[go: nahoru, domu]

1/*
2 * Network device driver for the BMAC ethernet controller on
3 * Apple Powermacs.  Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1998 Randy Gobbel.
6 *
7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8 * dynamic procfs inode.
9 */
10#include <linux/interrupt.h>
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/string.h>
17#include <linux/timer.h>
18#include <linux/proc_fs.h>
19#include <linux/init.h>
20#include <linux/spinlock.h>
21#include <linux/crc32.h>
22#include <linux/bitrev.h>
23#include <linux/ethtool.h>
24#include <linux/slab.h>
25#include <asm/prom.h>
26#include <asm/dbdma.h>
27#include <asm/io.h>
28#include <asm/page.h>
29#include <asm/pgtable.h>
30#include <asm/machdep.h>
31#include <asm/pmac_feature.h>
32#include <asm/macio.h>
33#include <asm/irq.h>
34
35#include "bmac.h"
36
37#define trunc_page(x)	((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
38#define round_page(x)	trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
39
40/*
41 * CRC polynomial - used in working out multicast filter bits.
42 */
43#define ENET_CRCPOLY 0x04c11db7
44
45/* switch to use multicast code lifted from sunhme driver */
46#define SUNHME_MULTICAST
47
48#define N_RX_RING	64
49#define N_TX_RING	32
50#define MAX_TX_ACTIVE	1
51#define ETHERCRC	4
52#define ETHERMINPACKET	64
53#define ETHERMTU	1500
54#define RX_BUFLEN	(ETHERMTU + 14 + ETHERCRC + 2)
55#define TX_TIMEOUT	HZ	/* 1 second */
56
57/* Bits in transmit DMA status */
58#define TX_DMA_ERR	0x80
59
60#define XXDEBUG(args)
61
62struct bmac_data {
63	/* volatile struct bmac *bmac; */
64	struct sk_buff_head *queue;
65	volatile struct dbdma_regs __iomem *tx_dma;
66	int tx_dma_intr;
67	volatile struct dbdma_regs __iomem *rx_dma;
68	int rx_dma_intr;
69	volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
70	volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
71	struct macio_dev *mdev;
72	int is_bmac_plus;
73	struct sk_buff *rx_bufs[N_RX_RING];
74	int rx_fill;
75	int rx_empty;
76	struct sk_buff *tx_bufs[N_TX_RING];
77	int tx_fill;
78	int tx_empty;
79	unsigned char tx_fullup;
80	struct timer_list tx_timeout;
81	int timeout_active;
82	int sleeping;
83	int opened;
84	unsigned short hash_use_count[64];
85	unsigned short hash_table_mask[4];
86	spinlock_t lock;
87};
88
89#if 0 /* Move that to ethtool */
90
91typedef struct bmac_reg_entry {
92	char *name;
93	unsigned short reg_offset;
94} bmac_reg_entry_t;
95
96#define N_REG_ENTRIES 31
97
98static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
99	{"MEMADD", MEMADD},
100	{"MEMDATAHI", MEMDATAHI},
101	{"MEMDATALO", MEMDATALO},
102	{"TXPNTR", TXPNTR},
103	{"RXPNTR", RXPNTR},
104	{"IPG1", IPG1},
105	{"IPG2", IPG2},
106	{"ALIMIT", ALIMIT},
107	{"SLOT", SLOT},
108	{"PALEN", PALEN},
109	{"PAPAT", PAPAT},
110	{"TXSFD", TXSFD},
111	{"JAM", JAM},
112	{"TXCFG", TXCFG},
113	{"TXMAX", TXMAX},
114	{"TXMIN", TXMIN},
115	{"PAREG", PAREG},
116	{"DCNT", DCNT},
117	{"NCCNT", NCCNT},
118	{"NTCNT", NTCNT},
119	{"EXCNT", EXCNT},
120	{"LTCNT", LTCNT},
121	{"TXSM", TXSM},
122	{"RXCFG", RXCFG},
123	{"RXMAX", RXMAX},
124	{"RXMIN", RXMIN},
125	{"FRCNT", FRCNT},
126	{"AECNT", AECNT},
127	{"FECNT", FECNT},
128	{"RXSM", RXSM},
129	{"RXCV", RXCV}
130};
131
132#endif
133
134static unsigned char *bmac_emergency_rxbuf;
135
136/*
137 * Number of bytes of private data per BMAC: allow enough for
138 * the rx and tx dma commands plus a branch dma command each,
139 * and another 16 bytes to allow us to align the dma command
140 * buffers on a 16 byte boundary.
141 */
142#define PRIV_BYTES	(sizeof(struct bmac_data) \
143	+ (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
144	+ sizeof(struct sk_buff_head))
145
146static int bmac_open(struct net_device *dev);
147static int bmac_close(struct net_device *dev);
148static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
149static void bmac_set_multicast(struct net_device *dev);
150static void bmac_reset_and_enable(struct net_device *dev);
151static void bmac_start_chip(struct net_device *dev);
152static void bmac_init_chip(struct net_device *dev);
153static void bmac_init_registers(struct net_device *dev);
154static void bmac_enable_and_reset_chip(struct net_device *dev);
155static int bmac_set_address(struct net_device *dev, void *addr);
156static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
157static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
158static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
159static void bmac_set_timeout(struct net_device *dev);
160static void bmac_tx_timeout(unsigned long data);
161static int bmac_output(struct sk_buff *skb, struct net_device *dev);
162static void bmac_start(struct net_device *dev);
163
164#define	DBDMA_SET(x)	( ((x) | (x) << 16) )
165#define	DBDMA_CLEAR(x)	( (x) << 16)
166
167static inline void
168dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
169{
170	__asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
171}
172
173static inline unsigned long
174dbdma_ld32(volatile __u32 __iomem *a)
175{
176	__u32 swap;
177	__asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
178	return swap;
179}
180
181static void
182dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
183{
184	dbdma_st32(&dmap->control,
185		   DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
186	eieio();
187}
188
189static void
190dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
191{
192	dbdma_st32(&dmap->control,
193		   DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
194	eieio();
195	while (dbdma_ld32(&dmap->status) & RUN)
196		eieio();
197}
198
199static void
200dbdma_setcmd(volatile struct dbdma_cmd *cp,
201	     unsigned short cmd, unsigned count, unsigned long addr,
202	     unsigned long cmd_dep)
203{
204	out_le16(&cp->command, cmd);
205	out_le16(&cp->req_count, count);
206	out_le32(&cp->phy_addr, addr);
207	out_le32(&cp->cmd_dep, cmd_dep);
208	out_le16(&cp->xfer_status, 0);
209	out_le16(&cp->res_count, 0);
210}
211
212static inline
213void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
214{
215	out_le16((void __iomem *)dev->base_addr + reg_offset, data);
216}
217
218
219static inline
220unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
221{
222	return in_le16((void __iomem *)dev->base_addr + reg_offset);
223}
224
225static void
226bmac_enable_and_reset_chip(struct net_device *dev)
227{
228	struct bmac_data *bp = netdev_priv(dev);
229	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
230	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
231
232	if (rd)
233		dbdma_reset(rd);
234	if (td)
235		dbdma_reset(td);
236
237	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
238}
239
240#define MIFDELAY	udelay(10)
241
242static unsigned int
243bmac_mif_readbits(struct net_device *dev, int nb)
244{
245	unsigned int val = 0;
246
247	while (--nb >= 0) {
248		bmwrite(dev, MIFCSR, 0);
249		MIFDELAY;
250		if (bmread(dev, MIFCSR) & 8)
251			val |= 1 << nb;
252		bmwrite(dev, MIFCSR, 1);
253		MIFDELAY;
254	}
255	bmwrite(dev, MIFCSR, 0);
256	MIFDELAY;
257	bmwrite(dev, MIFCSR, 1);
258	MIFDELAY;
259	return val;
260}
261
262static void
263bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
264{
265	int b;
266
267	while (--nb >= 0) {
268		b = (val & (1 << nb))? 6: 4;
269		bmwrite(dev, MIFCSR, b);
270		MIFDELAY;
271		bmwrite(dev, MIFCSR, b|1);
272		MIFDELAY;
273	}
274}
275
276static unsigned int
277bmac_mif_read(struct net_device *dev, unsigned int addr)
278{
279	unsigned int val;
280
281	bmwrite(dev, MIFCSR, 4);
282	MIFDELAY;
283	bmac_mif_writebits(dev, ~0U, 32);
284	bmac_mif_writebits(dev, 6, 4);
285	bmac_mif_writebits(dev, addr, 10);
286	bmwrite(dev, MIFCSR, 2);
287	MIFDELAY;
288	bmwrite(dev, MIFCSR, 1);
289	MIFDELAY;
290	val = bmac_mif_readbits(dev, 17);
291	bmwrite(dev, MIFCSR, 4);
292	MIFDELAY;
293	return val;
294}
295
296static void
297bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
298{
299	bmwrite(dev, MIFCSR, 4);
300	MIFDELAY;
301	bmac_mif_writebits(dev, ~0U, 32);
302	bmac_mif_writebits(dev, 5, 4);
303	bmac_mif_writebits(dev, addr, 10);
304	bmac_mif_writebits(dev, 2, 2);
305	bmac_mif_writebits(dev, val, 16);
306	bmac_mif_writebits(dev, 3, 2);
307}
308
309static void
310bmac_init_registers(struct net_device *dev)
311{
312	struct bmac_data *bp = netdev_priv(dev);
313	volatile unsigned short regValue;
314	unsigned short *pWord16;
315	int i;
316
317	/* XXDEBUG(("bmac: enter init_registers\n")); */
318
319	bmwrite(dev, RXRST, RxResetValue);
320	bmwrite(dev, TXRST, TxResetBit);
321
322	i = 100;
323	do {
324		--i;
325		udelay(10000);
326		regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
327	} while ((regValue & TxResetBit) && i > 0);
328
329	if (!bp->is_bmac_plus) {
330		regValue = bmread(dev, XCVRIF);
331		regValue |= ClkBit | SerialMode | COLActiveLow;
332		bmwrite(dev, XCVRIF, regValue);
333		udelay(10000);
334	}
335
336	bmwrite(dev, RSEED, (unsigned short)0x1968);
337
338	regValue = bmread(dev, XIFC);
339	regValue |= TxOutputEnable;
340	bmwrite(dev, XIFC, regValue);
341
342	bmread(dev, PAREG);
343
344	/* set collision counters to 0 */
345	bmwrite(dev, NCCNT, 0);
346	bmwrite(dev, NTCNT, 0);
347	bmwrite(dev, EXCNT, 0);
348	bmwrite(dev, LTCNT, 0);
349
350	/* set rx counters to 0 */
351	bmwrite(dev, FRCNT, 0);
352	bmwrite(dev, LECNT, 0);
353	bmwrite(dev, AECNT, 0);
354	bmwrite(dev, FECNT, 0);
355	bmwrite(dev, RXCV, 0);
356
357	/* set tx fifo information */
358	bmwrite(dev, TXTH, 4);	/* 4 octets before tx starts */
359
360	bmwrite(dev, TXFIFOCSR, 0);	/* first disable txFIFO */
361	bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
362
363	/* set rx fifo information */
364	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
365	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
366
367	//bmwrite(dev, TXCFG, TxMACEnable);	       	/* TxNeverGiveUp maybe later */
368	bmread(dev, STATUS);		/* read it just to clear it */
369
370	/* zero out the chip Hash Filter registers */
371	for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
372	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); 	/* bits 15 - 0 */
373	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); 	/* bits 31 - 16 */
374	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); 	/* bits 47 - 32 */
375	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); 	/* bits 63 - 48 */
376
377	pWord16 = (unsigned short *)dev->dev_addr;
378	bmwrite(dev, MADD0, *pWord16++);
379	bmwrite(dev, MADD1, *pWord16++);
380	bmwrite(dev, MADD2, *pWord16);
381
382	bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
383
384	bmwrite(dev, INTDISABLE, EnableNormal);
385}
386
387#if 0
388static void
389bmac_disable_interrupts(struct net_device *dev)
390{
391	bmwrite(dev, INTDISABLE, DisableAll);
392}
393
394static void
395bmac_enable_interrupts(struct net_device *dev)
396{
397	bmwrite(dev, INTDISABLE, EnableNormal);
398}
399#endif
400
401
402static void
403bmac_start_chip(struct net_device *dev)
404{
405	struct bmac_data *bp = netdev_priv(dev);
406	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
407	unsigned short	oldConfig;
408
409	/* enable rx dma channel */
410	dbdma_continue(rd);
411
412	oldConfig = bmread(dev, TXCFG);
413	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
414
415	/* turn on rx plus any other bits already on (promiscuous possibly) */
416	oldConfig = bmread(dev, RXCFG);
417	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
418	udelay(20000);
419}
420
421static void
422bmac_init_phy(struct net_device *dev)
423{
424	unsigned int addr;
425	struct bmac_data *bp = netdev_priv(dev);
426
427	printk(KERN_DEBUG "phy registers:");
428	for (addr = 0; addr < 32; ++addr) {
429		if ((addr & 7) == 0)
430			printk(KERN_DEBUG);
431		printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
432	}
433	printk(KERN_CONT "\n");
434
435	if (bp->is_bmac_plus) {
436		unsigned int capable, ctrl;
437
438		ctrl = bmac_mif_read(dev, 0);
439		capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
440		if (bmac_mif_read(dev, 4) != capable ||
441		    (ctrl & 0x1000) == 0) {
442			bmac_mif_write(dev, 4, capable);
443			bmac_mif_write(dev, 0, 0x1200);
444		} else
445			bmac_mif_write(dev, 0, 0x1000);
446	}
447}
448
449static void bmac_init_chip(struct net_device *dev)
450{
451	bmac_init_phy(dev);
452	bmac_init_registers(dev);
453}
454
455#ifdef CONFIG_PM
456static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
457{
458	struct net_device* dev = macio_get_drvdata(mdev);
459	struct bmac_data *bp = netdev_priv(dev);
460	unsigned long flags;
461	unsigned short config;
462	int i;
463
464	netif_device_detach(dev);
465	/* prolly should wait for dma to finish & turn off the chip */
466	spin_lock_irqsave(&bp->lock, flags);
467	if (bp->timeout_active) {
468		del_timer(&bp->tx_timeout);
469		bp->timeout_active = 0;
470	}
471	disable_irq(dev->irq);
472	disable_irq(bp->tx_dma_intr);
473	disable_irq(bp->rx_dma_intr);
474	bp->sleeping = 1;
475	spin_unlock_irqrestore(&bp->lock, flags);
476	if (bp->opened) {
477		volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
478		volatile struct dbdma_regs __iomem *td = bp->tx_dma;
479
480		config = bmread(dev, RXCFG);
481		bmwrite(dev, RXCFG, (config & ~RxMACEnable));
482		config = bmread(dev, TXCFG);
483       		bmwrite(dev, TXCFG, (config & ~TxMACEnable));
484		bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
485       		/* disable rx and tx dma */
486       		st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
487       		st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
488       		/* free some skb's */
489       		for (i=0; i<N_RX_RING; i++) {
490       			if (bp->rx_bufs[i] != NULL) {
491       				dev_kfree_skb(bp->rx_bufs[i]);
492       				bp->rx_bufs[i] = NULL;
493       			}
494       		}
495       		for (i = 0; i<N_TX_RING; i++) {
496			if (bp->tx_bufs[i] != NULL) {
497		       		dev_kfree_skb(bp->tx_bufs[i]);
498	       			bp->tx_bufs[i] = NULL;
499		       	}
500		}
501	}
502       	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
503	return 0;
504}
505
506static int bmac_resume(struct macio_dev *mdev)
507{
508	struct net_device* dev = macio_get_drvdata(mdev);
509	struct bmac_data *bp = netdev_priv(dev);
510
511	/* see if this is enough */
512	if (bp->opened)
513		bmac_reset_and_enable(dev);
514
515	enable_irq(dev->irq);
516       	enable_irq(bp->tx_dma_intr);
517       	enable_irq(bp->rx_dma_intr);
518       	netif_device_attach(dev);
519
520	return 0;
521}
522#endif /* CONFIG_PM */
523
524static int bmac_set_address(struct net_device *dev, void *addr)
525{
526	struct bmac_data *bp = netdev_priv(dev);
527	unsigned char *p = addr;
528	unsigned short *pWord16;
529	unsigned long flags;
530	int i;
531
532	XXDEBUG(("bmac: enter set_address\n"));
533	spin_lock_irqsave(&bp->lock, flags);
534
535	for (i = 0; i < 6; ++i) {
536		dev->dev_addr[i] = p[i];
537	}
538	/* load up the hardware address */
539	pWord16  = (unsigned short *)dev->dev_addr;
540	bmwrite(dev, MADD0, *pWord16++);
541	bmwrite(dev, MADD1, *pWord16++);
542	bmwrite(dev, MADD2, *pWord16);
543
544	spin_unlock_irqrestore(&bp->lock, flags);
545	XXDEBUG(("bmac: exit set_address\n"));
546	return 0;
547}
548
549static inline void bmac_set_timeout(struct net_device *dev)
550{
551	struct bmac_data *bp = netdev_priv(dev);
552	unsigned long flags;
553
554	spin_lock_irqsave(&bp->lock, flags);
555	if (bp->timeout_active)
556		del_timer(&bp->tx_timeout);
557	bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
558	bp->tx_timeout.function = bmac_tx_timeout;
559	bp->tx_timeout.data = (unsigned long) dev;
560	add_timer(&bp->tx_timeout);
561	bp->timeout_active = 1;
562	spin_unlock_irqrestore(&bp->lock, flags);
563}
564
565static void
566bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
567{
568	void *vaddr;
569	unsigned long baddr;
570	unsigned long len;
571
572	len = skb->len;
573	vaddr = skb->data;
574	baddr = virt_to_bus(vaddr);
575
576	dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
577}
578
579static void
580bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
581{
582	unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
583
584	dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
585		     virt_to_bus(addr), 0);
586}
587
588static void
589bmac_init_tx_ring(struct bmac_data *bp)
590{
591	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
592
593	memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
594
595	bp->tx_empty = 0;
596	bp->tx_fill = 0;
597	bp->tx_fullup = 0;
598
599	/* put a branch at the end of the tx command list */
600	dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
601		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
602
603	/* reset tx dma */
604	dbdma_reset(td);
605	out_le32(&td->wait_sel, 0x00200020);
606	out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
607}
608
609static int
610bmac_init_rx_ring(struct net_device *dev)
611{
612	struct bmac_data *bp = netdev_priv(dev);
613	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
614	int i;
615	struct sk_buff *skb;
616
617	/* initialize list of sk_buffs for receiving and set up recv dma */
618	memset((char *)bp->rx_cmds, 0,
619	       (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
620	for (i = 0; i < N_RX_RING; i++) {
621		if ((skb = bp->rx_bufs[i]) == NULL) {
622			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
623			if (skb != NULL)
624				skb_reserve(skb, 2);
625		}
626		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
627	}
628
629	bp->rx_empty = 0;
630	bp->rx_fill = i;
631
632	/* Put a branch back to the beginning of the receive command list */
633	dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
634		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
635
636	/* start rx dma */
637	dbdma_reset(rd);
638	out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
639
640	return 1;
641}
642
643
644static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
645{
646	struct bmac_data *bp = netdev_priv(dev);
647	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
648	int i;
649
650	/* see if there's a free slot in the tx ring */
651	/* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
652	/* 	     bp->tx_empty, bp->tx_fill)); */
653	i = bp->tx_fill + 1;
654	if (i >= N_TX_RING)
655		i = 0;
656	if (i == bp->tx_empty) {
657		netif_stop_queue(dev);
658		bp->tx_fullup = 1;
659		XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
660		return -1;		/* can't take it at the moment */
661	}
662
663	dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
664
665	bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
666
667	bp->tx_bufs[bp->tx_fill] = skb;
668	bp->tx_fill = i;
669
670	dev->stats.tx_bytes += skb->len;
671
672	dbdma_continue(td);
673
674	return 0;
675}
676
677static int rxintcount;
678
679static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
680{
681	struct net_device *dev = (struct net_device *) dev_id;
682	struct bmac_data *bp = netdev_priv(dev);
683	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
684	volatile struct dbdma_cmd *cp;
685	int i, nb, stat;
686	struct sk_buff *skb;
687	unsigned int residual;
688	int last;
689	unsigned long flags;
690
691	spin_lock_irqsave(&bp->lock, flags);
692
693	if (++rxintcount < 10) {
694		XXDEBUG(("bmac_rxdma_intr\n"));
695	}
696
697	last = -1;
698	i = bp->rx_empty;
699
700	while (1) {
701		cp = &bp->rx_cmds[i];
702		stat = ld_le16(&cp->xfer_status);
703		residual = ld_le16(&cp->res_count);
704		if ((stat & ACTIVE) == 0)
705			break;
706		nb = RX_BUFLEN - residual - 2;
707		if (nb < (ETHERMINPACKET - ETHERCRC)) {
708			skb = NULL;
709			dev->stats.rx_length_errors++;
710			dev->stats.rx_errors++;
711		} else {
712			skb = bp->rx_bufs[i];
713			bp->rx_bufs[i] = NULL;
714		}
715		if (skb != NULL) {
716			nb -= ETHERCRC;
717			skb_put(skb, nb);
718			skb->protocol = eth_type_trans(skb, dev);
719			netif_rx(skb);
720			++dev->stats.rx_packets;
721			dev->stats.rx_bytes += nb;
722		} else {
723			++dev->stats.rx_dropped;
724		}
725		if ((skb = bp->rx_bufs[i]) == NULL) {
726			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
727			if (skb != NULL)
728				skb_reserve(bp->rx_bufs[i], 2);
729		}
730		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
731		st_le16(&cp->res_count, 0);
732		st_le16(&cp->xfer_status, 0);
733		last = i;
734		if (++i >= N_RX_RING) i = 0;
735	}
736
737	if (last != -1) {
738		bp->rx_fill = last;
739		bp->rx_empty = i;
740	}
741
742	dbdma_continue(rd);
743	spin_unlock_irqrestore(&bp->lock, flags);
744
745	if (rxintcount < 10) {
746		XXDEBUG(("bmac_rxdma_intr done\n"));
747	}
748	return IRQ_HANDLED;
749}
750
751static int txintcount;
752
753static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
754{
755	struct net_device *dev = (struct net_device *) dev_id;
756	struct bmac_data *bp = netdev_priv(dev);
757	volatile struct dbdma_cmd *cp;
758	int stat;
759	unsigned long flags;
760
761	spin_lock_irqsave(&bp->lock, flags);
762
763	if (txintcount++ < 10) {
764		XXDEBUG(("bmac_txdma_intr\n"));
765	}
766
767	/*     del_timer(&bp->tx_timeout); */
768	/*     bp->timeout_active = 0; */
769
770	while (1) {
771		cp = &bp->tx_cmds[bp->tx_empty];
772		stat = ld_le16(&cp->xfer_status);
773		if (txintcount < 10) {
774			XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
775		}
776		if (!(stat & ACTIVE)) {
777			/*
778			 * status field might not have been filled by DBDMA
779			 */
780			if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
781				break;
782		}
783
784		if (bp->tx_bufs[bp->tx_empty]) {
785			++dev->stats.tx_packets;
786			dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
787		}
788		bp->tx_bufs[bp->tx_empty] = NULL;
789		bp->tx_fullup = 0;
790		netif_wake_queue(dev);
791		if (++bp->tx_empty >= N_TX_RING)
792			bp->tx_empty = 0;
793		if (bp->tx_empty == bp->tx_fill)
794			break;
795	}
796
797	spin_unlock_irqrestore(&bp->lock, flags);
798
799	if (txintcount < 10) {
800		XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
801	}
802
803	bmac_start(dev);
804	return IRQ_HANDLED;
805}
806
807#ifndef SUNHME_MULTICAST
808/* Real fast bit-reversal algorithm, 6-bit values */
809static int reverse6[64] = {
810	0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
811	0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
812	0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
813	0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
814	0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
815	0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
816	0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
817	0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
818};
819
820static unsigned int
821crc416(unsigned int curval, unsigned short nxtval)
822{
823	register unsigned int counter, cur = curval, next = nxtval;
824	register int high_crc_set, low_data_set;
825
826	/* Swap bytes */
827	next = ((next & 0x00FF) << 8) | (next >> 8);
828
829	/* Compute bit-by-bit */
830	for (counter = 0; counter < 16; ++counter) {
831		/* is high CRC bit set? */
832		if ((cur & 0x80000000) == 0) high_crc_set = 0;
833		else high_crc_set = 1;
834
835		cur = cur << 1;
836
837		if ((next & 0x0001) == 0) low_data_set = 0;
838		else low_data_set = 1;
839
840		next = next >> 1;
841
842		/* do the XOR */
843		if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
844	}
845	return cur;
846}
847
848static unsigned int
849bmac_crc(unsigned short *address)
850{
851	unsigned int newcrc;
852
853	XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
854	newcrc = crc416(0xffffffff, *address);	/* address bits 47 - 32 */
855	newcrc = crc416(newcrc, address[1]);	/* address bits 31 - 16 */
856	newcrc = crc416(newcrc, address[2]);	/* address bits 15 - 0  */
857
858	return(newcrc);
859}
860
861/*
862 * Add requested mcast addr to BMac's hash table filter.
863 *
864 */
865
866static void
867bmac_addhash(struct bmac_data *bp, unsigned char *addr)
868{
869	unsigned int	 crc;
870	unsigned short	 mask;
871
872	if (!(*addr)) return;
873	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
874	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
875	if (bp->hash_use_count[crc]++) return; /* This bit is already set */
876	mask = crc % 16;
877	mask = (unsigned char)1 << mask;
878	bp->hash_use_count[crc/16] |= mask;
879}
880
881static void
882bmac_removehash(struct bmac_data *bp, unsigned char *addr)
883{
884	unsigned int crc;
885	unsigned char mask;
886
887	/* Now, delete the address from the filter copy, as indicated */
888	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
889	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
890	if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
891	if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
892	mask = crc % 16;
893	mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
894	bp->hash_table_mask[crc/16] &= mask;
895}
896
897/*
898 * Sync the adapter with the software copy of the multicast mask
899 *  (logical address filter).
900 */
901
902static void
903bmac_rx_off(struct net_device *dev)
904{
905	unsigned short rx_cfg;
906
907	rx_cfg = bmread(dev, RXCFG);
908	rx_cfg &= ~RxMACEnable;
909	bmwrite(dev, RXCFG, rx_cfg);
910	do {
911		rx_cfg = bmread(dev, RXCFG);
912	}  while (rx_cfg & RxMACEnable);
913}
914
915unsigned short
916bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
917{
918	unsigned short rx_cfg;
919
920	rx_cfg = bmread(dev, RXCFG);
921	rx_cfg |= RxMACEnable;
922	if (hash_enable) rx_cfg |= RxHashFilterEnable;
923	else rx_cfg &= ~RxHashFilterEnable;
924	if (promisc_enable) rx_cfg |= RxPromiscEnable;
925	else rx_cfg &= ~RxPromiscEnable;
926	bmwrite(dev, RXRST, RxResetValue);
927	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
928	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
929	bmwrite(dev, RXCFG, rx_cfg );
930	return rx_cfg;
931}
932
933static void
934bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
935{
936	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
937	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
938	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
939	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
940}
941
942#if 0
943static void
944bmac_add_multi(struct net_device *dev,
945	       struct bmac_data *bp, unsigned char *addr)
946{
947	/* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
948	bmac_addhash(bp, addr);
949	bmac_rx_off(dev);
950	bmac_update_hash_table_mask(dev, bp);
951	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
952	/* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
953}
954
955static void
956bmac_remove_multi(struct net_device *dev,
957		  struct bmac_data *bp, unsigned char *addr)
958{
959	bmac_removehash(bp, addr);
960	bmac_rx_off(dev);
961	bmac_update_hash_table_mask(dev, bp);
962	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
963}
964#endif
965
966/* Set or clear the multicast filter for this adaptor.
967    num_addrs == -1	Promiscuous mode, receive all packets
968    num_addrs == 0	Normal mode, clear multicast list
969    num_addrs > 0	Multicast mode, receive normal and MC packets, and do
970			best-effort filtering.
971 */
972static void bmac_set_multicast(struct net_device *dev)
973{
974	struct netdev_hw_addr *ha;
975	struct bmac_data *bp = netdev_priv(dev);
976	int num_addrs = netdev_mc_count(dev);
977	unsigned short rx_cfg;
978	int i;
979
980	if (bp->sleeping)
981		return;
982
983	XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
984
985	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
986		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
987		bmac_update_hash_table_mask(dev, bp);
988		rx_cfg = bmac_rx_on(dev, 1, 0);
989		XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
990	} else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
991		rx_cfg = bmread(dev, RXCFG);
992		rx_cfg |= RxPromiscEnable;
993		bmwrite(dev, RXCFG, rx_cfg);
994		rx_cfg = bmac_rx_on(dev, 0, 1);
995		XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
996	} else {
997		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
998		for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
999		if (num_addrs == 0) {
1000			rx_cfg = bmac_rx_on(dev, 0, 0);
1001			XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1002		} else {
1003			netdev_for_each_mc_addr(ha, dev)
1004				bmac_addhash(bp, ha->addr);
1005			bmac_update_hash_table_mask(dev, bp);
1006			rx_cfg = bmac_rx_on(dev, 1, 0);
1007			XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1008		}
1009	}
1010	/* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1011}
1012#else /* ifdef SUNHME_MULTICAST */
1013
1014/* The version of set_multicast below was lifted from sunhme.c */
1015
1016static void bmac_set_multicast(struct net_device *dev)
1017{
1018	struct netdev_hw_addr *ha;
1019	unsigned short rx_cfg;
1020	u32 crc;
1021
1022	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1023		bmwrite(dev, BHASH0, 0xffff);
1024		bmwrite(dev, BHASH1, 0xffff);
1025		bmwrite(dev, BHASH2, 0xffff);
1026		bmwrite(dev, BHASH3, 0xffff);
1027	} else if(dev->flags & IFF_PROMISC) {
1028		rx_cfg = bmread(dev, RXCFG);
1029		rx_cfg |= RxPromiscEnable;
1030		bmwrite(dev, RXCFG, rx_cfg);
1031	} else {
1032		u16 hash_table[4] = { 0 };
1033
1034		rx_cfg = bmread(dev, RXCFG);
1035		rx_cfg &= ~RxPromiscEnable;
1036		bmwrite(dev, RXCFG, rx_cfg);
1037
1038		netdev_for_each_mc_addr(ha, dev) {
1039			crc = ether_crc_le(6, ha->addr);
1040			crc >>= 26;
1041			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1042		}
1043		bmwrite(dev, BHASH0, hash_table[0]);
1044		bmwrite(dev, BHASH1, hash_table[1]);
1045		bmwrite(dev, BHASH2, hash_table[2]);
1046		bmwrite(dev, BHASH3, hash_table[3]);
1047	}
1048}
1049#endif /* SUNHME_MULTICAST */
1050
1051static int miscintcount;
1052
1053static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1054{
1055	struct net_device *dev = (struct net_device *) dev_id;
1056	unsigned int status = bmread(dev, STATUS);
1057	if (miscintcount++ < 10) {
1058		XXDEBUG(("bmac_misc_intr\n"));
1059	}
1060	/* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1061	/*     bmac_txdma_intr_inner(irq, dev_id); */
1062	/*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1063	if (status & RxErrorMask) dev->stats.rx_errors++;
1064	if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1065	if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1066	if (status & RxOverFlow) dev->stats.rx_over_errors++;
1067	if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1068
1069	/*   if (status & FrameSent) dev->stats.tx_dropped++; */
1070	if (status & TxErrorMask) dev->stats.tx_errors++;
1071	if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1072	if (status & TxNormalCollExp) dev->stats.collisions++;
1073	return IRQ_HANDLED;
1074}
1075
1076/*
1077 * Procedure for reading EEPROM
1078 */
1079#define SROMAddressLength	5
1080#define DataInOn		0x0008
1081#define DataInOff		0x0000
1082#define Clk			0x0002
1083#define ChipSelect		0x0001
1084#define SDIShiftCount		3
1085#define SD0ShiftCount		2
1086#define	DelayValue		1000	/* number of microseconds */
1087#define SROMStartOffset		10	/* this is in words */
1088#define SROMReadCount		3	/* number of words to read from SROM */
1089#define SROMAddressBits		6
1090#define EnetAddressOffset	20
1091
1092static unsigned char
1093bmac_clock_out_bit(struct net_device *dev)
1094{
1095	unsigned short         data;
1096	unsigned short         val;
1097
1098	bmwrite(dev, SROMCSR, ChipSelect | Clk);
1099	udelay(DelayValue);
1100
1101	data = bmread(dev, SROMCSR);
1102	udelay(DelayValue);
1103	val = (data >> SD0ShiftCount) & 1;
1104
1105	bmwrite(dev, SROMCSR, ChipSelect);
1106	udelay(DelayValue);
1107
1108	return val;
1109}
1110
1111static void
1112bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1113{
1114	unsigned short data;
1115
1116	if (val != 0 && val != 1) return;
1117
1118	data = (val << SDIShiftCount);
1119	bmwrite(dev, SROMCSR, data | ChipSelect  );
1120	udelay(DelayValue);
1121
1122	bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1123	udelay(DelayValue);
1124
1125	bmwrite(dev, SROMCSR, data | ChipSelect);
1126	udelay(DelayValue);
1127}
1128
1129static void
1130reset_and_select_srom(struct net_device *dev)
1131{
1132	/* first reset */
1133	bmwrite(dev, SROMCSR, 0);
1134	udelay(DelayValue);
1135
1136	/* send it the read command (110) */
1137	bmac_clock_in_bit(dev, 1);
1138	bmac_clock_in_bit(dev, 1);
1139	bmac_clock_in_bit(dev, 0);
1140}
1141
1142static unsigned short
1143read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1144{
1145	unsigned short data, val;
1146	int i;
1147
1148	/* send out the address we want to read from */
1149	for (i = 0; i < addr_len; i++)	{
1150		val = addr >> (addr_len-i-1);
1151		bmac_clock_in_bit(dev, val & 1);
1152	}
1153
1154	/* Now read in the 16-bit data */
1155	data = 0;
1156	for (i = 0; i < 16; i++)	{
1157		val = bmac_clock_out_bit(dev);
1158		data <<= 1;
1159		data |= val;
1160	}
1161	bmwrite(dev, SROMCSR, 0);
1162
1163	return data;
1164}
1165
1166/*
1167 * It looks like Cogent and SMC use different methods for calculating
1168 * checksums. What a pain..
1169 */
1170
1171static int
1172bmac_verify_checksum(struct net_device *dev)
1173{
1174	unsigned short data, storedCS;
1175
1176	reset_and_select_srom(dev);
1177	data = read_srom(dev, 3, SROMAddressBits);
1178	storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1179
1180	return 0;
1181}
1182
1183
1184static void
1185bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1186{
1187	int i;
1188	unsigned short data;
1189
1190	for (i = 0; i < 6; i++)
1191		{
1192			reset_and_select_srom(dev);
1193			data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1194			ea[2*i]   = bitrev8(data & 0x0ff);
1195			ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1196		}
1197}
1198
1199static void bmac_reset_and_enable(struct net_device *dev)
1200{
1201	struct bmac_data *bp = netdev_priv(dev);
1202	unsigned long flags;
1203	struct sk_buff *skb;
1204	unsigned char *data;
1205
1206	spin_lock_irqsave(&bp->lock, flags);
1207	bmac_enable_and_reset_chip(dev);
1208	bmac_init_tx_ring(bp);
1209	bmac_init_rx_ring(dev);
1210	bmac_init_chip(dev);
1211	bmac_start_chip(dev);
1212	bmwrite(dev, INTDISABLE, EnableNormal);
1213	bp->sleeping = 0;
1214
1215	/*
1216	 * It seems that the bmac can't receive until it's transmitted
1217	 * a packet.  So we give it a dummy packet to transmit.
1218	 */
1219	skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1220	if (skb != NULL) {
1221		data = skb_put(skb, ETHERMINPACKET);
1222		memset(data, 0, ETHERMINPACKET);
1223		memcpy(data, dev->dev_addr, ETH_ALEN);
1224		memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1225		bmac_transmit_packet(skb, dev);
1226	}
1227	spin_unlock_irqrestore(&bp->lock, flags);
1228}
1229
1230static const struct ethtool_ops bmac_ethtool_ops = {
1231	.get_link		= ethtool_op_get_link,
1232};
1233
1234static const struct net_device_ops bmac_netdev_ops = {
1235	.ndo_open		= bmac_open,
1236	.ndo_stop		= bmac_close,
1237	.ndo_start_xmit		= bmac_output,
1238	.ndo_set_rx_mode	= bmac_set_multicast,
1239	.ndo_set_mac_address	= bmac_set_address,
1240	.ndo_change_mtu		= eth_change_mtu,
1241	.ndo_validate_addr	= eth_validate_addr,
1242};
1243
1244static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1245{
1246	int j, rev, ret;
1247	struct bmac_data *bp;
1248	const unsigned char *prop_addr;
1249	unsigned char addr[6];
1250	struct net_device *dev;
1251	int is_bmac_plus = ((int)match->data) != 0;
1252
1253	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1254		printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1255		return -ENODEV;
1256	}
1257	prop_addr = of_get_property(macio_get_of_node(mdev),
1258			"mac-address", NULL);
1259	if (prop_addr == NULL) {
1260		prop_addr = of_get_property(macio_get_of_node(mdev),
1261				"local-mac-address", NULL);
1262		if (prop_addr == NULL) {
1263			printk(KERN_ERR "BMAC: Can't get mac-address\n");
1264			return -ENODEV;
1265		}
1266	}
1267	memcpy(addr, prop_addr, sizeof(addr));
1268
1269	dev = alloc_etherdev(PRIV_BYTES);
1270	if (!dev)
1271		return -ENOMEM;
1272
1273	bp = netdev_priv(dev);
1274	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1275	macio_set_drvdata(mdev, dev);
1276
1277	bp->mdev = mdev;
1278	spin_lock_init(&bp->lock);
1279
1280	if (macio_request_resources(mdev, "bmac")) {
1281		printk(KERN_ERR "BMAC: can't request IO resource !\n");
1282		goto out_free;
1283	}
1284
1285	dev->base_addr = (unsigned long)
1286		ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1287	if (dev->base_addr == 0)
1288		goto out_release;
1289
1290	dev->irq = macio_irq(mdev, 0);
1291
1292	bmac_enable_and_reset_chip(dev);
1293	bmwrite(dev, INTDISABLE, DisableAll);
1294
1295	rev = addr[0] == 0 && addr[1] == 0xA0;
1296	for (j = 0; j < 6; ++j)
1297		dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1298
1299	/* Enable chip without interrupts for now */
1300	bmac_enable_and_reset_chip(dev);
1301	bmwrite(dev, INTDISABLE, DisableAll);
1302
1303	dev->netdev_ops = &bmac_netdev_ops;
1304	dev->ethtool_ops = &bmac_ethtool_ops;
1305
1306	bmac_get_station_address(dev, addr);
1307	if (bmac_verify_checksum(dev) != 0)
1308		goto err_out_iounmap;
1309
1310	bp->is_bmac_plus = is_bmac_plus;
1311	bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1312	if (!bp->tx_dma)
1313		goto err_out_iounmap;
1314	bp->tx_dma_intr = macio_irq(mdev, 1);
1315	bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1316	if (!bp->rx_dma)
1317		goto err_out_iounmap_tx;
1318	bp->rx_dma_intr = macio_irq(mdev, 2);
1319
1320	bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1321	bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1322
1323	bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1324	skb_queue_head_init(bp->queue);
1325
1326	init_timer(&bp->tx_timeout);
1327
1328	ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1329	if (ret) {
1330		printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1331		goto err_out_iounmap_rx;
1332	}
1333	ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1334	if (ret) {
1335		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1336		goto err_out_irq0;
1337	}
1338	ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1339	if (ret) {
1340		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1341		goto err_out_irq1;
1342	}
1343
1344	/* Mask chip interrupts and disable chip, will be
1345	 * re-enabled on open()
1346	 */
1347	disable_irq(dev->irq);
1348	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1349
1350	if (register_netdev(dev) != 0) {
1351		printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1352		goto err_out_irq2;
1353	}
1354
1355	printk(KERN_INFO "%s: BMAC%s at %pM",
1356	       dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1357	XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1358	printk("\n");
1359
1360	return 0;
1361
1362err_out_irq2:
1363	free_irq(bp->rx_dma_intr, dev);
1364err_out_irq1:
1365	free_irq(bp->tx_dma_intr, dev);
1366err_out_irq0:
1367	free_irq(dev->irq, dev);
1368err_out_iounmap_rx:
1369	iounmap(bp->rx_dma);
1370err_out_iounmap_tx:
1371	iounmap(bp->tx_dma);
1372err_out_iounmap:
1373	iounmap((void __iomem *)dev->base_addr);
1374out_release:
1375	macio_release_resources(mdev);
1376out_free:
1377	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1378	free_netdev(dev);
1379
1380	return -ENODEV;
1381}
1382
1383static int bmac_open(struct net_device *dev)
1384{
1385	struct bmac_data *bp = netdev_priv(dev);
1386	/* XXDEBUG(("bmac: enter open\n")); */
1387	/* reset the chip */
1388	bp->opened = 1;
1389	bmac_reset_and_enable(dev);
1390	enable_irq(dev->irq);
1391	return 0;
1392}
1393
1394static int bmac_close(struct net_device *dev)
1395{
1396	struct bmac_data *bp = netdev_priv(dev);
1397	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1398	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1399	unsigned short config;
1400	int i;
1401
1402	bp->sleeping = 1;
1403
1404	/* disable rx and tx */
1405	config = bmread(dev, RXCFG);
1406	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1407
1408	config = bmread(dev, TXCFG);
1409	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1410
1411	bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1412
1413	/* disable rx and tx dma */
1414	st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1415	st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1416
1417	/* free some skb's */
1418	XXDEBUG(("bmac: free rx bufs\n"));
1419	for (i=0; i<N_RX_RING; i++) {
1420		if (bp->rx_bufs[i] != NULL) {
1421			dev_kfree_skb(bp->rx_bufs[i]);
1422			bp->rx_bufs[i] = NULL;
1423		}
1424	}
1425	XXDEBUG(("bmac: free tx bufs\n"));
1426	for (i = 0; i<N_TX_RING; i++) {
1427		if (bp->tx_bufs[i] != NULL) {
1428			dev_kfree_skb(bp->tx_bufs[i]);
1429			bp->tx_bufs[i] = NULL;
1430		}
1431	}
1432	XXDEBUG(("bmac: all bufs freed\n"));
1433
1434	bp->opened = 0;
1435	disable_irq(dev->irq);
1436	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1437
1438	return 0;
1439}
1440
1441static void
1442bmac_start(struct net_device *dev)
1443{
1444	struct bmac_data *bp = netdev_priv(dev);
1445	int i;
1446	struct sk_buff *skb;
1447	unsigned long flags;
1448
1449	if (bp->sleeping)
1450		return;
1451
1452	spin_lock_irqsave(&bp->lock, flags);
1453	while (1) {
1454		i = bp->tx_fill + 1;
1455		if (i >= N_TX_RING)
1456			i = 0;
1457		if (i == bp->tx_empty)
1458			break;
1459		skb = skb_dequeue(bp->queue);
1460		if (skb == NULL)
1461			break;
1462		bmac_transmit_packet(skb, dev);
1463	}
1464	spin_unlock_irqrestore(&bp->lock, flags);
1465}
1466
1467static int
1468bmac_output(struct sk_buff *skb, struct net_device *dev)
1469{
1470	struct bmac_data *bp = netdev_priv(dev);
1471	skb_queue_tail(bp->queue, skb);
1472	bmac_start(dev);
1473	return NETDEV_TX_OK;
1474}
1475
1476static void bmac_tx_timeout(unsigned long data)
1477{
1478	struct net_device *dev = (struct net_device *) data;
1479	struct bmac_data *bp = netdev_priv(dev);
1480	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1481	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1482	volatile struct dbdma_cmd *cp;
1483	unsigned long flags;
1484	unsigned short config, oldConfig;
1485	int i;
1486
1487	XXDEBUG(("bmac: tx_timeout called\n"));
1488	spin_lock_irqsave(&bp->lock, flags);
1489	bp->timeout_active = 0;
1490
1491	/* update various counters */
1492/*     	bmac_handle_misc_intrs(bp, 0); */
1493
1494	cp = &bp->tx_cmds[bp->tx_empty];
1495/*	XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1496/* 	   ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
1497/* 	   mb->pr, mb->xmtfs, mb->fifofc)); */
1498
1499	/* turn off both tx and rx and reset the chip */
1500	config = bmread(dev, RXCFG);
1501	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1502	config = bmread(dev, TXCFG);
1503	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1504	out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1505	printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1506	bmac_enable_and_reset_chip(dev);
1507
1508	/* restart rx dma */
1509	cp = bus_to_virt(ld_le32(&rd->cmdptr));
1510	out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1511	out_le16(&cp->xfer_status, 0);
1512	out_le32(&rd->cmdptr, virt_to_bus(cp));
1513	out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1514
1515	/* fix up the transmit side */
1516	XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1517		 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1518	i = bp->tx_empty;
1519	++dev->stats.tx_errors;
1520	if (i != bp->tx_fill) {
1521		dev_kfree_skb(bp->tx_bufs[i]);
1522		bp->tx_bufs[i] = NULL;
1523		if (++i >= N_TX_RING) i = 0;
1524		bp->tx_empty = i;
1525	}
1526	bp->tx_fullup = 0;
1527	netif_wake_queue(dev);
1528	if (i != bp->tx_fill) {
1529		cp = &bp->tx_cmds[i];
1530		out_le16(&cp->xfer_status, 0);
1531		out_le16(&cp->command, OUTPUT_LAST);
1532		out_le32(&td->cmdptr, virt_to_bus(cp));
1533		out_le32(&td->control, DBDMA_SET(RUN));
1534		/* 	bmac_set_timeout(dev); */
1535		XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1536	}
1537
1538	/* turn it back on */
1539	oldConfig = bmread(dev, RXCFG);
1540	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1541	oldConfig = bmread(dev, TXCFG);
1542	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1543
1544	spin_unlock_irqrestore(&bp->lock, flags);
1545}
1546
1547#if 0
1548static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1549{
1550	int i,*ip;
1551
1552	for (i=0;i< count;i++) {
1553		ip = (int*)(cp+i);
1554
1555		printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1556		       ld_le32(ip+0),
1557		       ld_le32(ip+1),
1558		       ld_le32(ip+2),
1559		       ld_le32(ip+3));
1560	}
1561
1562}
1563#endif
1564
1565#if 0
1566static int
1567bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1568{
1569	int len = 0;
1570	off_t pos   = 0;
1571	off_t begin = 0;
1572	int i;
1573
1574	if (bmac_devs == NULL)
1575		return -ENOSYS;
1576
1577	len += sprintf(buffer, "BMAC counters & registers\n");
1578
1579	for (i = 0; i<N_REG_ENTRIES; i++) {
1580		len += sprintf(buffer + len, "%s: %#08x\n",
1581			       reg_entries[i].name,
1582			       bmread(bmac_devs, reg_entries[i].reg_offset));
1583		pos = begin + len;
1584
1585		if (pos < offset) {
1586			len = 0;
1587			begin = pos;
1588		}
1589
1590		if (pos > offset+length) break;
1591	}
1592
1593	*start = buffer + (offset - begin);
1594	len -= (offset - begin);
1595
1596	if (len > length) len = length;
1597
1598	return len;
1599}
1600#endif
1601
1602static int bmac_remove(struct macio_dev *mdev)
1603{
1604	struct net_device *dev = macio_get_drvdata(mdev);
1605	struct bmac_data *bp = netdev_priv(dev);
1606
1607	unregister_netdev(dev);
1608
1609       	free_irq(dev->irq, dev);
1610	free_irq(bp->tx_dma_intr, dev);
1611	free_irq(bp->rx_dma_intr, dev);
1612
1613	iounmap((void __iomem *)dev->base_addr);
1614	iounmap(bp->tx_dma);
1615	iounmap(bp->rx_dma);
1616
1617	macio_release_resources(mdev);
1618
1619	free_netdev(dev);
1620
1621	return 0;
1622}
1623
1624static struct of_device_id bmac_match[] =
1625{
1626	{
1627	.name 		= "bmac",
1628	.data		= (void *)0,
1629	},
1630	{
1631	.type		= "network",
1632	.compatible	= "bmac+",
1633	.data		= (void *)1,
1634	},
1635	{},
1636};
1637MODULE_DEVICE_TABLE (of, bmac_match);
1638
1639static struct macio_driver bmac_driver =
1640{
1641	.driver = {
1642		.name 		= "bmac",
1643		.owner		= THIS_MODULE,
1644		.of_match_table	= bmac_match,
1645	},
1646	.probe		= bmac_probe,
1647	.remove		= bmac_remove,
1648#ifdef CONFIG_PM
1649	.suspend	= bmac_suspend,
1650	.resume		= bmac_resume,
1651#endif
1652};
1653
1654
1655static int __init bmac_init(void)
1656{
1657	if (bmac_emergency_rxbuf == NULL) {
1658		bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1659		if (bmac_emergency_rxbuf == NULL)
1660			return -ENOMEM;
1661	}
1662
1663	return macio_register_driver(&bmac_driver);
1664}
1665
1666static void __exit bmac_exit(void)
1667{
1668	macio_unregister_driver(&bmac_driver);
1669
1670	kfree(bmac_emergency_rxbuf);
1671	bmac_emergency_rxbuf = NULL;
1672}
1673
1674MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1675MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1676MODULE_LICENSE("GPL");
1677
1678module_init(bmac_init);
1679module_exit(bmac_exit);
1680