[go: nahoru, domu]

1/*
2 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3 *
4 * Derived from Intel e1000 driver
5 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59
19 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
20 */
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/mii.h>
24#include <linux/crc32.h>
25
26#include "atl1c.h"
27
28/*
29 * check_eeprom_exist
30 * return 1 if eeprom exist
31 */
32int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
33{
34	u32 data;
35
36	AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
37	if (data & TWSI_DEBUG_DEV_EXIST)
38		return 1;
39
40	AT_READ_REG(hw, REG_MASTER_CTRL, &data);
41	if (data & MASTER_CTRL_OTP_SEL)
42		return 1;
43	return 0;
44}
45
46void atl1c_hw_set_mac_addr(struct atl1c_hw *hw, u8 *mac_addr)
47{
48	u32 value;
49	/*
50	 * 00-0B-6A-F6-00-DC
51	 * 0:  6AF600DC 1: 000B
52	 * low dword
53	 */
54	value = mac_addr[2] << 24 |
55		mac_addr[3] << 16 |
56		mac_addr[4] << 8  |
57		mac_addr[5];
58	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
59	/* hight dword */
60	value = mac_addr[0] << 8 |
61		mac_addr[1];
62	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
63}
64
65/* read mac address from hardware register */
66static bool atl1c_read_current_addr(struct atl1c_hw *hw, u8 *eth_addr)
67{
68	u32 addr[2];
69
70	AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
71	AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
72
73	*(u32 *) &eth_addr[2] = htonl(addr[0]);
74	*(u16 *) &eth_addr[0] = htons((u16)addr[1]);
75
76	return is_valid_ether_addr(eth_addr);
77}
78
79/*
80 * atl1c_get_permanent_address
81 * return 0 if get valid mac address,
82 */
83static int atl1c_get_permanent_address(struct atl1c_hw *hw)
84{
85	u32 i;
86	u32 otp_ctrl_data;
87	u32 twsi_ctrl_data;
88	u16 phy_data;
89	bool raise_vol = false;
90
91	/* MAC-address from BIOS is the 1st priority */
92	if (atl1c_read_current_addr(hw, hw->perm_mac_addr))
93		return 0;
94
95	/* init */
96	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
97	if (atl1c_check_eeprom_exist(hw)) {
98		if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) {
99			/* Enable OTP CLK */
100			if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
101				otp_ctrl_data |= OTP_CTRL_CLK_EN;
102				AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
103				AT_WRITE_FLUSH(hw);
104				msleep(1);
105			}
106		}
107		/* raise voltage temporally for l2cb */
108		if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
109			atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data);
110			phy_data &= ~ANACTRL_HB_EN;
111			atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
112			atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
113			phy_data |= VOLT_CTRL_SWLOWEST;
114			atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
115			udelay(20);
116			raise_vol = true;
117		}
118
119		AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
120		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
121		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
122		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
123			msleep(10);
124			AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
125			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
126				break;
127		}
128		if (i >= AT_TWSI_EEPROM_TIMEOUT)
129			return -1;
130	}
131	/* Disable OTP_CLK */
132	if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
133		otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
134		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
135		msleep(1);
136	}
137	if (raise_vol) {
138		atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data);
139		phy_data |= ANACTRL_HB_EN;
140		atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
141		atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
142		phy_data &= ~VOLT_CTRL_SWLOWEST;
143		atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
144		udelay(20);
145	}
146
147	if (atl1c_read_current_addr(hw, hw->perm_mac_addr))
148		return 0;
149
150	return -1;
151}
152
153bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
154{
155	int i;
156	bool ret = false;
157	u32 otp_ctrl_data;
158	u32 control;
159	u32 data;
160
161	if (offset & 3)
162		return ret; /* address do not align */
163
164	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
165	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
166		AT_WRITE_REG(hw, REG_OTP_CTRL,
167				(otp_ctrl_data | OTP_CTRL_CLK_EN));
168
169	AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
170	control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
171	AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
172
173	for (i = 0; i < 10; i++) {
174		udelay(100);
175		AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
176		if (control & EEPROM_CTRL_RW)
177			break;
178	}
179	if (control & EEPROM_CTRL_RW) {
180		AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
181		AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
182		data = data & 0xFFFF;
183		*p_value = swab32((data << 16) | (*p_value >> 16));
184		ret = true;
185	}
186	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
187		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
188
189	return ret;
190}
191/*
192 * Reads the adapter's MAC address from the EEPROM
193 *
194 * hw - Struct containing variables accessed by shared code
195 */
196int atl1c_read_mac_addr(struct atl1c_hw *hw)
197{
198	int err = 0;
199
200	err = atl1c_get_permanent_address(hw);
201	if (err)
202		eth_random_addr(hw->perm_mac_addr);
203
204	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
205	return err;
206}
207
208/*
209 * atl1c_hash_mc_addr
210 *  purpose
211 *      set hash value for a multicast address
212 *      hash calcu processing :
213 *          1. calcu 32bit CRC for multicast address
214 *          2. reverse crc with MSB to LSB
215 */
216u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
217{
218	u32 crc32;
219	u32 value = 0;
220	int i;
221
222	crc32 = ether_crc_le(6, mc_addr);
223	for (i = 0; i < 32; i++)
224		value |= (((crc32 >> i) & 1) << (31 - i));
225
226	return value;
227}
228
229/*
230 * Sets the bit in the multicast table corresponding to the hash value.
231 * hw - Struct containing variables accessed by shared code
232 * hash_value - Multicast address hash value
233 */
234void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
235{
236	u32 hash_bit, hash_reg;
237	u32 mta;
238
239	/*
240	 * The HASH Table  is a register array of 2 32-bit registers.
241	 * It is treated like an array of 64 bits.  We want to set
242	 * bit BitArray[hash_value]. So we figure out what register
243	 * the bit is in, read it, OR in the new bit, then write
244	 * back the new value.  The register is determined by the
245	 * upper bit of the hash value and the bit within that
246	 * register are determined by the lower 5 bits of the value.
247	 */
248	hash_reg = (hash_value >> 31) & 0x1;
249	hash_bit = (hash_value >> 26) & 0x1F;
250
251	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
252
253	mta |= (1 << hash_bit);
254
255	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
256}
257
258/*
259 * wait mdio module be idle
260 * return true: idle
261 *        false: still busy
262 */
263bool atl1c_wait_mdio_idle(struct atl1c_hw *hw)
264{
265	u32 val;
266	int i;
267
268	for (i = 0; i < MDIO_MAX_AC_TO; i++) {
269		AT_READ_REG(hw, REG_MDIO_CTRL, &val);
270		if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START)))
271			break;
272		udelay(10);
273	}
274
275	return i != MDIO_MAX_AC_TO;
276}
277
278void atl1c_stop_phy_polling(struct atl1c_hw *hw)
279{
280	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
281		return;
282
283	AT_WRITE_REG(hw, REG_MDIO_CTRL, 0);
284	atl1c_wait_mdio_idle(hw);
285}
286
287void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel)
288{
289	u32 val;
290
291	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
292		return;
293
294	val = MDIO_CTRL_SPRES_PRMBL |
295		FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
296		FIELDX(MDIO_CTRL_REG, 1) |
297		MDIO_CTRL_START |
298		MDIO_CTRL_OP_READ;
299	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
300	atl1c_wait_mdio_idle(hw);
301	val |= MDIO_CTRL_AP_EN;
302	val &= ~MDIO_CTRL_START;
303	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
304	udelay(30);
305}
306
307
308/*
309 * atl1c_read_phy_core
310 * core funtion to read register in PHY via MDIO control regsiter.
311 * ext: extension register (see IEEE 802.3)
312 * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
313 * reg: reg to read
314 */
315int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
316			u16 reg, u16 *phy_data)
317{
318	u32 val;
319	u16 clk_sel = MDIO_CTRL_CLK_25_4;
320
321	atl1c_stop_phy_polling(hw);
322
323	*phy_data = 0;
324
325	/* only l2c_b2 & l1d_2 could use slow clock */
326	if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
327		hw->hibernate)
328		clk_sel = MDIO_CTRL_CLK_25_128;
329	if (ext) {
330		val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
331		AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
332		val = MDIO_CTRL_SPRES_PRMBL |
333			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
334			MDIO_CTRL_START |
335			MDIO_CTRL_MODE_EXT |
336			MDIO_CTRL_OP_READ;
337	} else {
338		val = MDIO_CTRL_SPRES_PRMBL |
339			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
340			FIELDX(MDIO_CTRL_REG, reg) |
341			MDIO_CTRL_START |
342			MDIO_CTRL_OP_READ;
343	}
344	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
345
346	if (!atl1c_wait_mdio_idle(hw))
347		return -1;
348
349	AT_READ_REG(hw, REG_MDIO_CTRL, &val);
350	*phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA);
351
352	atl1c_start_phy_polling(hw, clk_sel);
353
354	return 0;
355}
356
357/*
358 * atl1c_write_phy_core
359 * core funtion to write to register in PHY via MDIO control regsiter.
360 * ext: extension register (see IEEE 802.3)
361 * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
362 * reg: reg to write
363 */
364int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
365			u16 reg, u16 phy_data)
366{
367	u32 val;
368	u16 clk_sel = MDIO_CTRL_CLK_25_4;
369
370	atl1c_stop_phy_polling(hw);
371
372
373	/* only l2c_b2 & l1d_2 could use slow clock */
374	if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
375		hw->hibernate)
376		clk_sel = MDIO_CTRL_CLK_25_128;
377
378	if (ext) {
379		val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
380		AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
381		val = MDIO_CTRL_SPRES_PRMBL |
382			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
383			FIELDX(MDIO_CTRL_DATA, phy_data) |
384			MDIO_CTRL_START |
385			MDIO_CTRL_MODE_EXT;
386	} else {
387		val = MDIO_CTRL_SPRES_PRMBL |
388			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
389			FIELDX(MDIO_CTRL_DATA, phy_data) |
390			FIELDX(MDIO_CTRL_REG, reg) |
391			MDIO_CTRL_START;
392	}
393	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
394
395	if (!atl1c_wait_mdio_idle(hw))
396		return -1;
397
398	atl1c_start_phy_polling(hw, clk_sel);
399
400	return 0;
401}
402
403/*
404 * Reads the value from a PHY register
405 * hw - Struct containing variables accessed by shared code
406 * reg_addr - address of the PHY register to read
407 */
408int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
409{
410	return atl1c_read_phy_core(hw, false, 0, reg_addr, phy_data);
411}
412
413/*
414 * Writes a value to a PHY register
415 * hw - Struct containing variables accessed by shared code
416 * reg_addr - address of the PHY register to write
417 * data - data to write to the PHY
418 */
419int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
420{
421	return atl1c_write_phy_core(hw, false, 0, reg_addr, phy_data);
422}
423
424/* read from PHY extension register */
425int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
426			u16 reg_addr, u16 *phy_data)
427{
428	return atl1c_read_phy_core(hw, true, dev_addr, reg_addr, phy_data);
429}
430
431/* write to PHY extension register */
432int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
433			u16 reg_addr, u16 phy_data)
434{
435	return atl1c_write_phy_core(hw, true, dev_addr, reg_addr, phy_data);
436}
437
438int atl1c_read_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
439{
440	int err;
441
442	err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
443	if (unlikely(err))
444		return err;
445	else
446		err = atl1c_read_phy_reg(hw, MII_DBG_DATA, phy_data);
447
448	return err;
449}
450
451int atl1c_write_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 phy_data)
452{
453	int err;
454
455	err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
456	if (unlikely(err))
457		return err;
458	else
459		err = atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
460
461	return err;
462}
463
464/*
465 * Configures PHY autoneg and flow control advertisement settings
466 *
467 * hw - Struct containing variables accessed by shared code
468 */
469static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
470{
471	u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL;
472	u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
473				~GIGA_CR_1000T_SPEED_MASK;
474
475	if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
476		mii_adv_data |= ADVERTISE_10HALF;
477	if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
478		mii_adv_data |= ADVERTISE_10FULL;
479	if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
480		mii_adv_data |= ADVERTISE_100HALF;
481	if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
482		mii_adv_data |= ADVERTISE_100FULL;
483
484	if (hw->autoneg_advertised & ADVERTISED_Autoneg)
485		mii_adv_data |= ADVERTISE_10HALF  | ADVERTISE_10FULL |
486				ADVERTISE_100HALF | ADVERTISE_100FULL;
487
488	if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
489		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
490			mii_giga_ctrl_data |= ADVERTISE_1000HALF;
491		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
492			mii_giga_ctrl_data |= ADVERTISE_1000FULL;
493		if (hw->autoneg_advertised & ADVERTISED_Autoneg)
494			mii_giga_ctrl_data |= ADVERTISE_1000HALF |
495					ADVERTISE_1000FULL;
496	}
497
498	if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
499	    atl1c_write_phy_reg(hw, MII_CTRL1000, mii_giga_ctrl_data) != 0)
500		return -1;
501	return 0;
502}
503
504void atl1c_phy_disable(struct atl1c_hw *hw)
505{
506	atl1c_power_saving(hw, 0);
507}
508
509
510int atl1c_phy_reset(struct atl1c_hw *hw)
511{
512	struct atl1c_adapter *adapter = hw->adapter;
513	struct pci_dev *pdev = adapter->pdev;
514	u16 phy_data;
515	u32 phy_ctrl_data, lpi_ctrl;
516	int err;
517
518	/* reset PHY core */
519	AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data);
520	phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_PHY_IDDQ |
521		GPHY_CTRL_GATE_25M_EN | GPHY_CTRL_PWDOWN_HW | GPHY_CTRL_CLS);
522	phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST;
523	if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE))
524		phy_ctrl_data |= (GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
525	else
526		phy_ctrl_data &= ~(GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
527	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
528	AT_WRITE_FLUSH(hw);
529	udelay(10);
530	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data | GPHY_CTRL_EXT_RESET);
531	AT_WRITE_FLUSH(hw);
532	udelay(10 * GPHY_CTRL_EXT_RST_TO);	/* delay 800us */
533
534	/* switch clock */
535	if (hw->nic_type == athr_l2c_b) {
536		atl1c_read_phy_dbg(hw, MIIDBG_CFGLPSPD, &phy_data);
537		atl1c_write_phy_dbg(hw, MIIDBG_CFGLPSPD,
538			phy_data & ~CFGLPSPD_RSTCNT_CLK125SW);
539	}
540
541	/* tx-half amplitude issue fix */
542	if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
543		atl1c_read_phy_dbg(hw, MIIDBG_CABLE1TH_DET, &phy_data);
544		phy_data |= CABLE1TH_DET_EN;
545		atl1c_write_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data);
546	}
547
548	/* clear bit3 of dbgport 3B to lower voltage */
549	if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) {
550		if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
551			atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
552			phy_data &= ~VOLT_CTRL_SWLOWEST;
553			atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
554		}
555		/* power saving config */
556		phy_data =
557			hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ?
558			L1D_LEGCYPS_DEF : L1C_LEGCYPS_DEF;
559		atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data);
560		/* hib */
561		atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
562			SYSMODCTRL_IECHOADJ_DEF);
563	} else {
564		/* disable pws */
565		atl1c_read_phy_dbg(hw, MIIDBG_LEGCYPS, &phy_data);
566		atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS,
567			phy_data & ~LEGCYPS_EN);
568		/* disable hibernate */
569		atl1c_read_phy_dbg(hw, MIIDBG_HIBNEG, &phy_data);
570		atl1c_write_phy_dbg(hw, MIIDBG_HIBNEG,
571			phy_data & HIBNEG_PSHIB_EN);
572	}
573	/* disable AZ(EEE) by default */
574	if (hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ||
575	    hw->nic_type == athr_l2c_b2) {
576		AT_READ_REG(hw, REG_LPI_CTRL, &lpi_ctrl);
577		AT_WRITE_REG(hw, REG_LPI_CTRL, lpi_ctrl & ~LPI_CTRL_EN);
578		atl1c_write_phy_ext(hw, MIIEXT_ANEG, MIIEXT_LOCAL_EEEADV, 0);
579		atl1c_write_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL3,
580			L2CB_CLDCTRL3);
581	}
582
583	/* other debug port to set */
584	atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, ANACTRL_DEF);
585	atl1c_write_phy_dbg(hw, MIIDBG_SRDSYSMOD, SRDSYSMOD_DEF);
586	atl1c_write_phy_dbg(hw, MIIDBG_TST10BTCFG, TST10BTCFG_DEF);
587	/* UNH-IOL test issue, set bit7 */
588	atl1c_write_phy_dbg(hw, MIIDBG_TST100BTCFG,
589		TST100BTCFG_DEF | TST100BTCFG_LITCH_EN);
590
591	/* set phy interrupt mask */
592	phy_data = IER_LINK_UP | IER_LINK_DOWN;
593	err = atl1c_write_phy_reg(hw, MII_IER, phy_data);
594	if (err) {
595		if (netif_msg_hw(adapter))
596			dev_err(&pdev->dev,
597				"Error enable PHY linkChange Interrupt\n");
598		return err;
599	}
600	return 0;
601}
602
603int atl1c_phy_init(struct atl1c_hw *hw)
604{
605	struct atl1c_adapter *adapter = hw->adapter;
606	struct pci_dev *pdev = adapter->pdev;
607	int ret_val;
608	u16 mii_bmcr_data = BMCR_RESET;
609
610	if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) ||
611		(atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) {
612		dev_err(&pdev->dev, "Error get phy ID\n");
613		return -1;
614	}
615	switch (hw->media_type) {
616	case MEDIA_TYPE_AUTO_SENSOR:
617		ret_val = atl1c_phy_setup_adv(hw);
618		if (ret_val) {
619			if (netif_msg_link(adapter))
620				dev_err(&pdev->dev,
621					"Error Setting up Auto-Negotiation\n");
622			return ret_val;
623		}
624		mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
625		break;
626	case MEDIA_TYPE_100M_FULL:
627		mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX;
628		break;
629	case MEDIA_TYPE_100M_HALF:
630		mii_bmcr_data |= BMCR_SPEED100;
631		break;
632	case MEDIA_TYPE_10M_FULL:
633		mii_bmcr_data |= BMCR_FULLDPLX;
634		break;
635	case MEDIA_TYPE_10M_HALF:
636		break;
637	default:
638		if (netif_msg_link(adapter))
639			dev_err(&pdev->dev, "Wrong Media type %d\n",
640				hw->media_type);
641		return -1;
642	}
643
644	ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
645	if (ret_val)
646		return ret_val;
647	hw->phy_configured = true;
648
649	return 0;
650}
651
652/*
653 * Detects the current speed and duplex settings of the hardware.
654 *
655 * hw - Struct containing variables accessed by shared code
656 * speed - Speed of the connection
657 * duplex - Duplex setting of the connection
658 */
659int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
660{
661	int err;
662	u16 phy_data;
663
664	/* Read   PHY Specific Status Register (17) */
665	err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
666	if (err)
667		return err;
668
669	if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
670		return -1;
671
672	switch (phy_data & GIGA_PSSR_SPEED) {
673	case GIGA_PSSR_1000MBS:
674		*speed = SPEED_1000;
675		break;
676	case GIGA_PSSR_100MBS:
677		*speed = SPEED_100;
678		break;
679	case  GIGA_PSSR_10MBS:
680		*speed = SPEED_10;
681		break;
682	default:
683		return -1;
684	}
685
686	if (phy_data & GIGA_PSSR_DPLX)
687		*duplex = FULL_DUPLEX;
688	else
689		*duplex = HALF_DUPLEX;
690
691	return 0;
692}
693
694/* select one link mode to get lower power consumption */
695int atl1c_phy_to_ps_link(struct atl1c_hw *hw)
696{
697	struct atl1c_adapter *adapter = hw->adapter;
698	struct pci_dev *pdev = adapter->pdev;
699	int ret = 0;
700	u16 autoneg_advertised = ADVERTISED_10baseT_Half;
701	u16 save_autoneg_advertised;
702	u16 phy_data;
703	u16 mii_lpa_data;
704	u16 speed = SPEED_0;
705	u16 duplex = FULL_DUPLEX;
706	int i;
707
708	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
709	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
710	if (phy_data & BMSR_LSTATUS) {
711		atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data);
712		if (mii_lpa_data & LPA_10FULL)
713			autoneg_advertised = ADVERTISED_10baseT_Full;
714		else if (mii_lpa_data & LPA_10HALF)
715			autoneg_advertised = ADVERTISED_10baseT_Half;
716		else if (mii_lpa_data & LPA_100HALF)
717			autoneg_advertised = ADVERTISED_100baseT_Half;
718		else if (mii_lpa_data & LPA_100FULL)
719			autoneg_advertised = ADVERTISED_100baseT_Full;
720
721		save_autoneg_advertised = hw->autoneg_advertised;
722		hw->phy_configured = false;
723		hw->autoneg_advertised = autoneg_advertised;
724		if (atl1c_restart_autoneg(hw) != 0) {
725			dev_dbg(&pdev->dev, "phy autoneg failed\n");
726			ret = -1;
727		}
728		hw->autoneg_advertised = save_autoneg_advertised;
729
730		if (mii_lpa_data) {
731			for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
732				mdelay(100);
733				atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
734				atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
735				if (phy_data & BMSR_LSTATUS) {
736					if (atl1c_get_speed_and_duplex(hw, &speed,
737									&duplex) != 0)
738						dev_dbg(&pdev->dev,
739							"get speed and duplex failed\n");
740					break;
741				}
742			}
743		}
744	} else {
745		speed = SPEED_10;
746		duplex = HALF_DUPLEX;
747	}
748	adapter->link_speed = speed;
749	adapter->link_duplex = duplex;
750
751	return ret;
752}
753
754int atl1c_restart_autoneg(struct atl1c_hw *hw)
755{
756	int err = 0;
757	u16 mii_bmcr_data = BMCR_RESET;
758
759	err = atl1c_phy_setup_adv(hw);
760	if (err)
761		return err;
762	mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
763
764	return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
765}
766
767int atl1c_power_saving(struct atl1c_hw *hw, u32 wufc)
768{
769	struct atl1c_adapter *adapter = hw->adapter;
770	struct pci_dev *pdev = adapter->pdev;
771	u32 master_ctrl, mac_ctrl, phy_ctrl;
772	u32 wol_ctrl, speed;
773	u16 phy_data;
774
775	wol_ctrl = 0;
776	speed = adapter->link_speed == SPEED_1000 ?
777		MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100;
778
779	AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl);
780	AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl);
781	AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl);
782
783	master_ctrl &= ~MASTER_CTRL_CLK_SEL_DIS;
784	mac_ctrl = FIELD_SETX(mac_ctrl, MAC_CTRL_SPEED, speed);
785	mac_ctrl &= ~(MAC_CTRL_DUPLX | MAC_CTRL_RX_EN | MAC_CTRL_TX_EN);
786	if (adapter->link_duplex == FULL_DUPLEX)
787		mac_ctrl |= MAC_CTRL_DUPLX;
788	phy_ctrl &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_CLS);
789	phy_ctrl |= GPHY_CTRL_SEL_ANA_RST | GPHY_CTRL_HIB_PULSE |
790		GPHY_CTRL_HIB_EN;
791	if (!wufc) { /* without WoL */
792		master_ctrl |= MASTER_CTRL_CLK_SEL_DIS;
793		phy_ctrl |= GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PWDOWN_HW;
794		AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
795		AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
796		AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
797		AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
798		hw->phy_configured = false; /* re-init PHY when resume */
799		return 0;
800	}
801	phy_ctrl |= GPHY_CTRL_EXT_RESET;
802	if (wufc & AT_WUFC_MAG) {
803		mac_ctrl |= MAC_CTRL_RX_EN | MAC_CTRL_BC_EN;
804		wol_ctrl |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
805		if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V11)
806			wol_ctrl |= WOL_PATTERN_EN | WOL_PATTERN_PME_EN;
807	}
808	if (wufc & AT_WUFC_LNKC) {
809		wol_ctrl |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
810		if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) {
811			dev_dbg(&pdev->dev, "%s: write phy MII_IER failed.\n",
812				atl1c_driver_name);
813		}
814	}
815	/* clear PHY interrupt */
816	atl1c_read_phy_reg(hw, MII_ISR, &phy_data);
817
818	dev_dbg(&pdev->dev, "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n",
819		atl1c_driver_name, mac_ctrl, master_ctrl, phy_ctrl, wol_ctrl);
820	AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
821	AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
822	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
823	AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl);
824
825	return 0;
826}
827
828
829/* configure phy after Link change Event */
830void atl1c_post_phy_linkchg(struct atl1c_hw *hw, u16 link_speed)
831{
832	u16 phy_val;
833	bool adj_thresh = false;
834
835	if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2 ||
836	    hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2)
837		adj_thresh = true;
838
839	if (link_speed != SPEED_0) { /* link up */
840		/* az with brcm, half-amp */
841		if (hw->nic_type == athr_l1d_2) {
842			atl1c_read_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL6,
843				&phy_val);
844			phy_val = FIELD_GETX(phy_val, CLDCTRL6_CAB_LEN);
845			phy_val = phy_val > CLDCTRL6_CAB_LEN_SHORT ?
846				AZ_ANADECT_LONG : AZ_ANADECT_DEF;
847			atl1c_write_phy_dbg(hw, MIIDBG_AZ_ANADECT, phy_val);
848		}
849		/* threshold adjust */
850		if (adj_thresh && link_speed == SPEED_100 && hw->msi_lnkpatch) {
851			atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, L1D_MSE16DB_UP);
852			atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
853				L1D_SYSMODCTRL_IECHOADJ_DEF);
854		}
855	} else { /* link down */
856		if (adj_thresh && hw->msi_lnkpatch) {
857			atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
858				SYSMODCTRL_IECHOADJ_DEF);
859			atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB,
860				L1D_MSE16DB_DOWN);
861		}
862	}
863}
864