue(tc, bio, data_block);
964
965	} else
966		ll_zero(tc, m,
967			data_block * pool->sectors_per_block,
968			(data_block + 1) * pool->sectors_per_block);
969}
970
971static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
972				   dm_block_t data_dest,
973				   struct dm_bio_prison_cell *cell, struct bio *bio)
974{
975	struct pool *pool = tc->pool;
976	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
977	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
978
979	if (virt_block_end <= tc->origin_size)
980		schedule_copy(tc, virt_block, tc->origin_dev,
981			      virt_block, data_dest, cell, bio,
982			      pool->sectors_per_block);
983
984	else if (virt_block_begin < tc->origin_size)
985		schedule_copy(tc, virt_block, tc->origin_dev,
986			      virt_block, data_dest, cell, bio,
987			      tc->origin_size - virt_block_begin);
988
989	else
990		schedule_zero(tc, virt_block, data_dest, cell, bio);
991}
992
993/*
994 * A non-zero return indicates read_only or fail_io mode.
995 * Many callers don't care about the return value.
996 */
997static int commit(struct pool *pool)
998{
999	int r;
1000
1001	if (get_pool_mode(pool) >= PM_READ_ONLY)
1002		return -EINVAL;
1003
1004	r = dm_pool_commit_metadata(pool->pmd);
1005	if (r)
1006		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1007
1008	return r;
1009}
1010
1011static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1012{
1013	unsigned long flags;
1014
1015	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1016		DMWARN("%s: reached low water mark for data device: sending event.",
1017		       dm_device_name(pool->pool_md));
1018		spin_lock_irqsave(&pool->lock, flags);
1019		pool->low_water_triggered = true;
1020		spin_unlock_irqrestore(&pool->lock, flags);
1021		dm_table_event(pool->ti->table);
1022	}
1023}
1024
1025static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1026
1027static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1028{
1029	int r;
1030	dm_block_t free_blocks;
1031	struct pool *pool = tc->pool;
1032
1033	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1034		return -EINVAL;
1035
1036	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1037	if (r) {
1038		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1039		return r;
1040	}
1041
1042	check_low_water_mark(pool, free_blocks);
1043
1044	if (!free_blocks) {
1045		/*
1046		 * Try to commit to see if that will free up some
1047		 * more space.
1048		 */
1049		r = commit(pool);
1050		if (r)
1051			return r;
1052
1053		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1054		if (r) {
1055			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1056			return r;
1057		}
1058
1059		if (!free_blocks) {
1060			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1061			return -ENOSPC;
1062		}
1063	}
1064
1065	r = dm_pool_alloc_data_block(pool->pmd, result);
1066	if (r) {
1067		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1068		return r;
1069	}
1070
1071	return 0;
1072}
1073
1074/*
1075 * If we have run out of space, queue bios until the device is
1076 * resumed, presumably after having been reloaded with more space.
1077 */
1078static void retry_on_resume(struct bio *bio)
1079{
1080	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1081	struct thin_c *tc = h->tc;
1082	unsigned long flags;
1083
1084	spin_lock_irqsave(&tc->lock, flags);
1085	bio_list_add(&tc->retry_on_resume_list, bio);
1086	spin_unlock_irqrestore(&tc->lock, flags);
1087}
1088
1089static int should_error_unserviceable_bio(struct pool *pool)
1090{
1091	enum pool_mode m = get_pool_mode(pool);
1092
1093	switch (m) {
1094	case PM_WRITE:
1095		/* Shouldn't get here */
1096		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1097		return -EIO;
1098
1099	case PM_OUT_OF_DATA_SPACE:
1100		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1101
1102	case PM_READ_ONLY:
1103	case PM_FAIL:
1104		return -EIO;
1105	default:
1106		/* Shouldn't get here */
1107		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1108		return -EIO;
1109	}
1110}
1111
1112static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1113{
1114	int error = should_error_unserviceable_bio(pool);
1115
1116	if (error)
1117		bio_endio(bio, error);
1118	else
1119		retry_on_resume(bio);
1120}
1121
1122static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1123{
1124	struct bio *bio;
1125	struct bio_list bios;
1126	int error;
1127
1128	error = should_error_unserviceable_bio(pool);
1129	if (error) {
1130		cell_error_with_code(pool, cell, error);
1131		return;
1132	}
1133
1134	bio_list_init(&bios);
1135	cell_release(pool, cell, &bios);
1136
1137	error = should_error_unserviceable_bio(pool);
1138	if (error)
1139		while ((bio = bio_list_pop(&bios)))
1140			bio_endio(bio, error);
1141	else
1142		while ((bio = bio_list_pop(&bios)))
1143			retry_on_resume(bio);
1144}
1145
1146static void process_discard(struct thin_c *tc, struct bio *bio)
1147{
1148	int r;
1149	unsigned long flags;
1150	struct pool *pool = tc->pool;
1151	struct dm_bio_prison_cell *cell, *cell2;
1152	struct dm_cell_key key, key2;
1153	dm_block_t block = get_bio_block(tc, bio);
1154	struct dm_thin_lookup_result lookup_result;
1155	struct dm_thin_new_mapping *m;
1156
1157	build_virtual_key(tc->td, block, &key);
1158	if (bio_detain(tc->pool, &key, bio, &cell))
1159		return;
1160
1161	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1162	switch (r) {
1163	case 0:
1164		/*
1165		 * Check nobody is fiddling with this pool block.  This can
1166		 * happen if someone's in the process of breaking sharing
1167		 * on this block.
1168		 */
1169		build_data_key(tc->td, lookup_result.block, &key2);
1170		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1171			cell_defer_no_holder(tc, cell);
1172			break;
1173		}
1174
1175		if (io_overlaps_block(pool, bio)) {
1176			/*
1177			 * IO may still be going to the destination block.  We must
1178			 * quiesce before we can do the removal.
1179			 */
1180			m = get_next_mapping(pool);
1181			m->tc = tc;
1182			m->pass_discard = pool->pf.discard_passdown;
1183			m->definitely_not_shared = !lookup_result.shared;
1184			m->virt_block = block;
1185			m->data_block = lookup_result.block;
1186			m->cell = cell;
1187			m->cell2 = cell2;
1188			m->bio = bio;
1189
1190			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1191				spin_lock_irqsave(&pool->lock, flags);
1192				list_add_tail(&m->list, &pool->prepared_discards);
1193				spin_unlock_irqrestore(&pool->lock, flags);
1194				wake_worker(pool);
1195			}
1196		} else {
1197			inc_all_io_entry(pool, bio);
1198			cell_defer_no_holder(tc, cell);
1199			cell_defer_no_holder(tc, cell2);
1200
1201			/*
1202			 * The DM core makes sure that the discard doesn't span
1203			 * a block boundary.  So we submit the discard of a
1204			 * partial block appropriately.
1205			 */
1206			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1207				remap_and_issue(tc, bio, lookup_result.block);
1208			else
1209				bio_endio(bio, 0);
1210		}
1211		break;
1212
1213	case -ENODATA:
1214		/*
1215		 * It isn't provisioned, just forget it.
1216		 */
1217		cell_defer_no_holder(tc, cell);
1218		bio_endio(bio, 0);
1219		break;
1220
1221	default:
1222		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1223			    __func__, r);
1224		cell_defer_no_holder(tc, cell);
1225		bio_io_error(bio);
1226		break;
1227	}
1228}
1229
1230static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1231			  struct dm_cell_key *key,
1232			  struct dm_thin_lookup_result *lookup_result,
1233			  struct dm_bio_prison_cell *cell)
1234{
1235	int r;
1236	dm_block_t data_block;
1237	struct pool *pool = tc->pool;
1238
1239	r = alloc_data_block(tc, &data_block);
1240	switch (r) {
1241	case 0:
1242		schedule_internal_copy(tc, block, lookup_result->block,
1243				       data_block, cell, bio);
1244		break;
1245
1246	case -ENOSPC:
1247		retry_bios_on_resume(pool, cell);
1248		break;
1249
1250	default:
1251		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1252			    __func__, r);
1253		cell_error(pool, cell);
1254		break;
1255	}
1256}
1257
1258static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1259			       dm_block_t block,
1260			       struct dm_thin_lookup_result *lookup_result)
1261{
1262	struct dm_bio_prison_cell *cell;
1263	struct pool *pool = tc->pool;
1264	struct dm_cell_key key;
1265
1266	/*
1267	 * If cell is already occupied, then sharing is already in the process
1268	 * of being broken so we have nothing further to do here.
1269	 */
1270	build_data_key(tc->td, lookup_result->block, &key);
1271	if (bio_detain(pool, &key, bio, &cell))
1272		return;
1273
1274	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1275		break_sharing(tc, bio, block, &key, lookup_result, cell);
1276	else {
1277		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1278
1279		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1280		inc_all_io_entry(pool, bio);
1281		cell_defer_no_holder(tc, cell);
1282
1283		remap_and_issue(tc, bio, lookup_result->block);
1284	}
1285}
1286
1287static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1288			    struct dm_bio_prison_cell *cell)
1289{
1290	int r;
1291	dm_block_t data_block;
1292	struct pool *pool = tc->pool;
1293
1294	/*
1295	 * Remap empty bios (flushes) immediately, without provisioning.
1296	 */
1297	if (!bio->bi_iter.bi_size) {
1298		inc_all_io_entry(pool, bio);
1299		cell_defer_no_holder(tc, cell);
1300
1301		remap_and_issue(tc, bio, 0);
1302		return;
1303	}
1304
1305	/*
1306	 * Fill read bios with zeroes and complete them immediately.
1307	 */
1308	if (bio_data_dir(bio) == READ) {
1309		zero_fill_bio(bio);
1310		cell_defer_no_holder(tc, cell);
1311		bio_endio(bio, 0);
1312		return;
1313	}
1314
1315	r = alloc_data_block(tc, &data_block);
1316	switch (r) {
1317	case 0:
1318		if (tc->origin_dev)
1319			schedule_external_copy(tc, block, data_block, cell, bio);
1320		else
1321			schedule_zero(tc, block, data_block, cell, bio);
1322		break;
1323
1324	case -ENOSPC:
1325		retry_bios_on_resume(pool, cell);
1326		break;
1327
1328	default:
1329		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1330			    __func__, r);
1331		cell_error(pool, cell);
1332		break;
1333	}
1334}
1335
1336static void process_bio(struct thin_c *tc, struct bio *bio)
1337{
1338	int r;
1339	struct pool *pool = tc->pool;
1340	dm_block_t block = get_bio_block(tc, bio);
1341	struct dm_bio_prison_cell *cell;
1342	struct dm_cell_key key;
1343	struct dm_thin_lookup_result lookup_result;
1344
1345	/*
1346	 * If cell is already occupied, then the block is already
1347	 * being provisioned so we have nothing further to do here.
1348	 */
1349	build_virtual_key(tc->td, block, &key);
1350	if (bio_detain(pool, &key, bio, &cell))
1351		return;
1352
1353	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1354	switch (r) {
1355	case 0:
1356		if (lookup_result.shared) {
1357			process_shared_bio(tc, bio, block, &lookup_result);
1358			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1359		} else {
1360			inc_all_io_entry(pool, bio);
1361			cell_defer_no_holder(tc, cell);
1362
1363			remap_and_issue(tc, bio, lookup_result.block);
1364		}
1365		break;
1366
1367	case -ENODATA:
1368		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1369			inc_all_io_entry(pool, bio);
1370			cell_defer_no_holder(tc, cell);
1371
1372			if (bio_end_sector(bio) <= tc->origin_size)
1373				remap_to_origin_and_issue(tc, bio);
1374
1375			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1376				zero_fill_bio(bio);
1377				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1378				remap_to_origin_and_issue(tc, bio);
1379
1380			} else {
1381				zero_fill_bio(bio);
1382				bio_endio(bio, 0);
1383			}
1384		} else
1385			provision_block(tc, bio, block, cell);
1386		break;
1387
1388	default:
1389		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1390			    __func__, r);
1391		cell_defer_no_holder(tc, cell);
1392		bio_io_error(bio);
1393		break;
1394	}
1395}
1396
1397static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1398{
1399	int r;
1400	int rw = bio_data_dir(bio);
1401	dm_block_t block = get_bio_block(tc, bio);
1402	struct dm_thin_lookup_result lookup_result;
1403
1404	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1405	switch (r) {
1406	case 0:
1407		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1408			handle_unserviceable_bio(tc->pool, bio);
1409		else {
1410			inc_all_io_entry(tc->pool, bio);
1411			remap_and_issue(tc, bio, lookup_result.block);
1412		}
1413		break;
1414
1415	case -ENODATA:
1416		if (rw != READ) {
1417			handle_unserviceable_bio(tc->pool, bio);
1418			break;
1419		}
1420
1421		if (tc->origin_dev) {
1422			inc_all_io_entry(tc->pool, bio);
1423			remap_to_origin_and_issue(tc, bio);
1424			break;
1425		}
1426
1427		zero_fill_bio(bio);
1428		bio_endio(bio, 0);
1429		break;
1430
1431	default:
1432		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1433			    __func__, r);
1434		bio_io_error(bio);
1435		break;
1436	}
1437}
1438
1439static void process_bio_success(struct thin_c *tc, struct bio *bio)
1440{
1441	bio_endio(bio, 0);
1442}
1443
1444static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1445{
1446	bio_io_error(bio);
1447}
1448
1449/*
1450 * FIXME: should we also commit due to size of transaction, measured in
1451 * metadata blocks?
1452 */
1453static int need_commit_due_to_time(struct pool *pool)
1454{
1455	return jiffies < pool->last_commit_jiffies ||
1456	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1457}
1458
1459#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1460#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1461
1462static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1463{
1464	struct rb_node **rbp, *parent;
1465	struct dm_thin_endio_hook *pbd;
1466	sector_t bi_sector = bio->bi_iter.bi_sector;
1467
1468	rbp = &tc->sort_bio_list.rb_node;
1469	parent = NULL;
1470	while (*rbp) {
1471		parent = *rbp;
1472		pbd = thin_pbd(parent);
1473
1474		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1475			rbp = &(*rbp)->rb_left;
1476		else
1477			rbp = &(*rbp)->rb_right;
1478	}
1479
1480	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1481	rb_link_node(&pbd->rb_node, parent, rbp);
1482	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1483}
1484
1485static void __extract_sorted_bios(struct thin_c *tc)
1486{
1487	struct rb_node *node;
1488	struct dm_thin_endio_hook *pbd;
1489	struct bio *bio;
1490
1491	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1492		pbd = thin_pbd(node);
1493		bio = thin_bio(pbd);
1494
1495		bio_list_add(&tc->deferred_bio_list, bio);
1496		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1497	}
1498
1499	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1500}
1501
1502static void __sort_thin_deferred_bios(struct thin_c *tc)
1503{
1504	struct bio *bio;
1505	struct bio_list bios;
1506
1507	bio_list_init(&bios);
1508	bio_list_merge(&bios, &tc->deferred_bio_list);
1509	bio_list_init(&tc->deferred_bio_list);
1510
1511	/* Sort deferred_bio_list using rb-tree */
1512	while ((bio = bio_list_pop(&bios)))
1513		__thin_bio_rb_add(tc, bio);
1514
1515	/*
1516	 * Transfer the sorted bios in sort_bio_list back to
1517	 * deferred_bio_list to allow lockless submission of
1518	 * all bios.
1519	 */
1520	__extract_sorted_bios(tc);
1521}
1522
1523static void process_thin_deferred_bios(struct thin_c *tc)
1524{
1525	struct pool *pool = tc->pool;
1526	unsigned long flags;
1527	struct bio *bio;
1528	struct bio_list bios;
1529	struct blk_plug plug;
1530
1531	if (tc->requeue_mode) {
1532		requeue_bio_list(tc, &tc->deferred_bio_list);
1533		return;
1534	}
1535
1536	bio_list_init(&bios);
1537
1538	spin_lock_irqsave(&tc->lock, flags);
1539
1540	if (bio_list_empty(&tc->deferred_bio_list)) {
1541		spin_unlock_irqrestore(&tc->lock, flags);
1542		return;
1543	}
1544
1545	__sort_thin_deferred_bios(tc);
1546
1547	bio_list_merge(&bios, &tc->deferred_bio_list);
1548	bio_list_init(&tc->deferred_bio_list);
1549
1550	spin_unlock_irqrestore(&tc->lock, flags);
1551
1552	blk_start_plug(&plug);
1553	while ((bio = bio_list_pop(&bios))) {
1554		/*
1555		 * If we've got no free new_mapping structs, and processing
1556		 * this bio might require one, we pause until there are some
1557		 * prepared mappings to process.
1558		 */
1559		if (ensure_next_mapping(pool)) {
1560			spin_lock_irqsave(&tc->lock, flags);
1561			bio_list_add(&tc->deferred_bio_list, bio);
1562			bio_list_merge(&tc->deferred_bio_list, &bios);
1563			spin_unlock_irqrestore(&tc->lock, flags);
1564			break;
1565		}
1566
1567		if (bio->bi_rw & REQ_DISCARD)
1568			pool->process_discard(tc, bio);
1569		else
1570			pool->process_bio(tc, bio);
1571	}
1572	blk_finish_plug(&plug);
1573}
1574
1575static void thin_get(struct thin_c *tc);
1576static void thin_put(struct thin_c *tc);
1577
1578/*
1579 * We can't hold rcu_read_lock() around code that can block.  So we
1580 * find a thin with the rcu lock held; bump a refcount; then drop
1581 * the lock.
1582 */
1583static struct thin_c *get_first_thin(struct pool *pool)
1584{
1585	struct thin_c *tc = NULL;
1586
1587	rcu_read_lock();
1588	if (!list_empty(&pool->active_thins)) {
1589		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1590		thin_get(tc);
1591	}
1592	rcu_read_unlock();
1593
1594	return tc;
1595}
1596
1597static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1598{
1599	struct thin_c *old_tc = tc;
1600
1601	rcu_read_lock();
1602	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1603		thin_get(tc);
1604		thin_put(old_tc);
1605		rcu_read_unlock();
1606		return tc;
1607	}
1608	thin_put(old_tc);
1609	rcu_read_unlock();
1610
1611	return NULL;
1612}
1613
1614static void process_deferred_bios(struct pool *pool)
1615{
1616	unsigned long flags;
1617	struct bio *bio;
1618	struct bio_list bios;
1619	struct thin_c *tc;
1620
1621	tc = get_first_thin(pool);
1622	while (tc) {
1623		process_thin_deferred_bios(tc);
1624		tc = get_next_thin(pool, tc);
1625	}
1626
1627	/*
1628	 * If there are any deferred flush bios, we must commit
1629	 * the metadata before issuing them.
1630	 */
1631	bio_list_init(&bios);
1632	spin_lock_irqsave(&pool->lock, flags);
1633	bio_list_merge(&bios, &pool->deferred_flush_bios);
1634	bio_list_init(&pool->deferred_flush_bios);
1635	spin_unlock_irqrestore(&pool->lock, flags);
1636
1637	if (bio_list_empty(&bios) &&
1638	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1639		return;
1640
1641	if (commit(pool)) {
1642		while ((bio = bio_list_pop(&bios)))
1643			bio_io_error(bio);
1644		return;
1645	}
1646	pool->last_commit_jiffies = jiffies;
1647
1648	while ((bio = bio_list_pop(&bios)))
1649		generic_make_request(bio);
1650}
1651
1652static void do_worker(struct work_struct *ws)
1653{
1654	struct pool *pool = container_of(ws, struct pool, worker);
1655
1656	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1657	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1658	process_deferred_bios(pool);
1659}
1660
1661/*
1662 * We want to commit periodically so that not too much
1663 * unwritten data builds up.
1664 */
1665static void do_waker(struct work_struct *ws)
1666{
1667	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1668	wake_worker(pool);
1669	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1670}
1671
1672/*
1673 * We're holding onto IO to allow userland time to react.  After the
1674 * timeout either the pool will have been resized (and thus back in
1675 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1676 */
1677static void do_no_space_timeout(struct work_struct *ws)
1678{
1679	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1680					 no_space_timeout);
1681
1682	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1683		set_pool_mode(pool, PM_READ_ONLY);
1684}
1685
1686/*----------------------------------------------------------------*/
1687
1688struct pool_work {
1689	struct work_struct worker;
1690	struct completion complete;
1691};
1692
1693static struct pool_work *to_pool_work(struct work_struct *ws)
1694{
1695	return container_of(ws, struct pool_work, worker);
1696}
1697
1698static void pool_work_complete(struct pool_work *pw)
1699{
1700	complete(&pw->complete);
1701}
1702
1703static void pool_work_wait(struct pool_work *pw, struct pool *pool,
1704			   void (*fn)(struct work_struct *))
1705{
1706	INIT_WORK_ONSTACK(&pw->worker, fn);
1707	init_completion(&pw->complete);
1708	queue_work(pool->wq, &pw->worker);
1709	wait_for_completion(&pw->complete);
1710}
1711
1712/*----------------------------------------------------------------*/
1713
1714struct noflush_work {
1715	struct pool_work pw;
1716	struct thin_c *tc;
1717};
1718
1719static struct noflush_work *to_noflush(struct work_struct *ws)
1720{
1721	return container_of(to_pool_work(ws), struct noflush_work, pw);
1722}
1723
1724static void do_noflush_start(struct work_struct *ws)
1725{
1726	struct noflush_work *w = to_noflush(ws);
1727	w->tc->requeue_mode = true;
1728	requeue_io(w->tc);
1729	pool_work_complete(&w->pw);
1730}
1731
1732static void do_noflush_stop(struct work_struct *ws)
1733{
1734	struct noflush_work *w = to_noflush(ws);
1735	w->tc->requeue_mode = false;
1736	pool_work_complete(&w->pw);
1737}
1738
1739static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1740{
1741	struct noflush_work w;
1742
1743	w.tc = tc;
1744	pool_work_wait(&w.pw, tc->pool, fn);
1745}
1746
1747/*----------------------------------------------------------------*/
1748
1749static enum pool_mode get_pool_mode(struct pool *pool)
1750{
1751	return pool->pf.mode;
1752}
1753
1754static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1755{
1756	dm_table_event(pool->ti->table);
1757	DMINFO("%s: switching pool to %s mode",
1758	       dm_device_name(pool->pool_md), new_mode);
1759}
1760
1761static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1762{
1763	struct pool_c *pt = pool->ti->private;
1764	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1765	enum pool_mode old_mode = get_pool_mode(pool);
1766	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1767
1768	/*
1769	 * Never allow the pool to transition to PM_WRITE mode if user
1770	 * intervention is required to verify metadata and data consistency.
1771	 */
1772	if (new_mode == PM_WRITE && needs_check) {
1773		DMERR("%s: unable to switch pool to write mode until repaired.",
1774		      dm_device_name(pool->pool_md));
1775		if (old_mode != new_mode)
1776			new_mode = old_mode;
1777		else
1778			new_mode = PM_READ_ONLY;
1779	}
1780	/*
1781	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1782	 * not going to recover without a thin_repair.	So we never let the
1783	 * pool move out of the old mode.
1784	 */
1785	if (old_mode == PM_FAIL)
1786		new_mode = old_mode;
1787
1788	switch (new_mode) {
1789	case PM_FAIL:
1790		if (old_mode != new_mode)
1791			notify_of_pool_mode_change(pool, "failure");
1792		dm_pool_metadata_read_only(pool->pmd);
1793		pool->process_bio = process_bio_fail;
1794		pool->process_discard = process_bio_fail;
1795		pool->process_prepared_mapping = process_prepared_mapping_fail;
1796		pool->process_prepared_discard = process_prepared_discard_fail;
1797
1798		error_retry_list(pool);
1799		break;
1800
1801	case PM_READ_ONLY:
1802		if (old_mode != new_mode)
1803			notify_of_pool_mode_change(pool, "read-only");
1804		dm_pool_metadata_read_only(pool->pmd);
1805		pool->process_bio = process_bio_read_only;
1806		pool->process_discard = process_bio_success;
1807		pool->process_prepared_mapping = process_prepared_mapping_fail;
1808		pool->process_prepared_discard = process_prepared_discard_passdown;
1809
1810		error_retry_list(pool);
1811		break;
1812
1813	case PM_OUT_OF_DATA_SPACE:
1814		/*
1815		 * Ideally we'd never hit this state; the low water mark
1816		 * would trigger userland to extend the pool before we
1817		 * completely run out of data space.  However, many small
1818		 * IOs to unprovisioned space can consume data space at an
1819		 * alarming rate.  Adjust your low water mark if you're
1820		 * frequently seeing this mode.
1821		 */
1822		if (old_mode != new_mode)
1823			notify_of_pool_mode_change(pool, "out-of-data-space");
1824		pool->process_bio = process_bio_read_only;
1825		pool->process_discard = process_discard;
1826		pool->process_prepared_mapping = process_prepared_mapping;
1827		pool->process_prepared_discard = process_prepared_discard_passdown;
1828
1829		if (!pool->pf.error_if_no_space && no_space_timeout)
1830			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1831		break;
1832
1833	case PM_WRITE:
1834		if (old_mode != new_mode)
1835			notify_of_pool_mode_change(pool, "write");
1836		dm_pool_metadata_read_write(pool->pmd);
1837		pool->process_bio = process_bio;
1838		pool->process_discard = process_discard;
1839		pool->process_prepared_mapping = process_prepared_mapping;
1840		pool->process_prepared_discard = process_prepared_discard;
1841		break;
1842	}
1843
1844	pool->pf.mode = new_mode;
1845	/*
1846	 * The pool mode may have changed, sync it so bind_control_target()
1847	 * doesn't cause an unexpected mode transition on resume.
1848	 */
1849	pt->adjusted_pf.mode = new_mode;
1850}
1851
1852static void abort_transaction(struct pool *pool)
1853{
1854	const char *dev_name = dm_device_name(pool->pool_md);
1855
1856	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1857	if (dm_pool_abort_metadata(pool->pmd)) {
1858		DMERR("%s: failed to abort metadata transaction", dev_name);
1859		set_pool_mode(pool, PM_FAIL);
1860	}
1861
1862	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1863		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1864		set_pool_mode(pool, PM_FAIL);
1865	}
1866}
1867
1868static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1869{
1870	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1871		    dm_device_name(pool->pool_md), op, r);
1872
1873	abort_transaction(pool);
1874	set_pool_mode(pool, PM_READ_ONLY);
1875}
1876
1877/*----------------------------------------------------------------*/
1878
1879/*
1880 * Mapping functions.
1881 */
1882
1883/*
1884 * Called only while mapping a thin bio to hand it over to the workqueue.
1885 */
1886static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1887{
1888	unsigned long flags;
1889	struct pool *pool = tc->pool;
1890
1891	spin_lock_irqsave(&tc->lock, flags);
1892	bio_list_add(&tc->deferred_bio_list, bio);
1893	spin_unlock_irqrestore(&tc->lock, flags);
1894
1895	wake_worker(pool);
1896}
1897
1898static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1899{
1900	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1901
1902	h->tc = tc;
1903	h->shared_read_entry = NULL;
1904	h->all_io_entry = NULL;
1905	h->overwrite_mapping = NULL;
1906}
1907
1908/*
1909 * Non-blocking function called from the thin target's map function.
1910 */
1911static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1912{
1913	int r;
1914	struct thin_c *tc = ti->private;
1915	dm_block_t block = get_bio_block(tc, bio);
1916	struct dm_thin_device *td = tc->td;
1917	struct dm_thin_lookup_result result;
1918	struct dm_bio_prison_cell cell1, cell2;
1919	struct dm_bio_prison_cell *cell_result;
1920	struct dm_cell_key key;
1921
1922	thin_hook_bio(tc, bio);
1923
1924	if (tc->requeue_mode) {
1925		bio_endio(bio, DM_ENDIO_REQUEUE);
1926		return DM_MAPIO_SUBMITTED;
1927	}
1928
1929	if (get_pool_mode(tc->pool) == PM_FAIL) {
1930		bio_io_error(bio);
1931		return DM_MAPIO_SUBMITTED;
1932	}
1933
1934	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1935		thin_defer_bio(tc, bio);
1936		return DM_MAPIO_SUBMITTED;
1937	}
1938
1939	/*
1940	 * We must hold the virtual cell before doing the lookup, otherwise
1941	 * there's a race with discard.
1942	 */
1943	build_virtual_key(tc->td, block, &key);
1944	if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1945		return DM_MAPIO_SUBMITTED;
1946
1947	r = dm_thin_find_block(td, block, 0, &result);
1948
1949	/*
1950	 * Note that we defer readahead too.
1951	 */
1952	switch (r) {
1953	case 0:
1954		if (unlikely(result.shared)) {
1955			/*
1956			 * We have a race condition here between the
1957			 * result.shared value returned by the lookup and
1958			 * snapshot creation, which may cause new
1959			 * sharing.
1960			 *
1961			 * To avoid this always quiesce the origin before
1962			 * taking the snap.  You want to do this anyway to
1963			 * ensure a consistent application view
1964			 * (i.e. lockfs).
1965			 *
1966			 * More distant ancestors are irrelevant. The
1967			 * shared flag will be set in their case.
1968			 */
1969			thin_defer_bio(tc, bio);
1970			cell_defer_no_holder_no_free(tc, &cell1);
1971			return DM_MAPIO_SUBMITTED;
1972		}
1973
1974		build_data_key(tc->td, result.block, &key);
1975		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1976			cell_defer_no_holder_no_free(tc, &cell1);
1977			return DM_MAPIO_SUBMITTED;
1978		}
1979
1980		inc_all_io_entry(tc->pool, bio);
1981		cell_defer_no_holder_no_free(tc, &cell2);
1982		cell_defer_no_holder_no_free(tc, &cell1);
1983
1984		remap(tc, bio, result.block);
1985		return DM_MAPIO_REMAPPED;
1986
1987	case -ENODATA:
1988		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1989			/*
1990			 * This block isn't provisioned, and we have no way
1991			 * of doing so.
1992			 */
1993			handle_unserviceable_bio(tc->pool, bio);
1994			cell_defer_no_holder_no_free(tc, &cell1);
1995			return DM_MAPIO_SUBMITTED;
1996		}
1997		/* fall through */
1998
1999	case -EWOULDBLOCK:
2000		/*
2001		 * In future, the failed dm_thin_find_block above could
2002		 * provide the hint to load the metadata into cache.
2003		 */
2004		thin_defer_bio(tc, bio);
2005		cell_defer_no_holder_no_free(tc, &cell1);
2006		return DM_MAPIO_SUBMITTED;
2007
2008	default:
2009		/*
2010		 * Must always call bio_io_error on failure.
2011		 * dm_thin_find_block can fail with -EINVAL if the
2012		 * pool is switched to fail-io mode.
2013		 */
2014		bio_io_error(bio);
2015		cell_defer_no_holder_no_free(tc, &cell1);
2016		return DM_MAPIO_SUBMITTED;
2017	}
2018}
2019
2020static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2021{
2022	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2023	struct request_queue *q;
2024
2025	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2026		return 1;
2027
2028	q = bdev_get_queue(pt->data_dev->bdev);
2029	return bdi_congested(&q->backing_dev_info, bdi_bits);
2030}
2031
2032static void requeue_bios(struct pool *pool)
2033{
2034	unsigned long flags;
2035	struct thin_c *tc;
2036
2037	rcu_read_lock();
2038	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2039		spin_lock_irqsave(&tc->lock, flags);
2040		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2041		bio_list_init(&tc->retry_on_resume_list);
2042		spin_unlock_irqrestore(&tc->lock, flags);
2043	}
2044	rcu_read_unlock();
2045}
2046
2047/*----------------------------------------------------------------
2048 * Binding of control targets to a pool object
2049 *--------------------------------------------------------------*/
2050static bool data_dev_supports_discard(struct pool_c *pt)
2051{
2052	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2053
2054	return q && blk_queue_discard(q);
2055}
2056
2057static bool is_factor(sector_t block_size, uint32_t n)
2058{
2059	return !sector_div(block_size, n);
2060}
2061
2062/*
2063 * If discard_passdown was enabled verify that the data device
2064 * supports discards.  Disable discard_passdown if not.
2065 */
2066static void disable_passdown_if_not_supported(struct pool_c *pt)
2067{
2068	struct pool *pool = pt->pool;
2069	struct block_device *data_bdev = pt->data_dev->bdev;
2070	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2071	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2072	const char *reason = NULL;
2073	char buf[BDEVNAME_SIZE];
2074
2075	if (!pt->adjusted_pf.discard_passdown)
2076		return;
2077
2078	if (!data_dev_supports_discard(pt))
2079		reason = "discard unsupported";
2080
2081	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2082		reason = "max discard sectors smaller than a block";
2083
2084	else if (data_limits->discard_granularity > block_size)
2085		reason = "discard granularity larger than a block";
2086
2087	else if (!is_factor(block_size, data_limits->discard_granularity))
2088		reason = "discard granularity not a factor of block size";
2089
2090	if (reason) {
2091		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2092		pt->adjusted_pf.discard_passdown = false;
2093	}
2094}
2095
2096static int bind_control_target(struct pool *pool, struct dm_target *ti)
2097{
2098	struct pool_c *pt = ti->private;
2099
2100	/*
2101	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2102	 */
2103	enum pool_mode old_mode = get_pool_mode(pool);
2104	enum pool_mode new_mode = pt->adjusted_pf.mode;
2105
2106	/*
2107	 * Don't change the pool's mode until set_pool_mode() below.
2108	 * Otherwise the pool's process_* function pointers may
2109	 * not match the desired pool mode.
2110	 */
2111	pt->adjusted_pf.mode = old_mode;
2112
2113	pool->ti = ti;
2114	pool->pf = pt->adjusted_pf;
2115	pool->low_water_blocks = pt->low_water_blocks;
2116
2117	set_pool_mode(pool, new_mode);
2118
2119	return 0;
2120}
2121
2122static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2123{
2124	if (pool->ti == ti)
2125		pool->ti = NULL;
2126}
2127
2128/*----------------------------------------------------------------
2129 * Pool creation
2130 *--------------------------------------------------------------*/
2131/* Initialize pool features. */
2132static void pool_features_init(struct pool_features *pf)
2133{
2134	pf->mode = PM_WRITE;
2135	pf->zero_new_blocks = true;
2136	pf->discard_enabled = true;
2137	pf->discard_passdown = true;
2138	pf->error_if_no_space = false;
2139}
2140
2141static void __pool_destroy(struct pool *pool)
2142{
2143	__pool_table_remove(pool);
2144
2145	if (dm_pool_metadata_close(pool->pmd) < 0)
2146		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2147
2148	dm_bio_prison_destroy(pool->prison);
2149	dm_kcopyd_client_destroy(pool->copier);
2150
2151	if (pool->wq)
2152		destroy_workqueue(pool->wq);
2153
2154	if (pool->next_mapping)
2155		mempool_free(pool->next_mapping, pool->mapping_pool);
2156	mempool_destroy(pool->mapping_pool);
2157	dm_deferred_set_destroy(pool->shared_read_ds);
2158	dm_deferred_set_destroy(pool->all_io_ds);
2159	kfree(pool);
2160}
2161
2162static struct kmem_cache *_new_mapping_cache;
2163
2164static struct pool *pool_create(struct mapped_device *pool_md,
2165				struct block_device *metadata_dev,
2166				unsigned long block_size,
2167				int read_only, char **error)
2168{
2169	int r;
2170	void *err_p;
2171	struct pool *pool;
2172	struct dm_pool_metadata *pmd;
2173	bool format_device = read_only ? false : true;
2174
2175	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2176	if (IS_ERR(pmd)) {
2177		*error = "Error creating metadata object";
2178		return (struct pool *)pmd;
2179	}
2180
2181	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2182	if (!pool) {
2183		*error = "Error allocating memory for pool";
2184		err_p = ERR_PTR(-ENOMEM);
2185		goto bad_pool;
2186	}
2187
2188	pool->pmd = pmd;
2189	pool->sectors_per_block = block_size;
2190	if (block_size & (block_size - 1))
2191		pool->sectors_per_block_shift = -1;
2192	else
2193		pool->sectors_per_block_shift = __ffs(block_size);
2194	pool->low_water_blocks = 0;
2195	pool_features_init(&pool->pf);
2196	pool->prison = dm_bio_prison_create(PRISON_CELLS);
2197	if (!pool->prison) {
2198		*error = "Error creating pool's bio prison";
2199		err_p = ERR_PTR(-ENOMEM);
2200		goto bad_prison;
2201	}
2202
2203	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2204	if (IS_ERR(pool->copier)) {
2205		r = PTR_ERR(pool->copier);
2206		*error = "Error creating pool's kcopyd client";
2207		err_p = ERR_PTR(r);
2208		goto bad_kcopyd_client;
2209	}
2210
2211	/*
2212	 * Create singlethreaded workqueue that will service all devices
2213	 * that use this metadata.
2214	 */
2215	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2216	if (!pool->wq) {
2217		*error = "Error creating pool's workqueue";
2218		err_p = ERR_PTR(-ENOMEM);
2219		goto bad_wq;
2220	}
2221
2222	INIT_WORK(&pool->worker, do_worker);
2223	INIT_DELAYED_WORK(&pool->waker, do_waker);
2224	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2225	spin_lock_init(&pool->lock);
2226	bio_list_init(&pool->deferred_flush_bios);
2227	INIT_LIST_HEAD(&pool->prepared_mappings);
2228	INIT_LIST_HEAD(&pool->prepared_discards);
2229	INIT_LIST_HEAD(&pool->active_thins);
2230	pool->low_water_triggered = false;
2231
2232	pool->shared_read_ds = dm_deferred_set_create();
2233	if (!pool->shared_read_ds) {
2234		*error = "Error creating pool's shared read deferred set";
2235		err_p = ERR_PTR(-ENOMEM);
2236		goto bad_shared_read_ds;
2237	}
2238
2239	pool->all_io_ds = dm_deferred_set_create();
2240	if (!pool->all_io_ds) {
2241		*error = "Error creating pool's all io deferred set";
2242		err_p = ERR_PTR(-ENOMEM);
2243		goto bad_all_io_ds;
2244	}
2245
2246	pool->next_mapping = NULL;
2247	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2248						      _new_mapping_cache);
2249	if (!pool->mapping_pool) {
2250		*error = "Error creating pool's mapping mempool";
2251		err_p = ERR_PTR(-ENOMEM);
2252		goto bad_mapping_pool;
2253	}
2254
2255	pool->ref_count = 1;
2256	pool->last_commit_jiffies = jiffies;
2257	pool->pool_md = pool_md;
2258	pool->md_dev = metadata_dev;
2259	__pool_table_insert(pool);
2260
2261	return pool;
2262
2263bad_mapping_pool:
2264	dm_deferred_set_destroy(pool->all_io_ds);
2265bad_all_io_ds:
2266	dm_deferred_set_destroy(pool->shared_read_ds);
2267bad_shared_read_ds:
2268	destroy_workqueue(pool->wq);
2269bad_wq:
2270	dm_kcopyd_client_destroy(pool->copier);
2271bad_kcopyd_client:
2272	dm_bio_prison_destroy(pool->prison);
2273bad_prison:
2274	kfree(pool);
2275bad_pool:
2276	if (dm_pool_metadata_close(pmd))
2277		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2278
2279	return err_p;
2280}
2281
2282static void __pool_inc(struct pool *pool)
2283{
2284	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2285	pool->ref_count++;
2286}
2287
2288static void __pool_dec(struct pool *pool)
2289{
2290	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2291	BUG_ON(!pool->ref_count);
2292	if (!--pool->ref_count)
2293		__pool_destroy(pool);
2294}
2295
2296static struct pool *__pool_find(struct mapped_device *pool_md,
2297				struct block_device *metadata_dev,
2298				unsigned long block_size, int read_only,
2299				char **error, int *created)
2300{
2301	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2302
2303	if (pool) {
2304		if (pool->pool_md != pool_md) {
2305			*error = "metadata device already in use by a pool";
2306			return ERR_PTR(-EBUSY);
2307		}
2308		__pool_inc(pool);
2309
2310	} else {
2311		pool = __pool_table_lookup(pool_md);
2312		if (pool) {
2313			if (pool->md_dev != metadata_dev) {
2314				*error = "different pool cannot replace a pool";
2315				return ERR_PTR(-EINVAL);
2316			}
2317			__pool_inc(pool);
2318
2319		} else {
2320			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2321			*created = 1;
2322		}
2323	}
2324
2325	return pool;
2326}
2327
2328/*----------------------------------------------------------------
2329 * Pool target methods
2330 *--------------------------------------------------------------*/
2331static void pool_dtr(struct dm_target *ti)
2332{
2333	struct pool_c *pt = ti->private;
2334
2335	mutex_lock(&dm_thin_pool_table.mutex);
2336
2337	unbind_control_target(pt->pool, ti);
2338	__pool_dec(pt->pool);
2339	dm_put_device(ti, pt->metadata_dev);
2340	dm_put_device(ti, pt->data_dev);
2341	kfree(pt);
2342
2343	mutex_unlock(&dm_thin_pool_table.mutex);
2344}
2345
2346static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2347			       struct dm_target *ti)
2348{
2349	int r;
2350	unsigned argc;
2351	const char *arg_name;
2352
2353	static struct dm_arg _args[] = {
2354		{0, 4, "Invalid number of pool feature arguments"},
2355	};
2356
2357	/*
2358	 * No feature arguments supplied.
2359	 */
2360	if (!as->argc)
2361		return 0;
2362
2363	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2364	if (r)
2365		return -EINVAL;
2366
2367	while (argc && !r) {
2368		arg_name = dm_shift_arg(as);
2369		argc--;
2370
2371		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2372			pf->zero_new_blocks = false;
2373
2374		else if (!strcasecmp(arg_name, "ignore_discard"))
2375			pf->discard_enabled = false;
2376
2377		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2378			pf->discard_passdown = false;
2379
2380		else if (!strcasecmp(arg_name, "read_only"))
2381			pf->mode = PM_READ_ONLY;
2382
2383		else if (!strcasecmp(arg_name, "error_if_no_space"))
2384			pf->error_if_no_space = true;
2385
2386		else {
2387			ti->error = "Unrecognised pool feature requested";
2388			r = -EINVAL;
2389			break;
2390		}
2391	}
2392
2393	return r;
2394}
2395
2396static void metadata_low_callback(void *context)
2397{
2398	struct pool *pool = context;
2399
2400	DMWARN("%s: reached low water mark for metadata device: sending event.",
2401	       dm_device_name(pool->pool_md));
2402
2403	dm_table_event(pool->ti->table);
2404}
2405
2406static sector_t get_dev_size(struct block_device *bdev)
2407{
2408	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2409}
2410
2411static void warn_if_metadata_device_too_big(struct block_device *bdev)
2412{
2413	sector_t metadata_dev_size = get_dev_size(bdev);
2414	char buffer[BDEVNAME_SIZE];
2415
2416	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2417		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2418		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2419}
2420
2421static sector_t get_metadata_dev_size(struct block_device *bdev)
2422{
2423	sector_t metadata_dev_size = get_dev_size(bdev);
2424
2425	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2426		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2427
2428	return metadata_dev_size;
2429}
2430
2431static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2432{
2433	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2434
2435	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2436
2437	return metadata_dev_size;
2438}
2439
2440/*
2441 * When a metadata threshold is crossed a dm event is triggered, and
2442 * userland should respond by growing the metadata device.  We could let
2443 * userland set the threshold, like we do with the data threshold, but I'm
2444 * not sure they know enough to do this well.
2445 */
2446static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2447{
2448	/*
2449	 * 4M is ample for all ops with the possible exception of thin
2450	 * device deletion which is harmless if it fails (just retry the
2451	 * delete after you've grown the device).
2452	 */
2453	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2454	return min((dm_block_t)1024ULL /* 4M */, quarter);
2455}
2456
2457/*
2458 * thin-pool <metadata dev> <data dev>
2459 *	     <data block size (sectors)>
2460 *	     <low water mark (blocks)>
2461 *	     [<#feature args> [<arg>]*]
2462 *
2463 * Optional feature arguments are:
2464 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2465 *	     ignore_discard: disable discard
2466 *	     no_discard_passdown: don't pass discards down to the data device
2467 *	     read_only: Don't allow any changes to be made to the pool metadata.
2468 *	     error_if_no_space: error IOs, instead of queueing, if no space.
2469 */
2470static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2471{
2472	int r, pool_created = 0;
2473	struct pool_c *pt;
2474	struct pool *pool;
2475	struct pool_features pf;
2476	struct dm_arg_set as;
2477	struct dm_dev *data_dev;
2478	unsigned long block_size;
2479	dm_block_t low_water_blocks;
2480	struct dm_dev *metadata_dev;
2481	fmode_t metadata_mode;
2482
2483	/*
2484	 * FIXME Remove validation from scope of lock.
2485	 */
2486	mutex_lock(&dm_thin_pool_table.mutex);
2487
2488	if (argc < 4) {
2489		ti->error = "Invalid argument count";
2490		r = -EINVAL;
2491		goto out_unlock;
2492	}
2493
2494	as.argc = argc;
2495	as.argv = argv;
2496
2497	/*
2498	 * Set default pool features.
2499	 */
2500	pool_features_init(&pf);
2501
2502	dm_consume_args(&as, 4);
2503	r = parse_pool_features(&as, &pf, ti);
2504	if (r)
2505		goto out_unlock;
2506
2507	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2508	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2509	if (r) {
2510		ti->error = "Error opening metadata block device";
2511		goto out_unlock;
2512	}
2513	warn_if_metadata_device_too_big(metadata_dev->bdev);
2514
2515	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2516	if (r) {
2517		ti->error = "Error getting data device";
2518		goto out_metadata;
2519	}
2520
2521	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2522	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2523	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2524	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2525		ti->error = "Invalid block size";
2526		r = -EINVAL;
2527		goto out;
2528	}
2529
2530	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2531		ti->error = "Invalid low water mark";
2532		r = -EINVAL;
2533		goto out;
2534	}
2535
2536	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2537	if (!pt) {
2538		r = -ENOMEM;
2539		goto out;
2540	}
2541
2542	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2543			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2544	if (IS_ERR(pool)) {
2545		r = PTR_ERR(pool);
2546		goto out_free_pt;
2547	}
2548
2549	/*
2550	 * 'pool_created' reflects whether this is the first table load.
2551	 * Top level discard support is not allowed to be changed after
2552	 * initial load.  This would require a pool reload to trigger thin
2553	 * device changes.
2554	 */
2555	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2556		ti->error = "Discard support cannot be disabled once enabled";
2557		r = -EINVAL;
2558		goto out_flags_changed;
2559	}
2560
2561	pt->pool = pool;
2562	pt->ti = ti;
2563	pt->metadata_dev = metadata_dev;
2564	pt->data_dev = data_dev;
2565	pt->low_water_blocks = low_water_blocks;
2566	pt->adjusted_pf = pt->requested_pf = pf;
2567	ti->num_flush_bios = 1;
2568
2569	/*
2570	 * Only need to enable discards if the pool should pass
2571	 * them down to the data device.  The thin device's discard
2572	 * processing will cause mappings to be removed from the btree.
2573	 */
2574	ti->discard_zeroes_data_unsupported = true;
2575	if (pf.discard_enabled && pf.discard_passdown) {
2576		ti->num_discard_bios = 1;
2577
2578		/*
2579		 * Setting 'discards_supported' circumvents the normal
2580		 * stacking of discard limits (this keeps the pool and
2581		 * thin devices' discard limits consistent).
2582		 */
2583		ti->discards_supported = true;
2584	}
2585	ti->private = pt;
2586
2587	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2588						calc_metadata_threshold(pt),
2589						metadata_low_callback,
2590						pool);
2591	if (r)
2592		goto out_free_pt;
2593
2594	pt->callbacks.congested_fn = pool_is_congested;
2595	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2596
2597	mutex_unlock(&dm_thin_pool_table.mutex);
2598
2599	return 0;
2600
2601out_flags_changed:
2602	__pool_dec(pool);
2603out_free_pt:
2604	kfree(pt);
2605out:
2606	dm_put_device(ti, data_dev);
2607out_metadata:
2608	dm_put_device(ti, metadata_dev);
2609out_unlock:
2610	mutex_unlock(&dm_thin_pool_table.mutex);
2611
2612	return r;
2613}
2614
2615static int pool_map(struct dm_target *ti, struct bio *bio)
2616{
2617	int r;
2618	struct pool_c *pt = ti->private;
2619	struct pool *pool = pt->pool;
2620	unsigned long flags;
2621
2622	/*
2623	 * As this is a singleton target, ti->begin is always zero.
2624	 */
2625	spin_lock_irqsave(&pool->lock, flags);
2626	bio->bi_bdev = pt->data_dev->bdev;
2627	r = DM_MAPIO_REMAPPED;
2628	spin_unlock_irqrestore(&pool->lock, flags);
2629
2630	return r;
2631}
2632
2633static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2634{
2635	int r;
2636	struct pool_c *pt = ti->private;
2637	struct pool *pool = pt->pool;
2638	sector_t data_size = ti->len;
2639	dm_block_t sb_data_size;
2640
2641	*need_commit = false;
2642
2643	(void) sector_div(data_size, pool->sectors_per_block);
2644
2645	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2646	if (r) {
2647		DMERR("%s: failed to retrieve data device size",
2648		      dm_device_name(pool->pool_md));
2649		return r;
2650	}
2651
2652	if (data_size < sb_data_size) {
2653		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2654		      dm_device_name(pool->pool_md),
2655		      (unsigned long long)data_size, sb_data_size);
2656		return -EINVAL;
2657
2658	} else if (data_size > sb_data_size) {
2659		if (dm_pool_metadata_needs_check(pool->pmd)) {
2660			DMERR("%s: unable to grow the data device until repaired.",
2661			      dm_device_name(pool->pool_md));
2662			return 0;
2663		}
2664
2665		if (sb_data_size)
2666			DMINFO("%s: growing the data device from %llu to %llu blocks",
2667			       dm_device_name(pool->pool_md),
2668			       sb_data_size, (unsigned long long)data_size);
2669		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2670		if (r) {
2671			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2672			return r;
2673		}
2674
2675		*need_commit = true;
2676	}
2677
2678	return 0;
2679}
2680
2681static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2682{
2683	int r;
2684	struct pool_c *pt = ti->private;
2685	struct pool *pool = pt->pool;
2686	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2687
2688	*need_commit = false;
2689
2690	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2691
2692	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2693	if (r) {
2694		DMERR("%s: failed to retrieve metadata device size",
2695		      dm_device_name(pool->pool_md));
2696		return r;
2697	}
2698
2699	if (metadata_dev_size < sb_metadata_dev_size) {
2700		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2701		      dm_device_name(pool->pool_md),
2702		      metadata_dev_size, sb_metadata_dev_size);
2703		return -EINVAL;
2704
2705	} else if (metadata_dev_size > sb_metadata_dev_size) {
2706		if (dm_pool_metadata_needs_check(pool->pmd)) {
2707			DMERR("%s: unable to grow the metadata device until repaired.",
2708			      dm_device_name(pool->pool_md));
2709			return 0;
2710		}
2711
2712		warn_if_metadata_device_too_big(pool->md_dev);
2713		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2714		       dm_device_name(pool->pool_md),
2715		       sb_metadata_dev_size, metadata_dev_size);
2716		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2717		if (r) {
2718			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2719			return r;
2720		}
2721
2722		*need_commit = true;
2723	}
2724
2725	return 0;
2726}
2727
2728/*
2729 * Retrieves the number of blocks of the data device from
2730 * the superblock and compares it to the actual device size,
2731 * thus resizing the data device in case it has grown.
2732 *
2733 * This both copes with opening preallocated data devices in the ctr
2734 * being followed by a resume
2735 * -and-
2736 * calling the resume method individually after userspace has
2737 * grown the data device in reaction to a table event.
2738 */
2739static int pool_preresume(struct dm_target *ti)
2740{
2741	int r;
2742	bool need_commit1, need_commit2;
2743	struct pool_c *pt = ti->private;
2744	struct pool *pool = pt->pool;
2745
2746	/*
2747	 * Take control of the pool object.
2748	 */
2749	r = bind_control_target(pool, ti);
2750	if (r)
2751		return r;
2752
2753	r = maybe_resize_data_dev(ti, &need_commit1);
2754	if (r)
2755		return r;
2756
2757	r = maybe_resize_metadata_dev(ti, &need_commit2);
2758	if (r)
2759		return r;
2760
2761	if (need_commit1 || need_commit2)
2762		(void) commit(pool);
2763
2764	return 0;
2765}
2766
2767static void pool_resume(struct dm_target *ti)
2768{
2769	struct pool_c *pt = ti->private;
2770	struct pool *pool = pt->pool;
2771	unsigned long flags;
2772
2773	spin_lock_irqsave(&pool->lock, flags);
2774	pool->low_water_triggered = false;
2775	spin_unlock_irqrestore(&pool->lock, flags);
2776	requeue_bios(pool);
2777
2778	do_waker(&pool->waker.work);
2779}
2780
2781static void pool_postsuspend(struct dm_target *ti)
2782{
2783	struct pool_c *pt = ti->private;
2784	struct pool *pool = pt->pool;
2785
2786	cancel_delayed_work(&pool->waker);
2787	cancel_delayed_work(&pool->no_space_timeout);
2788	flush_workqueue(pool->wq);
2789	(void) commit(pool);
2790}
2791
2792static int check_arg_count(unsigned argc, unsigned args_required)
2793{
2794	if (argc != args_required) {
2795		DMWARN("Message received with %u arguments instead of %u.",
2796		       argc, args_required);
2797		return -EINVAL;
2798	}
2799
2800	return 0;
2801}
2802
2803static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2804{
2805	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2806	    *dev_id <= MAX_DEV_ID)
2807		return 0;
2808
2809	if (warning)
2810		DMWARN("Message received with invalid device id: %s", arg);
2811
2812	return -EINVAL;
2813}
2814
2815static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2816{
2817	dm_thin_id dev_id;
2818	int r;
2819
2820	r = check_arg_count(argc, 2);
2821	if (r)
2822		return r;
2823
2824	r = read_dev_id(argv[1], &dev_id, 1);
2825	if (r)
2826		return r;
2827
2828	r = dm_pool_create_thin(pool->pmd, dev_id);
2829	if (r) {
2830		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2831		       argv[1]);
2832		return r;
2833	}
2834
2835	return 0;
2836}
2837
2838static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2839{
2840	dm_thin_id dev_id;
2841	dm_thin_id origin_dev_id;
2842	int r;
2843
2844	r = check_arg_count(argc, 3);
2845	if (r)
2846		return r;
2847
2848	r = read_dev_id(argv[1], &dev_id, 1);
2849	if (r)
2850		return r;
2851
2852	r = read_dev_id(argv[2], &origin_dev_id, 1);
2853	if (r)
2854		return r;
2855
2856	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2857	if (r) {
2858		DMWARN("Creation of new snapshot %s of device %s failed.",
2859		       argv[1], argv[2]);
2860		return r;
2861	}
2862
2863	return 0;
2864}
2865
2866static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2867{
2868	dm_thin_id dev_id;
2869	int r;
2870
2871	r = check_arg_count(argc, 2);
2872	if (r)
2873		return r;
2874
2875	r = read_dev_id(argv[1], &dev_id, 1);
2876	if (r)
2877		return r;
2878
2879	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2880	if (r)
2881		DMWARN("Deletion of thin device %s failed.", argv[1]);
2882
2883	return r;
2884}
2885
2886static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2887{
2888	dm_thin_id old_id, new_id;
2889	int r;
2890
2891	r = check_arg_count(argc, 3);
2892	if (r)
2893		return r;
2894
2895	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2896		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2897		return -EINVAL;
2898	}
2899
2900	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2901		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2902		return -EINVAL;
2903	}
2904
2905	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2906	if (r) {
2907		DMWARN("Failed to change transaction id from %s to %s.",
2908		       argv[1], argv[2]);
2909		return r;
2910	}
2911
2912	return 0;
2913}
2914
2915static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2916{
2917	int r;
2918
2919	r = check_arg_count(argc, 1);
2920	if (r)
2921		return r;
2922
2923	(void) commit(pool);
2924
2925	r = dm_pool_reserve_metadata_snap(pool->pmd);
2926	if (r)
2927		DMWARN("reserve_metadata_snap message failed.");
2928
2929	return r;
2930}
2931
2932static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2933{
2934	int r;
2935
2936	r = check_arg_count(argc, 1);
2937	if (r)
2938		return r;
2939
2940	r = dm_pool_release_metadata_snap(pool->pmd);
2941	if (r)
2942		DMWARN("release_metadata_snap message failed.");
2943
2944	return r;
2945}
2946
2947/*
2948 * Messages supported:
2949 *   create_thin	<dev_id>
2950 *   create_snap	<dev_id> <origin_id>
2951 *   delete		<dev_id>
2952 *   trim		<dev_id> <new_size_in_sectors>
2953 *   set_transaction_id <current_trans_id> <new_trans_id>
2954 *   reserve_metadata_snap
2955 *   release_metadata_snap
2956 */
2957static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2958{
2959	int r = -EINVAL;
2960	struct pool_c *pt = ti->private;
2961	struct pool *pool = pt->pool;
2962
2963	if (!strcasecmp(argv[0], "create_thin"))
2964		r = process_create_thin_mesg(argc, argv, pool);
2965
2966	else if (!strcasecmp(argv[0], "create_snap"))
2967		r = process_create_snap_mesg(argc, argv, pool);
2968
2969	else if (!strcasecmp(argv[0], "delete"))
2970		r = process_delete_mesg(argc, argv, pool);
2971
2972	else if (!strcasecmp(argv[0], "set_transaction_id"))
2973		r = process_set_transaction_id_mesg(argc, argv, pool);
2974
2975	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2976		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2977
2978	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2979		r = process_release_metadata_snap_mesg(argc, argv, pool);
2980
2981	else
2982		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2983
2984	if (!r)
2985		(void) commit(pool);
2986
2987	return r;
2988}
2989
2990static void emit_flags(struct pool_features *pf, char *result,
2991		       unsigned sz, unsigned maxlen)
2992{
2993	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2994		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2995		pf->error_if_no_space;
2996	DMEMIT("%u ", count);
2997
2998	if (!pf->zero_new_blocks)
2999		DMEMIT("skip_block_zeroing ");
3000
3001	if (!pf->discard_enabled)
3002		DMEMIT("ignore_discard ");
3003
3004	if (!pf->discard_passdown)
3005		DMEMIT("no_discard_passdown ");
3006
3007	if (pf->mode == PM_READ_ONLY)
3008		DMEMIT("read_only ");
3009
3010	if (pf->error_if_no_space)
3011		DMEMIT("error_if_no_space ");
3012}
3013
3014/*
3015 * Status line is:
3016 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3017 *    <used data sectors>/<total data sectors> <held metadata root>
3018 */
3019static void pool_status(struct dm_target *ti, status_type_t type,
3020			unsigned status_flags, char *result, unsigned maxlen)
3021{
3022	int r;
3023	unsigned sz = 0;
3024	uint64_t transaction_id;
3025	dm_block_t nr_free_blocks_data;
3026	dm_block_t nr_free_blocks_metadata;
3027	dm_block_t nr_blocks_data;
3028	dm_block_t nr_blocks_metadata;
3029	dm_block_t held_root;
3030	char buf[BDEVNAME_SIZE];
3031	char buf2[BDEVNAME_SIZE];
3032	struct pool_c *pt = ti->private;
3033	struct pool *pool = pt->pool;
3034
3035	switch (type) {
3036	case STATUSTYPE_INFO:
3037		if (get_pool_mode(pool) == PM_FAIL) {
3038			DMEMIT("Fail");
3039			break;
3040		}
3041
3042		/* Commit to ensure statistics aren't out-of-date */
3043		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3044			(void) commit(pool);
3045
3046		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3047		if (r) {
3048			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3049			      dm_device_name(pool->pool_md), r);
3050			goto err;
3051		}
3052
3053		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3054		if (r) {
3055			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3056			      dm_device_name(pool->pool_md), r);
3057			goto err;
3058		}
3059
3060		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3061		if (r) {
3062			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3063			      dm_device_name(pool->pool_md), r);
3064			goto err;
3065		}
3066
3067		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3068		if (r) {
3069			DMERR("%s: dm_pool_get_free_block_count returned %d",
3070			      dm_device_name(pool->pool_md), r);
3071			goto err;
3072		}
3073
3074		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3075		if (r) {
3076			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3077			      dm_device_name(pool->pool_md), r);
3078			goto err;
3079		}
3080
3081		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3082		if (r) {
3083			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3084			      dm_device_name(pool->pool_md), r);
3085			goto err;
3086		}
3087
3088		DMEMIT("%llu %llu/%llu %llu/%llu ",
3089		       (unsigned long long)transaction_id,
3090		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3091		       (unsigned long long)nr_blocks_metadata,
3092		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3093		       (unsigned long long)nr_blocks_data);
3094
3095		if (held_root)
3096			DMEMIT("%llu ", held_root);
3097		else
3098			DMEMIT("- ");
3099
3100		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3101			DMEMIT("out_of_data_space ");
3102		else if (pool->pf.mode == PM_READ_ONLY)
3103			DMEMIT("ro ");
3104		else
3105			DMEMIT("rw ");
3106
3107		if (!pool->pf.discard_enabled)
3108			DMEMIT("ignore_discard ");
3109		else if (pool->pf.discard_passdown)
3110			DMEMIT("discard_passdown ");
3111		else
3112			DMEMIT("no_discard_passdown ");
3113
3114		if (pool->pf.error_if_no_space)
3115			DMEMIT("error_if_no_space ");
3116		else
3117			DMEMIT("queue_if_no_space ");
3118
3119		break;
3120
3121	case STATUSTYPE_TABLE:
3122		DMEMIT("%s %s %lu %llu ",
3123		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3124		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3125		       (unsigned long)pool->sectors_per_block,
3126		       (unsigned long long)pt->low_water_blocks);
3127		emit_flags(&pt->requested_pf, result, sz, maxlen);
3128		break;
3129	}
3130	return;
3131
3132err:
3133	DMEMIT("Error");
3134}
3135
3136static int pool_iterate_devices(struct dm_target *ti,
3137				iterate_devices_callout_fn fn, void *data)
3138{
3139	struct pool_c *pt = ti->private;
3140
3141	return fn(ti, pt->data_dev, 0, ti->len, data);
3142}
3143
3144static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3145		      struct bio_vec *biovec, int max_size)
3146{
3147	struct pool_c *pt = ti->private;
3148	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3149
3150	if (!q->merge_bvec_fn)
3151		return max_size;
3152
3153	bvm->bi_bdev = pt->data_dev->bdev;
3154
3155	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3156}
3157
3158static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3159{
3160	struct pool *pool = pt->pool;
3161	struct queue_limits *data_limits;
3162
3163	limits->max_discard_sectors = pool->sectors_per_block;
3164
3165	/*
3166	 * discard_granularity is just a hint, and not enforced.
3167	 */
3168	if (pt->adjusted_pf.discard_passdown) {
3169		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3170		limits->discard_granularity = max(data_limits->discard_granularity,
3171						  pool->sectors_per_block << SECTOR_SHIFT);
3172	} else
3173		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3174}
3175
3176static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3177{
3178	struct pool_c *pt = ti->private;
3179	struct pool *pool = pt->pool;
3180	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3181
3182	/*
3183	 * If the system-determined stacked limits are compatible with the
3184	 * pool's blocksize (io_opt is a factor) do not override them.
3185	 */
3186	if (io_opt_sectors < pool->sectors_per_block ||
3187	    do_div(io_opt_sectors, pool->sectors_per_block)) {
3188		blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3189		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3190	}
3191
3192	/*
3193	 * pt->adjusted_pf is a staging area for the actual features to use.
3194	 * They get transferred to the live pool in bind_control_target()
3195	 * called from pool_preresume().
3196	 */
3197	if (!pt->adjusted_pf.discard_enabled) {
3198		/*
3199		 * Must explicitly disallow stacking discard limits otherwise the
3200		 * block layer will stack them if pool's data device has support.
3201		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3202		 * user to see that, so make sure to set all discard limits to 0.
3203		 */
3204		limits->discard_granularity = 0;
3205		return;
3206	}
3207
3208	disable_passdown_if_not_supported(pt);
3209
3210	set_discard_limits(pt, limits);
3211}
3212
3213static struct target_type pool_target = {
3214	.name = "thin-pool",
3215	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3216		    DM_TARGET_IMMUTABLE,
3217	.version = {1, 13, 0},
3218	.module = THIS_MODULE,
3219	.ctr = pool_ctr,
3220	.dtr = pool_dtr,
3221	.map = pool_map,
3222	.postsuspend = pool_postsuspend,
3223	.preresume = pool_preresume,
3224	.resume = pool_resume,
3225	.message = pool_message,
3226	.status = pool_status,
3227	.merge = pool_merge,
3228	.iterate_devices = pool_iterate_devices,
3229	.io_hints = pool_io_hints,
3230};
3231
3232/*----------------------------------------------------------------
3233 * Thin target methods
3234 *--------------------------------------------------------------*/
3235static void thin_get(struct thin_c *tc)
3236{
3237	atomic_inc(&tc->refcount);
3238}
3239
3240static void thin_put(struct thin_c *tc)
3241{
3242	if (atomic_dec_and_test(&tc->refcount))
3243		complete(&tc->can_destroy);
3244}
3245
3246static void thin_dtr(struct dm_target *ti)
3247{
3248	struct thin_c *tc = ti->private;
3249	unsigned long flags;
3250
3251	thin_put(tc);
3252	wait_for_completion(&tc->can_destroy);
3253
3254	spin_lock_irqsave(&tc->pool->lock, flags);
3255	list_del_rcu(&tc->list);
3256	spin_unlock_irqrestore(&tc->pool->lock, flags);
3257	synchronize_rcu();
3258
3259	mutex_lock(&dm_thin_pool_table.mutex);
3260
3261	__pool_dec(tc->pool);
3262	dm_pool_close_thin_device(tc->td);
3263	dm_put_device(ti, tc->pool_dev);
3264	if (tc->origin_dev)
3265		dm_put_device(ti, tc->origin_dev);
3266	kfree(tc);
3267
3268	mutex_unlock(&dm_thin_pool_table.mutex);
3269}
3270
3271/*
3272 * Thin target parameters:
3273 *
3274 * <pool_dev> <dev_id> [origin_dev]
3275 *
3276 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3277 * dev_id: the internal device identifier
3278 * origin_dev: a device external to the pool that should act as the origin
3279 *
3280 * If the pool device has discards disabled, they get disabled for the thin
3281 * device as well.
3282 */
3283static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3284{
3285	int r;
3286	struct thin_c *tc;
3287	struct dm_dev *pool_dev, *origin_dev;
3288	struct mapped_device *pool_md;
3289	unsigned long flags;
3290
3291	mutex_lock(&dm_thin_pool_table.mutex);
3292
3293	if (argc != 2 && argc != 3) {
3294		ti->error = "Invalid argument count";
3295		r = -EINVAL;
3296		goto out_unlock;
3297	}
3298
3299	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3300	if (!tc) {
3301		ti->error = "Out of memory";
3302		r = -ENOMEM;
3303		goto out_unlock;
3304	}
3305	spin_lock_init(&tc->lock);
3306	bio_list_init(&tc->deferred_bio_list);
3307	bio_list_init(&tc->retry_on_resume_list);
3308	tc->sort_bio_list = RB_ROOT;
3309
3310	if (argc == 3) {
3311		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3312		if (r) {
3313			ti->error = "Error opening origin device";
3314			goto bad_origin_dev;
3315		}
3316		tc->origin_dev = origin_dev;
3317	}
3318
3319	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3320	if (r) {
3321		ti->error = "Error opening pool device";
3322		goto bad_pool_dev;
3323	}
3324	tc->pool_dev = pool_dev;
3325
3326	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3327		ti->error = "Invalid device id";
3328		r = -EINVAL;
3329		goto bad_common;
3330	}
3331
3332	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3333	if (!pool_md) {
3334		ti->error = "Couldn't get pool mapped device";
3335		r = -EINVAL;
3336		goto bad_common;
3337	}
3338
3339	tc->pool = __pool_table_lookup(pool_md);
3340	if (!tc->pool) {
3341		ti->error = "Couldn't find pool object";
3342		r = -EINVAL;
3343		goto bad_pool_lookup;
3344	}
3345	__pool_inc(tc->pool);
3346
3347	if (get_pool_mode(tc->pool) == PM_FAIL) {
3348		ti->error = "Couldn't open thin device, Pool is in fail mode";
3349		r = -EINVAL;
3350		goto bad_thin_open;
3351	}
3352
3353	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3354	if (r) {
3355		ti->error = "Couldn't open thin internal device";
3356		goto bad_thin_open;
3357	}
3358
3359	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3360	if (r)
3361		goto bad_target_max_io_len;
3362
3363	ti->num_flush_bios = 1;
3364	ti->flush_supported = true;
3365	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3366
3367	/* In case the pool supports discards, pass them on. */
3368	ti->discard_zeroes_data_unsupported = true;
3369	if (tc->pool->pf.discard_enabled) {
3370		ti->discards_supported = true;
3371		ti->num_discard_bios = 1;
3372		/* Discard bios must be split on a block boundary */
3373		ti->split_discard_bios = true;
3374	}
3375
3376	dm_put(pool_md);
3377
3378	mutex_unlock(&dm_thin_pool_table.mutex);
3379
3380	atomic_set(&tc->refcount, 1);
3381	init_completion(&tc->can_destroy);
3382
3383	spin_lock_irqsave(&tc->pool->lock, flags);
3384	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3385	spin_unlock_irqrestore(&tc->pool->lock, flags);
3386	/*
3387	 * This synchronize_rcu() call is needed here otherwise we risk a
3388	 * wake_worker() call finding no bios to process (because the newly
3389	 * added tc isn't yet visible).  So this reduces latency since we
3390	 * aren't then dependent on the periodic commit to wake_worker().
3391	 */
3392	synchronize_rcu();
3393
3394	return 0;
3395
3396bad_target_max_io_len:
3397	dm_pool_close_thin_device(tc->td);
3398bad_thin_open:
3399	__pool_dec(tc->pool);
3400bad_pool_lookup:
3401	dm_put(pool_md);
3402bad_common:
3403	dm_put_device(ti, tc->pool_dev);
3404bad_pool_dev:
3405	if (tc->origin_dev)
3406		dm_put_device(ti, tc->origin_dev);
3407bad_origin_dev:
3408	kfree(tc);
3409out_unlock:
3410	mutex_unlock(&dm_thin_pool_table.mutex);
3411
3412	return r;
3413}
3414
3415static int thin_map(struct dm_target *ti, struct bio *bio)
3416{
3417	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3418
3419	return thin_bio_map(ti, bio);
3420}
3421
3422static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3423{
3424	unsigned long flags;
3425	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3426	struct list_head work;
3427	struct dm_thin_new_mapping *m, *tmp;
3428	struct pool *pool = h->tc->pool;
3429
3430	if (h->shared_read_entry) {
3431		INIT_LIST_HEAD(&work);
3432		dm_deferred_entry_dec(h->shared_read_entry, &work);
3433
3434		spin_lock_irqsave(&pool->lock, flags);
3435		list_for_each_entry_safe(m, tmp, &work, list) {
3436			list_del(&m->list);
3437			__complete_mapping_preparation(m);
3438		}
3439		spin_unlock_irqrestore(&pool->lock, flags);
3440	}
3441
3442	if (h->all_io_entry) {
3443		INIT_LIST_HEAD(&work);
3444		dm_deferred_entry_dec(h->all_io_entry, &work);
3445		if (!list_empty(&work)) {
3446			spin_lock_irqsave(&pool->lock, flags);
3447			list_for_each_entry_safe(m, tmp, &work, list)
3448				list_add_tail(&m->list, &pool->prepared_discards);
3449			spin_unlock_irqrestore(&pool->lock, flags);
3450			wake_worker(pool);
3451		}
3452	}
3453
3454	return 0;
3455}
3456
3457static void thin_presuspend(struct dm_target *ti)
3458{
3459	struct thin_c *tc = ti->private;
3460
3461	if (dm_noflush_suspending(ti))
3462		noflush_work(tc, do_noflush_start);
3463}
3464
3465static void thin_postsuspend(struct dm_target *ti)
3466{
3467	struct thin_c *tc = ti->private;
3468
3469	/*
3470	 * The dm_noflush_suspending flag has been cleared by now, so
3471	 * unfortunately we must always run this.
3472	 */
3473	noflush_work(tc, do_noflush_stop);
3474}
3475
3476static int thin_preresume(struct dm_target *ti)
3477{
3478	struct thin_c *tc = ti->private;
3479
3480	if (tc->origin_dev)
3481		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3482
3483	return 0;
3484}
3485
3486/*
3487 * <nr mapped sectors> <highest mapped sector>
3488 */
3489static void thin_status(struct dm_target *ti, status_type_t type,
3490			unsigned status_flags, char *result, unsigned maxlen)
3491{
3492	int r;
3493	ssize_t sz = 0;
3494	dm_block_t mapped, highest;
3495	char buf[BDEVNAME_SIZE];
3496	struct thin_c *tc = ti->private;
3497
3498	if (get_pool_mode(tc->pool) == PM_FAIL) {
3499		DMEMIT("Fail");
3500		return;
3501	}
3502
3503	if (!tc->td)
3504		DMEMIT("-");
3505	else {
3506		switch (type) {
3507		case STATUSTYPE_INFO:
3508			r = dm_thin_get_mapped_count(tc->td, &mapped);
3509			if (r) {
3510				DMERR("dm_thin_get_mapped_count returned %d", r);
3511				goto err;
3512			}
3513
3514			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3515			if (r < 0) {
3516				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3517				goto err;
3518			}
3519
3520			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3521			if (r)
3522				DMEMIT("%llu", ((highest + 1) *
3523						tc->pool->sectors_per_block) - 1);
3524			else
3525				DMEMIT("-");
3526			break;
3527
3528		case STATUSTYPE_TABLE:
3529			DMEMIT("%s %lu",
3530			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3531			       (unsigned long) tc->dev_id);
3532			if (tc->origin_dev)
3533				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3534			break;
3535		}
3536	}
3537
3538	return;
3539
3540err:
3541	DMEMIT("Error");
3542}
3543
3544static int thin_iterate_devices(struct dm_target *ti,
3545				iterate_devices_callout_fn fn, void *data)
3546{
3547	sector_t blocks;
3548	struct thin_c *tc = ti->private;
3549	struct pool *pool = tc->pool;
3550
3551	/*
3552	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3553	 * we follow a more convoluted path through to the pool's target.
3554	 */
3555	if (!pool->ti)
3556		return 0;	/* nothing is bound */
3557
3558	blocks = pool->ti->len;
3559	(void) sector_div(blocks, pool->sectors_per_block);
3560	if (blocks)
3561		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3562
3563	return 0;
3564}
3565
3566static struct target_type thin_target = {
3567	.name = "thin",
3568	.version = {1, 13, 0},
3569	.module	= THIS_MODULE,
3570	.ctr = thin_ctr,
3571	.dtr = thin_dtr,
3572	.map = thin_map,
3573	.end_io = thin_endio,
3574	.preresume = thin_preresume,
3575	.presuspend = thin_presuspend,
3576	.postsuspend = thin_postsuspend,
3577	.status = thin_status,
3578	.iterate_devices = thin_iterate_devices,
3579};
3580
3581/*----------------------------------------------------------------*/
3582
3583static int __init dm_thin_init(void)
3584{
3585	int r;
3586
3587	pool_table_init();
3588
3589	r = dm_register_target(&thin_target);
3590	if (r)
3591		return r;
3592
3593	r = dm_register_target(&pool_target);
3594	if (r)
3595		goto bad_pool_target;
3596
3597	r = -ENOMEM;
3598
3599	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3600	if (!_new_mapping_cache)
3601		goto bad_new_mapping_cache;
3602
3603	return 0;
3604
3605bad_new_mapping_cache:
3606	dm_unregister_target(&pool_target);
3607bad_pool_target:
3608	dm_unregister_target(&thin_target);
3609
3610	return r;
3611}
3612
3613static void dm_thin_exit(void)
3614{
3615	dm_unregister_target(&thin_target);
3616	dm_unregister_target(&pool_target);
3617
3618	kmem_cache_destroy(_new_mapping_cache);
3619}
3620
3621module_init(dm_thin_init);
3622module_exit(dm_thin_exit);
3623
3624module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3625MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3626
3627MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3628MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3629MODULE_LICENSE("GPL");
3630