[go: nahoru, domu]

1/**
2 * IBM Accelerator Family 'GenWQE'
3 *
4 * (C) Copyright IBM Corp. 2013
5 *
6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8 * Author: Michael Jung <mijung@gmx.net>
9 * Author: Michael Ruettger <michael@ibmra.de>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License (version 2 only)
13 * as published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 */
20
21/*
22 * Module initialization and PCIe setup. Card health monitoring and
23 * recovery functionality. Character device creation and deletion are
24 * controlled from here.
25 */
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/pci.h>
30#include <linux/err.h>
31#include <linux/aer.h>
32#include <linux/string.h>
33#include <linux/sched.h>
34#include <linux/wait.h>
35#include <linux/delay.h>
36#include <linux/dma-mapping.h>
37#include <linux/module.h>
38#include <linux/notifier.h>
39#include <linux/device.h>
40#include <linux/log2.h>
41
42#include "card_base.h"
43#include "card_ddcb.h"
44
45MODULE_AUTHOR("Frank Haverkamp <haver@linux.vnet.ibm.com>");
46MODULE_AUTHOR("Michael Ruettger <michael@ibmra.de>");
47MODULE_AUTHOR("Joerg-Stephan Vogt <jsvogt@de.ibm.com>");
48MODULE_AUTHOR("Michael Jung <mijung@gmx.net>");
49
50MODULE_DESCRIPTION("GenWQE Card");
51MODULE_VERSION(DRV_VERSION);
52MODULE_LICENSE("GPL");
53
54static char genwqe_driver_name[] = GENWQE_DEVNAME;
55static struct class *class_genwqe;
56static struct dentry *debugfs_genwqe;
57static struct genwqe_dev *genwqe_devices[GENWQE_CARD_NO_MAX];
58
59/* PCI structure for identifying device by PCI vendor and device ID */
60static const struct pci_device_id genwqe_device_table[] = {
61	{ .vendor      = PCI_VENDOR_ID_IBM,
62	  .device      = PCI_DEVICE_GENWQE,
63	  .subvendor   = PCI_SUBVENDOR_ID_IBM,
64	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
65	  .class       = (PCI_CLASSCODE_GENWQE5 << 8),
66	  .class_mask  = ~0,
67	  .driver_data = 0 },
68
69	/* Initial SR-IOV bring-up image */
70	{ .vendor      = PCI_VENDOR_ID_IBM,
71	  .device      = PCI_DEVICE_GENWQE,
72	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
73	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
74	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
75	  .class_mask  = ~0,
76	  .driver_data = 0 },
77
78	{ .vendor      = PCI_VENDOR_ID_IBM,  /* VF Vendor ID */
79	  .device      = 0x0000,  /* VF Device ID */
80	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
81	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
82	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
83	  .class_mask  = ~0,
84	  .driver_data = 0 },
85
86	/* Fixed up image */
87	{ .vendor      = PCI_VENDOR_ID_IBM,
88	  .device      = PCI_DEVICE_GENWQE,
89	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
90	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
91	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
92	  .class_mask  = ~0,
93	  .driver_data = 0 },
94
95	{ .vendor      = PCI_VENDOR_ID_IBM,  /* VF Vendor ID */
96	  .device      = 0x0000,  /* VF Device ID */
97	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
98	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
99	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
100	  .class_mask  = ~0,
101	  .driver_data = 0 },
102
103	/* Even one more ... */
104	{ .vendor      = PCI_VENDOR_ID_IBM,
105	  .device      = PCI_DEVICE_GENWQE,
106	  .subvendor   = PCI_SUBVENDOR_ID_IBM,
107	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_NEW,
108	  .class       = (PCI_CLASSCODE_GENWQE5 << 8),
109	  .class_mask  = ~0,
110	  .driver_data = 0 },
111
112	{ 0, }			/* 0 terminated list. */
113};
114
115MODULE_DEVICE_TABLE(pci, genwqe_device_table);
116
117/**
118 * genwqe_dev_alloc() - Create and prepare a new card descriptor
119 *
120 * Return: Pointer to card descriptor, or ERR_PTR(err) on error
121 */
122static struct genwqe_dev *genwqe_dev_alloc(void)
123{
124	unsigned int i = 0, j;
125	struct genwqe_dev *cd;
126
127	for (i = 0; i < GENWQE_CARD_NO_MAX; i++) {
128		if (genwqe_devices[i] == NULL)
129			break;
130	}
131	if (i >= GENWQE_CARD_NO_MAX)
132		return ERR_PTR(-ENODEV);
133
134	cd = kzalloc(sizeof(struct genwqe_dev), GFP_KERNEL);
135	if (!cd)
136		return ERR_PTR(-ENOMEM);
137
138	cd->card_idx = i;
139	cd->class_genwqe = class_genwqe;
140	cd->debugfs_genwqe = debugfs_genwqe;
141
142	/*
143	 * This comes from kernel config option and can be overritten via
144	 * debugfs.
145	 */
146	cd->use_platform_recovery = CONFIG_GENWQE_PLATFORM_ERROR_RECOVERY;
147
148	init_waitqueue_head(&cd->queue_waitq);
149
150	spin_lock_init(&cd->file_lock);
151	INIT_LIST_HEAD(&cd->file_list);
152
153	cd->card_state = GENWQE_CARD_UNUSED;
154	spin_lock_init(&cd->print_lock);
155
156	cd->ddcb_software_timeout = genwqe_ddcb_software_timeout;
157	cd->kill_timeout = genwqe_kill_timeout;
158
159	for (j = 0; j < GENWQE_MAX_VFS; j++)
160		cd->vf_jobtimeout_msec[j] = genwqe_vf_jobtimeout_msec;
161
162	genwqe_devices[i] = cd;
163	return cd;
164}
165
166static void genwqe_dev_free(struct genwqe_dev *cd)
167{
168	if (!cd)
169		return;
170
171	genwqe_devices[cd->card_idx] = NULL;
172	kfree(cd);
173}
174
175/**
176 * genwqe_bus_reset() - Card recovery
177 *
178 * pci_reset_function() will recover the device and ensure that the
179 * registers are accessible again when it completes with success. If
180 * not, the card will stay dead and registers will be unaccessible
181 * still.
182 */
183static int genwqe_bus_reset(struct genwqe_dev *cd)
184{
185	int bars, rc = 0;
186	struct pci_dev *pci_dev = cd->pci_dev;
187	void __iomem *mmio;
188
189	if (cd->err_inject & GENWQE_INJECT_BUS_RESET_FAILURE)
190		return -EIO;
191
192	mmio = cd->mmio;
193	cd->mmio = NULL;
194	pci_iounmap(pci_dev, mmio);
195
196	bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
197	pci_release_selected_regions(pci_dev, bars);
198
199	/*
200	 * Firmware/BIOS might change memory mapping during bus reset.
201	 * Settings like enable bus-mastering, ... are backuped and
202	 * restored by the pci_reset_function().
203	 */
204	dev_dbg(&pci_dev->dev, "[%s] pci_reset function ...\n", __func__);
205	rc = pci_reset_function(pci_dev);
206	if (rc) {
207		dev_err(&pci_dev->dev,
208			"[%s] err: failed reset func (rc %d)\n", __func__, rc);
209		return rc;
210	}
211	dev_dbg(&pci_dev->dev, "[%s] done with rc=%d\n", __func__, rc);
212
213	/*
214	 * Here is the right spot to clear the register read
215	 * failure. pci_bus_reset() does this job in real systems.
216	 */
217	cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
218			    GENWQE_INJECT_GFIR_FATAL |
219			    GENWQE_INJECT_GFIR_INFO);
220
221	rc = pci_request_selected_regions(pci_dev, bars, genwqe_driver_name);
222	if (rc) {
223		dev_err(&pci_dev->dev,
224			"[%s] err: request bars failed (%d)\n", __func__, rc);
225		return -EIO;
226	}
227
228	cd->mmio = pci_iomap(pci_dev, 0, 0);
229	if (cd->mmio == NULL) {
230		dev_err(&pci_dev->dev,
231			"[%s] err: mapping BAR0 failed\n", __func__);
232		return -ENOMEM;
233	}
234	return 0;
235}
236
237/*
238 * Hardware circumvention section. Certain bitstreams in our test-lab
239 * had different kinds of problems. Here is where we adjust those
240 * bitstreams to function will with this version of our device driver.
241 *
242 * Thise circumventions are applied to the physical function only.
243 * The magical numbers below are identifying development/manufacturing
244 * versions of the bitstream used on the card.
245 *
246 * Turn off error reporting for old/manufacturing images.
247 */
248
249bool genwqe_need_err_masking(struct genwqe_dev *cd)
250{
251	return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
252}
253
254static void genwqe_tweak_hardware(struct genwqe_dev *cd)
255{
256	struct pci_dev *pci_dev = cd->pci_dev;
257
258	/* Mask FIRs for development images */
259	if (((cd->slu_unitcfg & 0xFFFF0ull) >= 0x32000ull) &&
260	    ((cd->slu_unitcfg & 0xFFFF0ull) <= 0x33250ull)) {
261		dev_warn(&pci_dev->dev,
262			 "FIRs masked due to bitstream %016llx.%016llx\n",
263			 cd->slu_unitcfg, cd->app_unitcfg);
264
265		__genwqe_writeq(cd, IO_APP_SEC_LEM_DEBUG_OVR,
266				0xFFFFFFFFFFFFFFFFull);
267
268		__genwqe_writeq(cd, IO_APP_ERR_ACT_MASK,
269				0x0000000000000000ull);
270	}
271}
272
273/**
274 * genwqe_recovery_on_fatal_gfir_required() - Version depended actions
275 *
276 * Bitstreams older than 2013-02-17 have a bug where fatal GFIRs must
277 * be ignored. This is e.g. true for the bitstream we gave to the card
278 * manufacturer, but also for some old bitstreams we released to our
279 * test-lab.
280 */
281int genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd)
282{
283	return (cd->slu_unitcfg & 0xFFFF0ull) >= 0x32170ull;
284}
285
286int genwqe_flash_readback_fails(struct genwqe_dev *cd)
287{
288	return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
289}
290
291/**
292 * genwqe_T_psec() - Calculate PF/VF timeout register content
293 *
294 * Note: From a design perspective it turned out to be a bad idea to
295 * use codes here to specifiy the frequency/speed values. An old
296 * driver cannot understand new codes and is therefore always a
297 * problem. Better is to measure out the value or put the
298 * speed/frequency directly into a register which is always a valid
299 * value for old as well as for new software.
300 */
301/* T = 1/f */
302static int genwqe_T_psec(struct genwqe_dev *cd)
303{
304	u16 speed;	/* 1/f -> 250,  200,  166,  175 */
305	static const int T[] = { 4000, 5000, 6000, 5714 };
306
307	speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
308	if (speed >= ARRAY_SIZE(T))
309		return -1;	/* illegal value */
310
311	return T[speed];
312}
313
314/**
315 * genwqe_setup_pf_jtimer() - Setup PF hardware timeouts for DDCB execution
316 *
317 * Do this _after_ card_reset() is called. Otherwise the values will
318 * vanish. The settings need to be done when the queues are inactive.
319 *
320 * The max. timeout value is 2^(10+x) * T (6ns for 166MHz) * 15/16.
321 * The min. timeout value is 2^(10+x) * T (6ns for 166MHz) * 14/16.
322 */
323static bool genwqe_setup_pf_jtimer(struct genwqe_dev *cd)
324{
325	u32 T = genwqe_T_psec(cd);
326	u64 x;
327
328	if (genwqe_pf_jobtimeout_msec == 0)
329		return false;
330
331	/* PF: large value needed, flash update 2sec per block */
332	x = ilog2(genwqe_pf_jobtimeout_msec *
333		  16000000000uL/(T * 15)) - 10;
334
335	genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
336			  0xff00 | (x & 0xff), 0);
337	return true;
338}
339
340/**
341 * genwqe_setup_vf_jtimer() - Setup VF hardware timeouts for DDCB execution
342 */
343static bool genwqe_setup_vf_jtimer(struct genwqe_dev *cd)
344{
345	struct pci_dev *pci_dev = cd->pci_dev;
346	unsigned int vf;
347	u32 T = genwqe_T_psec(cd);
348	u64 x;
349	int totalvfs;
350
351	totalvfs = pci_sriov_get_totalvfs(pci_dev);
352	if (totalvfs <= 0)
353		return false;
354
355	for (vf = 0; vf < totalvfs; vf++) {
356
357		if (cd->vf_jobtimeout_msec[vf] == 0)
358			continue;
359
360		x = ilog2(cd->vf_jobtimeout_msec[vf] *
361			  16000000000uL/(T * 15)) - 10;
362
363		genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
364				  0xff00 | (x & 0xff), vf + 1);
365	}
366	return true;
367}
368
369static int genwqe_ffdc_buffs_alloc(struct genwqe_dev *cd)
370{
371	unsigned int type, e = 0;
372
373	for (type = 0; type < GENWQE_DBG_UNITS; type++) {
374		switch (type) {
375		case GENWQE_DBG_UNIT0:
376			e = genwqe_ffdc_buff_size(cd, 0);
377			break;
378		case GENWQE_DBG_UNIT1:
379			e = genwqe_ffdc_buff_size(cd, 1);
380			break;
381		case GENWQE_DBG_UNIT2:
382			e = genwqe_ffdc_buff_size(cd, 2);
383			break;
384		case GENWQE_DBG_REGS:
385			e = GENWQE_FFDC_REGS;
386			break;
387		}
388
389		/* currently support only the debug units mentioned here */
390		cd->ffdc[type].entries = e;
391		cd->ffdc[type].regs =
392			kmalloc_array(e, sizeof(struct genwqe_reg),
393				      GFP_KERNEL);
394		/*
395		 * regs == NULL is ok, the using code treats this as no regs,
396		 * Printing warning is ok in this case.
397		 */
398	}
399	return 0;
400}
401
402static void genwqe_ffdc_buffs_free(struct genwqe_dev *cd)
403{
404	unsigned int type;
405
406	for (type = 0; type < GENWQE_DBG_UNITS; type++) {
407		kfree(cd->ffdc[type].regs);
408		cd->ffdc[type].regs = NULL;
409	}
410}
411
412static int genwqe_read_ids(struct genwqe_dev *cd)
413{
414	int err = 0;
415	int slu_id;
416	struct pci_dev *pci_dev = cd->pci_dev;
417
418	cd->slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
419	if (cd->slu_unitcfg == IO_ILLEGAL_VALUE) {
420		dev_err(&pci_dev->dev,
421			"err: SLUID=%016llx\n", cd->slu_unitcfg);
422		err = -EIO;
423		goto out_err;
424	}
425
426	slu_id = genwqe_get_slu_id(cd);
427	if (slu_id < GENWQE_SLU_ARCH_REQ || slu_id == 0xff) {
428		dev_err(&pci_dev->dev,
429			"err: incompatible SLU Architecture %u\n", slu_id);
430		err = -ENOENT;
431		goto out_err;
432	}
433
434	cd->app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
435	if (cd->app_unitcfg == IO_ILLEGAL_VALUE) {
436		dev_err(&pci_dev->dev,
437			"err: APPID=%016llx\n", cd->app_unitcfg);
438		err = -EIO;
439		goto out_err;
440	}
441	genwqe_read_app_id(cd, cd->app_name, sizeof(cd->app_name));
442
443	/*
444	 * Is access to all registers possible? If we are a VF the
445	 * answer is obvious. If we run fully virtualized, we need to
446	 * check if we can access all registers. If we do not have
447	 * full access we will cause an UR and some informational FIRs
448	 * in the PF, but that should not harm.
449	 */
450	if (pci_dev->is_virtfn)
451		cd->is_privileged = 0;
452	else
453		cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM)
454				     != IO_ILLEGAL_VALUE);
455
456 out_err:
457	return err;
458}
459
460static int genwqe_start(struct genwqe_dev *cd)
461{
462	int err;
463	struct pci_dev *pci_dev = cd->pci_dev;
464
465	err = genwqe_read_ids(cd);
466	if (err)
467		return err;
468
469	if (genwqe_is_privileged(cd)) {
470		/* do this after the tweaks. alloc fail is acceptable */
471		genwqe_ffdc_buffs_alloc(cd);
472		genwqe_stop_traps(cd);
473
474		/* Collect registers e.g. FIRs, UNITIDs, traces ... */
475		genwqe_read_ffdc_regs(cd, cd->ffdc[GENWQE_DBG_REGS].regs,
476				      cd->ffdc[GENWQE_DBG_REGS].entries, 0);
477
478		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT0,
479				      cd->ffdc[GENWQE_DBG_UNIT0].regs,
480				      cd->ffdc[GENWQE_DBG_UNIT0].entries);
481
482		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT1,
483				      cd->ffdc[GENWQE_DBG_UNIT1].regs,
484				      cd->ffdc[GENWQE_DBG_UNIT1].entries);
485
486		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT2,
487				      cd->ffdc[GENWQE_DBG_UNIT2].regs,
488				      cd->ffdc[GENWQE_DBG_UNIT2].entries);
489
490		genwqe_start_traps(cd);
491
492		if (cd->card_state == GENWQE_CARD_FATAL_ERROR) {
493			dev_warn(&pci_dev->dev,
494				 "[%s] chip reload/recovery!\n", __func__);
495
496			/*
497			 * Stealth Mode: Reload chip on either hot
498			 * reset or PERST.
499			 */
500			cd->softreset = 0x7Cull;
501			__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
502				       cd->softreset);
503
504			err = genwqe_bus_reset(cd);
505			if (err != 0) {
506				dev_err(&pci_dev->dev,
507					"[%s] err: bus reset failed!\n",
508					__func__);
509				goto out;
510			}
511
512			/*
513			 * Re-read the IDs because
514			 * it could happen that the bitstream load
515			 * failed!
516			 */
517			err = genwqe_read_ids(cd);
518			if (err)
519				goto out;
520		}
521	}
522
523	err = genwqe_setup_service_layer(cd);  /* does a reset to the card */
524	if (err != 0) {
525		dev_err(&pci_dev->dev,
526			"[%s] err: could not setup servicelayer!\n", __func__);
527		err = -ENODEV;
528		goto out;
529	}
530
531	if (genwqe_is_privileged(cd)) {	 /* code is running _after_ reset */
532		genwqe_tweak_hardware(cd);
533
534		genwqe_setup_pf_jtimer(cd);
535		genwqe_setup_vf_jtimer(cd);
536	}
537
538	err = genwqe_device_create(cd);
539	if (err < 0) {
540		dev_err(&pci_dev->dev,
541			"err: chdev init failed! (err=%d)\n", err);
542		goto out_release_service_layer;
543	}
544	return 0;
545
546 out_release_service_layer:
547	genwqe_release_service_layer(cd);
548 out:
549	if (genwqe_is_privileged(cd))
550		genwqe_ffdc_buffs_free(cd);
551	return -EIO;
552}
553
554/**
555 * genwqe_stop() - Stop card operation
556 *
557 * Recovery notes:
558 *   As long as genwqe_thread runs we might access registers during
559 *   error data capture. Same is with the genwqe_health_thread.
560 *   When genwqe_bus_reset() fails this function might called two times:
561 *   first by the genwqe_health_thread() and later by genwqe_remove() to
562 *   unbind the device. We must be able to survive that.
563 *
564 * This function must be robust enough to be called twice.
565 */
566static int genwqe_stop(struct genwqe_dev *cd)
567{
568	genwqe_finish_queue(cd);	    /* no register access */
569	genwqe_device_remove(cd);	    /* device removed, procs killed */
570	genwqe_release_service_layer(cd);   /* here genwqe_thread is stopped */
571
572	if (genwqe_is_privileged(cd)) {
573		pci_disable_sriov(cd->pci_dev);	/* access pci config space */
574		genwqe_ffdc_buffs_free(cd);
575	}
576
577	return 0;
578}
579
580/**
581 * genwqe_recover_card() - Try to recover the card if it is possible
582 *
583 * If fatal_err is set no register access is possible anymore. It is
584 * likely that genwqe_start fails in that situation. Proper error
585 * handling is required in this case.
586 *
587 * genwqe_bus_reset() will cause the pci code to call genwqe_remove()
588 * and later genwqe_probe() for all virtual functions.
589 */
590static int genwqe_recover_card(struct genwqe_dev *cd, int fatal_err)
591{
592	int rc;
593	struct pci_dev *pci_dev = cd->pci_dev;
594
595	genwqe_stop(cd);
596
597	/*
598	 * Make sure chip is not reloaded to maintain FFDC. Write SLU
599	 * Reset Register, CPLDReset field to 0.
600	 */
601	if (!fatal_err) {
602		cd->softreset = 0x70ull;
603		__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, cd->softreset);
604	}
605
606	rc = genwqe_bus_reset(cd);
607	if (rc != 0) {
608		dev_err(&pci_dev->dev,
609			"[%s] err: card recovery impossible!\n", __func__);
610		return rc;
611	}
612
613	rc = genwqe_start(cd);
614	if (rc < 0) {
615		dev_err(&pci_dev->dev,
616			"[%s] err: failed to launch device!\n", __func__);
617		return rc;
618	}
619	return 0;
620}
621
622static int genwqe_health_check_cond(struct genwqe_dev *cd, u64 *gfir)
623{
624	*gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
625	return (*gfir & GFIR_ERR_TRIGGER) &&
626		genwqe_recovery_on_fatal_gfir_required(cd);
627}
628
629/**
630 * genwqe_fir_checking() - Check the fault isolation registers of the card
631 *
632 * If this code works ok, can be tried out with help of the genwqe_poke tool:
633 *   sudo ./tools/genwqe_poke 0x8 0xfefefefefef
634 *
635 * Now the relevant FIRs/sFIRs should be printed out and the driver should
636 * invoke recovery (devices are removed and readded).
637 */
638static u64 genwqe_fir_checking(struct genwqe_dev *cd)
639{
640	int j, iterations = 0;
641	u64 mask, fir, fec, uid, gfir, gfir_masked, sfir, sfec;
642	u32 fir_addr, fir_clr_addr, fec_addr, sfir_addr, sfec_addr;
643	struct pci_dev *pci_dev = cd->pci_dev;
644
645 healthMonitor:
646	iterations++;
647	if (iterations > 16) {
648		dev_err(&pci_dev->dev, "* exit looping after %d times\n",
649			iterations);
650		goto fatal_error;
651	}
652
653	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
654	if (gfir != 0x0)
655		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n",
656				    IO_SLC_CFGREG_GFIR, gfir);
657	if (gfir == IO_ILLEGAL_VALUE)
658		goto fatal_error;
659
660	/*
661	 * Avoid printing when to GFIR bit is on prevents contignous
662	 * printout e.g. for the following bug:
663	 *   FIR set without a 2ndary FIR/FIR cannot be cleared
664	 * Comment out the following if to get the prints:
665	 */
666	if (gfir == 0)
667		return 0;
668
669	gfir_masked = gfir & GFIR_ERR_TRIGGER;  /* fatal errors */
670
671	for (uid = 0; uid < GENWQE_MAX_UNITS; uid++) { /* 0..2 in zEDC */
672
673		/* read the primary FIR (pfir) */
674		fir_addr = (uid << 24) + 0x08;
675		fir = __genwqe_readq(cd, fir_addr);
676		if (fir == 0x0)
677			continue;  /* no error in this unit */
678
679		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fir_addr, fir);
680		if (fir == IO_ILLEGAL_VALUE)
681			goto fatal_error;
682
683		/* read primary FEC */
684		fec_addr = (uid << 24) + 0x18;
685		fec = __genwqe_readq(cd, fec_addr);
686
687		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fec_addr, fec);
688		if (fec == IO_ILLEGAL_VALUE)
689			goto fatal_error;
690
691		for (j = 0, mask = 1ULL; j < 64; j++, mask <<= 1) {
692
693			/* secondary fir empty, skip it */
694			if ((fir & mask) == 0x0)
695				continue;
696
697			sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
698			sfir = __genwqe_readq(cd, sfir_addr);
699
700			if (sfir == IO_ILLEGAL_VALUE)
701				goto fatal_error;
702			dev_err(&pci_dev->dev,
703				"* 0x%08x 0x%016llx\n", sfir_addr, sfir);
704
705			sfec_addr = (uid << 24) + 0x300 + 0x08 * j;
706			sfec = __genwqe_readq(cd, sfec_addr);
707
708			if (sfec == IO_ILLEGAL_VALUE)
709				goto fatal_error;
710			dev_err(&pci_dev->dev,
711				"* 0x%08x 0x%016llx\n", sfec_addr, sfec);
712
713			gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
714			if (gfir == IO_ILLEGAL_VALUE)
715				goto fatal_error;
716
717			/* gfir turned on during routine! get out and
718			   start over. */
719			if ((gfir_masked == 0x0) &&
720			    (gfir & GFIR_ERR_TRIGGER)) {
721				goto healthMonitor;
722			}
723
724			/* do not clear if we entered with a fatal gfir */
725			if (gfir_masked == 0x0) {
726
727				/* NEW clear by mask the logged bits */
728				sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
729				__genwqe_writeq(cd, sfir_addr, sfir);
730
731				dev_dbg(&pci_dev->dev,
732					"[HM] Clearing  2ndary FIR 0x%08x with 0x%016llx\n",
733					sfir_addr, sfir);
734
735				/*
736				 * note, these cannot be error-Firs
737				 * since gfir_masked is 0 after sfir
738				 * was read. Also, it is safe to do
739				 * this write if sfir=0. Still need to
740				 * clear the primary. This just means
741				 * there is no secondary FIR.
742				 */
743
744				/* clear by mask the logged bit. */
745				fir_clr_addr = (uid << 24) + 0x10;
746				__genwqe_writeq(cd, fir_clr_addr, mask);
747
748				dev_dbg(&pci_dev->dev,
749					"[HM] Clearing primary FIR 0x%08x with 0x%016llx\n",
750					fir_clr_addr, mask);
751			}
752		}
753	}
754	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
755	if (gfir == IO_ILLEGAL_VALUE)
756		goto fatal_error;
757
758	if ((gfir_masked == 0x0) && (gfir & GFIR_ERR_TRIGGER)) {
759		/*
760		 * Check once more that it didn't go on after all the
761		 * FIRS were cleared.
762		 */
763		dev_dbg(&pci_dev->dev, "ACK! Another FIR! Recursing %d!\n",
764			iterations);
765		goto healthMonitor;
766	}
767	return gfir_masked;
768
769 fatal_error:
770	return IO_ILLEGAL_VALUE;
771}
772
773/**
774 * genwqe_pci_fundamental_reset() - trigger a PCIe fundamental reset on the slot
775 *
776 * Note: pci_set_pcie_reset_state() is not implemented on all archs, so this
777 * reset method will not work in all cases.
778 *
779 * Return: 0 on success or error code from pci_set_pcie_reset_state()
780 */
781static int genwqe_pci_fundamental_reset(struct pci_dev *pci_dev)
782{
783	int rc;
784
785	/*
786	 * lock pci config space access from userspace,
787	 * save state and issue PCIe fundamental reset
788	 */
789	pci_cfg_access_lock(pci_dev);
790	pci_save_state(pci_dev);
791	rc = pci_set_pcie_reset_state(pci_dev, pcie_warm_reset);
792	if (!rc) {
793		/* keep PCIe reset asserted for 250ms */
794		msleep(250);
795		pci_set_pcie_reset_state(pci_dev, pcie_deassert_reset);
796		/* Wait for 2s to reload flash and train the link */
797		msleep(2000);
798	}
799	pci_restore_state(pci_dev);
800	pci_cfg_access_unlock(pci_dev);
801	return rc;
802}
803
804
805static int genwqe_platform_recovery(struct genwqe_dev *cd)
806{
807	struct pci_dev *pci_dev = cd->pci_dev;
808	int rc;
809
810	dev_info(&pci_dev->dev,
811		 "[%s] resetting card for error recovery\n", __func__);
812
813	/* Clear out error injection flags */
814	cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
815			    GENWQE_INJECT_GFIR_FATAL |
816			    GENWQE_INJECT_GFIR_INFO);
817
818	genwqe_stop(cd);
819
820	/* Try recoverying the card with fundamental reset */
821	rc = genwqe_pci_fundamental_reset(pci_dev);
822	if (!rc) {
823		rc = genwqe_start(cd);
824		if (!rc)
825			dev_info(&pci_dev->dev,
826				 "[%s] card recovered\n", __func__);
827		else
828			dev_err(&pci_dev->dev,
829				"[%s] err: cannot start card services! (err=%d)\n",
830				__func__, rc);
831	} else {
832		dev_err(&pci_dev->dev,
833			"[%s] card reset failed\n", __func__);
834	}
835
836	return rc;
837}
838
839/*
840 * genwqe_reload_bistream() - reload card bitstream
841 *
842 * Set the appropriate register and call fundamental reset to reaload the card
843 * bitstream.
844 *
845 * Return: 0 on success, error code otherwise
846 */
847static int genwqe_reload_bistream(struct genwqe_dev *cd)
848{
849	struct pci_dev *pci_dev = cd->pci_dev;
850	int rc;
851
852	dev_info(&pci_dev->dev,
853		 "[%s] resetting card for bitstream reload\n",
854		 __func__);
855
856	genwqe_stop(cd);
857
858	/*
859	 * Cause a CPLD reprogram with the 'next_bitstream'
860	 * partition on PCIe hot or fundamental reset
861	 */
862	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
863			(cd->softreset & 0xcull) | 0x70ull);
864
865	rc = genwqe_pci_fundamental_reset(pci_dev);
866	if (rc) {
867		/*
868		 * A fundamental reset failure can be caused
869		 * by lack of support on the arch, so we just
870		 * log the error and try to start the card
871		 * again.
872		 */
873		dev_err(&pci_dev->dev,
874			"[%s] err: failed to reset card for bitstream reload\n",
875			__func__);
876	}
877
878	rc = genwqe_start(cd);
879	if (rc) {
880		dev_err(&pci_dev->dev,
881			"[%s] err: cannot start card services! (err=%d)\n",
882			__func__, rc);
883		return rc;
884	}
885	dev_info(&pci_dev->dev,
886		 "[%s] card reloaded\n", __func__);
887	return 0;
888}
889
890
891/**
892 * genwqe_health_thread() - Health checking thread
893 *
894 * This thread is only started for the PF of the card.
895 *
896 * This thread monitors the health of the card. A critical situation
897 * is when we read registers which contain -1 (IO_ILLEGAL_VALUE). In
898 * this case we need to be recovered from outside. Writing to
899 * registers will very likely not work either.
900 *
901 * This thread must only exit if kthread_should_stop() becomes true.
902 *
903 * Condition for the health-thread to trigger:
904 *   a) when a kthread_stop() request comes in or
905 *   b) a critical GFIR occured
906 *
907 * Informational GFIRs are checked and potentially printed in
908 * health_check_interval seconds.
909 */
910static int genwqe_health_thread(void *data)
911{
912	int rc, should_stop = 0;
913	struct genwqe_dev *cd = data;
914	struct pci_dev *pci_dev = cd->pci_dev;
915	u64 gfir, gfir_masked, slu_unitcfg, app_unitcfg;
916
917 health_thread_begin:
918	while (!kthread_should_stop()) {
919		rc = wait_event_interruptible_timeout(cd->health_waitq,
920			 (genwqe_health_check_cond(cd, &gfir) ||
921			  (should_stop = kthread_should_stop())),
922				genwqe_health_check_interval * HZ);
923
924		if (should_stop)
925			break;
926
927		if (gfir == IO_ILLEGAL_VALUE) {
928			dev_err(&pci_dev->dev,
929				"[%s] GFIR=%016llx\n", __func__, gfir);
930			goto fatal_error;
931		}
932
933		slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
934		if (slu_unitcfg == IO_ILLEGAL_VALUE) {
935			dev_err(&pci_dev->dev,
936				"[%s] SLU_UNITCFG=%016llx\n",
937				__func__, slu_unitcfg);
938			goto fatal_error;
939		}
940
941		app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
942		if (app_unitcfg == IO_ILLEGAL_VALUE) {
943			dev_err(&pci_dev->dev,
944				"[%s] APP_UNITCFG=%016llx\n",
945				__func__, app_unitcfg);
946			goto fatal_error;
947		}
948
949		gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
950		if (gfir == IO_ILLEGAL_VALUE) {
951			dev_err(&pci_dev->dev,
952				"[%s] %s: GFIR=%016llx\n", __func__,
953				(gfir & GFIR_ERR_TRIGGER) ? "err" : "info",
954				gfir);
955			goto fatal_error;
956		}
957
958		gfir_masked = genwqe_fir_checking(cd);
959		if (gfir_masked == IO_ILLEGAL_VALUE)
960			goto fatal_error;
961
962		/*
963		 * GFIR ErrorTrigger bits set => reset the card!
964		 * Never do this for old/manufacturing images!
965		 */
966		if ((gfir_masked) && !cd->skip_recovery &&
967		    genwqe_recovery_on_fatal_gfir_required(cd)) {
968
969			cd->card_state = GENWQE_CARD_FATAL_ERROR;
970
971			rc = genwqe_recover_card(cd, 0);
972			if (rc < 0) {
973				/* FIXME Card is unusable and needs unbind! */
974				goto fatal_error;
975			}
976		}
977
978		if (cd->card_state == GENWQE_CARD_RELOAD_BITSTREAM) {
979			/* Userspace requested card bitstream reload */
980			rc = genwqe_reload_bistream(cd);
981			if (rc)
982				goto fatal_error;
983		}
984
985		cd->last_gfir = gfir;
986		cond_resched();
987	}
988
989	return 0;
990
991 fatal_error:
992	if (cd->use_platform_recovery) {
993		/*
994		 * Since we use raw accessors, EEH errors won't be detected
995		 * by the platform until we do a non-raw MMIO or config space
996		 * read
997		 */
998		readq(cd->mmio + IO_SLC_CFGREG_GFIR);
999
1000		/* We do nothing if the card is going over PCI recovery */
1001		if (pci_channel_offline(pci_dev))
1002			return -EIO;
1003
1004		/*
1005		 * If it's supported by the platform, we try a fundamental reset
1006		 * to recover from a fatal error. Otherwise, we continue to wait
1007		 * for an external recovery procedure to take care of it.
1008		 */
1009		rc = genwqe_platform_recovery(cd);
1010		if (!rc)
1011			goto health_thread_begin;
1012	}
1013
1014	dev_err(&pci_dev->dev,
1015		"[%s] card unusable. Please trigger unbind!\n", __func__);
1016
1017	/* Bring down logical devices to inform user space via udev remove. */
1018	cd->card_state = GENWQE_CARD_FATAL_ERROR;
1019	genwqe_stop(cd);
1020
1021	/* genwqe_bus_reset failed(). Now wait for genwqe_remove(). */
1022	while (!kthread_should_stop())
1023		cond_resched();
1024
1025	return -EIO;
1026}
1027
1028static int genwqe_health_check_start(struct genwqe_dev *cd)
1029{
1030	int rc;
1031
1032	if (genwqe_health_check_interval <= 0)
1033		return 0;	/* valid for disabling the service */
1034
1035	/* moved before request_irq() */
1036	/* init_waitqueue_head(&cd->health_waitq); */
1037
1038	cd->health_thread = kthread_run(genwqe_health_thread, cd,
1039					GENWQE_DEVNAME "%d_health",
1040					cd->card_idx);
1041	if (IS_ERR(cd->health_thread)) {
1042		rc = PTR_ERR(cd->health_thread);
1043		cd->health_thread = NULL;
1044		return rc;
1045	}
1046	return 0;
1047}
1048
1049static int genwqe_health_thread_running(struct genwqe_dev *cd)
1050{
1051	return cd->health_thread != NULL;
1052}
1053
1054static int genwqe_health_check_stop(struct genwqe_dev *cd)
1055{
1056	int rc;
1057
1058	if (!genwqe_health_thread_running(cd))
1059		return -EIO;
1060
1061	rc = kthread_stop(cd->health_thread);
1062	cd->health_thread = NULL;
1063	return 0;
1064}
1065
1066/**
1067 * genwqe_pci_setup() - Allocate PCIe related resources for our card
1068 */
1069static int genwqe_pci_setup(struct genwqe_dev *cd)
1070{
1071	int err, bars;
1072	struct pci_dev *pci_dev = cd->pci_dev;
1073
1074	bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
1075	err = pci_enable_device_mem(pci_dev);
1076	if (err) {
1077		dev_err(&pci_dev->dev,
1078			"err: failed to enable pci memory (err=%d)\n", err);
1079		goto err_out;
1080	}
1081
1082	/* Reserve PCI I/O and memory resources */
1083	err = pci_request_selected_regions(pci_dev, bars, genwqe_driver_name);
1084	if (err) {
1085		dev_err(&pci_dev->dev,
1086			"[%s] err: request bars failed (%d)\n", __func__, err);
1087		err = -EIO;
1088		goto err_disable_device;
1089	}
1090
1091	/* check for 64-bit DMA address supported (DAC) */
1092	if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1093		err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(64));
1094		if (err) {
1095			dev_err(&pci_dev->dev,
1096				"err: DMA64 consistent mask error\n");
1097			err = -EIO;
1098			goto out_release_resources;
1099		}
1100	/* check for 32-bit DMA address supported (SAC) */
1101	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1102		err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(32));
1103		if (err) {
1104			dev_err(&pci_dev->dev,
1105				"err: DMA32 consistent mask error\n");
1106			err = -EIO;
1107			goto out_release_resources;
1108		}
1109	} else {
1110		dev_err(&pci_dev->dev,
1111			"err: neither DMA32 nor DMA64 supported\n");
1112		err = -EIO;
1113		goto out_release_resources;
1114	}
1115
1116	pci_set_master(pci_dev);
1117	pci_enable_pcie_error_reporting(pci_dev);
1118
1119	/* EEH recovery requires PCIe fundamental reset */
1120	pci_dev->needs_freset = 1;
1121
1122	/* request complete BAR-0 space (length = 0) */
1123	cd->mmio_len = pci_resource_len(pci_dev, 0);
1124	cd->mmio = pci_iomap(pci_dev, 0, 0);
1125	if (cd->mmio == NULL) {
1126		dev_err(&pci_dev->dev,
1127			"[%s] err: mapping BAR0 failed\n", __func__);
1128		err = -ENOMEM;
1129		goto out_release_resources;
1130	}
1131
1132	cd->num_vfs = pci_sriov_get_totalvfs(pci_dev);
1133	if (cd->num_vfs < 0)
1134		cd->num_vfs = 0;
1135
1136	err = genwqe_read_ids(cd);
1137	if (err)
1138		goto out_iounmap;
1139
1140	return 0;
1141
1142 out_iounmap:
1143	pci_iounmap(pci_dev, cd->mmio);
1144 out_release_resources:
1145	pci_release_selected_regions(pci_dev, bars);
1146 err_disable_device:
1147	pci_disable_device(pci_dev);
1148 err_out:
1149	return err;
1150}
1151
1152/**
1153 * genwqe_pci_remove() - Free PCIe related resources for our card
1154 */
1155static void genwqe_pci_remove(struct genwqe_dev *cd)
1156{
1157	int bars;
1158	struct pci_dev *pci_dev = cd->pci_dev;
1159
1160	if (cd->mmio)
1161		pci_iounmap(pci_dev, cd->mmio);
1162
1163	bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
1164	pci_release_selected_regions(pci_dev, bars);
1165	pci_disable_device(pci_dev);
1166}
1167
1168/**
1169 * genwqe_probe() - Device initialization
1170 * @pdev:	PCI device information struct
1171 *
1172 * Callable for multiple cards. This function is called on bind.
1173 *
1174 * Return: 0 if succeeded, < 0 when failed
1175 */
1176static int genwqe_probe(struct pci_dev *pci_dev,
1177			const struct pci_device_id *id)
1178{
1179	int err;
1180	struct genwqe_dev *cd;
1181
1182	genwqe_init_crc32();
1183
1184	cd = genwqe_dev_alloc();
1185	if (IS_ERR(cd)) {
1186		dev_err(&pci_dev->dev, "err: could not alloc mem (err=%d)!\n",
1187			(int)PTR_ERR(cd));
1188		return PTR_ERR(cd);
1189	}
1190
1191	dev_set_drvdata(&pci_dev->dev, cd);
1192	cd->pci_dev = pci_dev;
1193
1194	err = genwqe_pci_setup(cd);
1195	if (err < 0) {
1196		dev_err(&pci_dev->dev,
1197			"err: problems with PCI setup (err=%d)\n", err);
1198		goto out_free_dev;
1199	}
1200
1201	err = genwqe_start(cd);
1202	if (err < 0) {
1203		dev_err(&pci_dev->dev,
1204			"err: cannot start card services! (err=%d)\n", err);
1205		goto out_pci_remove;
1206	}
1207
1208	if (genwqe_is_privileged(cd)) {
1209		err = genwqe_health_check_start(cd);
1210		if (err < 0) {
1211			dev_err(&pci_dev->dev,
1212				"err: cannot start health checking! (err=%d)\n",
1213				err);
1214			goto out_stop_services;
1215		}
1216	}
1217	return 0;
1218
1219 out_stop_services:
1220	genwqe_stop(cd);
1221 out_pci_remove:
1222	genwqe_pci_remove(cd);
1223 out_free_dev:
1224	genwqe_dev_free(cd);
1225	return err;
1226}
1227
1228/**
1229 * genwqe_remove() - Called when device is removed (hot-plugable)
1230 *
1231 * Or when driver is unloaded respecitively when unbind is done.
1232 */
1233static void genwqe_remove(struct pci_dev *pci_dev)
1234{
1235	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1236
1237	genwqe_health_check_stop(cd);
1238
1239	/*
1240	 * genwqe_stop() must survive if it is called twice
1241	 * sequentially. This happens when the health thread calls it
1242	 * and fails on genwqe_bus_reset().
1243	 */
1244	genwqe_stop(cd);
1245	genwqe_pci_remove(cd);
1246	genwqe_dev_free(cd);
1247}
1248
1249/*
1250 * genwqe_err_error_detected() - Error detection callback
1251 *
1252 * This callback is called by the PCI subsystem whenever a PCI bus
1253 * error is detected.
1254 */
1255static pci_ers_result_t genwqe_err_error_detected(struct pci_dev *pci_dev,
1256						 enum pci_channel_state state)
1257{
1258	struct genwqe_dev *cd;
1259
1260	dev_err(&pci_dev->dev, "[%s] state=%d\n", __func__, state);
1261
1262	cd = dev_get_drvdata(&pci_dev->dev);
1263	if (cd == NULL)
1264		return PCI_ERS_RESULT_DISCONNECT;
1265
1266	/* Stop the card */
1267	genwqe_health_check_stop(cd);
1268	genwqe_stop(cd);
1269
1270	/*
1271	 * On permanent failure, the PCI code will call device remove
1272	 * after the return of this function.
1273	 * genwqe_stop() can be called twice.
1274	 */
1275	if (state == pci_channel_io_perm_failure) {
1276		return PCI_ERS_RESULT_DISCONNECT;
1277	} else {
1278		genwqe_pci_remove(cd);
1279		return PCI_ERS_RESULT_NEED_RESET;
1280	}
1281}
1282
1283static pci_ers_result_t genwqe_err_slot_reset(struct pci_dev *pci_dev)
1284{
1285	int rc;
1286	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1287
1288	rc = genwqe_pci_setup(cd);
1289	if (!rc) {
1290		return PCI_ERS_RESULT_RECOVERED;
1291	} else {
1292		dev_err(&pci_dev->dev,
1293			"err: problems with PCI setup (err=%d)\n", rc);
1294		return PCI_ERS_RESULT_DISCONNECT;
1295	}
1296}
1297
1298static pci_ers_result_t genwqe_err_result_none(struct pci_dev *dev)
1299{
1300	return PCI_ERS_RESULT_NONE;
1301}
1302
1303static void genwqe_err_resume(struct pci_dev *pci_dev)
1304{
1305	int rc;
1306	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1307
1308	rc = genwqe_start(cd);
1309	if (!rc) {
1310		rc = genwqe_health_check_start(cd);
1311		if (rc)
1312			dev_err(&pci_dev->dev,
1313				"err: cannot start health checking! (err=%d)\n",
1314				rc);
1315	} else {
1316		dev_err(&pci_dev->dev,
1317			"err: cannot start card services! (err=%d)\n", rc);
1318	}
1319}
1320
1321static int genwqe_sriov_configure(struct pci_dev *dev, int numvfs)
1322{
1323	int rc;
1324	struct genwqe_dev *cd = dev_get_drvdata(&dev->dev);
1325
1326	if (numvfs > 0) {
1327		genwqe_setup_vf_jtimer(cd);
1328		rc = pci_enable_sriov(dev, numvfs);
1329		if (rc < 0)
1330			return rc;
1331		return numvfs;
1332	}
1333	if (numvfs == 0) {
1334		pci_disable_sriov(dev);
1335		return 0;
1336	}
1337	return 0;
1338}
1339
1340static struct pci_error_handlers genwqe_err_handler = {
1341	.error_detected = genwqe_err_error_detected,
1342	.mmio_enabled	= genwqe_err_result_none,
1343	.link_reset	= genwqe_err_result_none,
1344	.slot_reset	= genwqe_err_slot_reset,
1345	.resume		= genwqe_err_resume,
1346};
1347
1348static struct pci_driver genwqe_driver = {
1349	.name	  = genwqe_driver_name,
1350	.id_table = genwqe_device_table,
1351	.probe	  = genwqe_probe,
1352	.remove	  = genwqe_remove,
1353	.sriov_configure = genwqe_sriov_configure,
1354	.err_handler = &genwqe_err_handler,
1355};
1356
1357/**
1358 * genwqe_init_module() - Driver registration and initialization
1359 */
1360static int __init genwqe_init_module(void)
1361{
1362	int rc;
1363
1364	class_genwqe = class_create(THIS_MODULE, GENWQE_DEVNAME);
1365	if (IS_ERR(class_genwqe)) {
1366		pr_err("[%s] create class failed\n", __func__);
1367		return -ENOMEM;
1368	}
1369
1370	debugfs_genwqe = debugfs_create_dir(GENWQE_DEVNAME, NULL);
1371	if (!debugfs_genwqe) {
1372		rc = -ENOMEM;
1373		goto err_out;
1374	}
1375
1376	rc = pci_register_driver(&genwqe_driver);
1377	if (rc != 0) {
1378		pr_err("[%s] pci_reg_driver (rc=%d)\n", __func__, rc);
1379		goto err_out0;
1380	}
1381
1382	return rc;
1383
1384 err_out0:
1385	debugfs_remove(debugfs_genwqe);
1386 err_out:
1387	class_destroy(class_genwqe);
1388	return rc;
1389}
1390
1391/**
1392 * genwqe_exit_module() - Driver exit
1393 */
1394static void __exit genwqe_exit_module(void)
1395{
1396	pci_unregister_driver(&genwqe_driver);
1397	debugfs_remove(debugfs_genwqe);
1398	class_destroy(class_genwqe);
1399}
1400
1401module_init(genwqe_init_module);
1402module_exit(genwqe_exit_module);
1403