[go: nahoru, domu]

1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7 *
8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10 *
11 * References:
12 *  o IOC3 ASIC specification 4.51, 1996-04-18
13 *  o IEEE 802.3 specification, 2000 edition
14 *  o DP38840A Specification, National Semiconductor, March 1997
15 *
16 * To do:
17 *
18 *  o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19 *  o Handle allocation failures in ioc3_init_rings().
20 *  o Use prefetching for large packets.  What is a good lower limit for
21 *    prefetching?
22 *  o We're probably allocating a bit too much memory.
23 *  o Use hardware checksums.
24 *  o Convert to using a IOC3 meta driver.
25 *  o Which PHYs might possibly be attached to the IOC3 in real live,
26 *    which workarounds are required for them?  Do we ever have Lucent's?
27 *  o For the 2.5 branch kill the mii-tool ioctls.
28 */
29
30#define IOC3_NAME	"ioc3-eth"
31#define IOC3_VERSION	"2.6.3-4"
32
33#include <linux/delay.h>
34#include <linux/kernel.h>
35#include <linux/mm.h>
36#include <linux/errno.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/crc32.h>
40#include <linux/mii.h>
41#include <linux/in.h>
42#include <linux/ip.h>
43#include <linux/tcp.h>
44#include <linux/udp.h>
45#include <linux/dma-mapping.h>
46#include <linux/gfp.h>
47
48#ifdef CONFIG_SERIAL_8250
49#include <linux/serial_core.h>
50#include <linux/serial_8250.h>
51#include <linux/serial_reg.h>
52#endif
53
54#include <linux/netdevice.h>
55#include <linux/etherdevice.h>
56#include <linux/ethtool.h>
57#include <linux/skbuff.h>
58#include <net/ip.h>
59
60#include <asm/byteorder.h>
61#include <asm/io.h>
62#include <asm/pgtable.h>
63#include <asm/uaccess.h>
64#include <asm/sn/types.h>
65#include <asm/sn/ioc3.h>
66#include <asm/pci/bridge.h>
67
68/*
69 * 64 RX buffers.  This is tunable in the range of 16 <= x < 512.  The
70 * value must be a power of two.
71 */
72#define RX_BUFFS 64
73
74#define ETCSR_FD	((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
75#define ETCSR_HD	((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
76
77/* Private per NIC data of the driver.  */
78struct ioc3_private {
79	struct ioc3 *regs;
80	unsigned long *rxr;		/* pointer to receiver ring */
81	struct ioc3_etxd *txr;
82	struct sk_buff *rx_skbs[512];
83	struct sk_buff *tx_skbs[128];
84	int rx_ci;			/* RX consumer index */
85	int rx_pi;			/* RX producer index */
86	int tx_ci;			/* TX consumer index */
87	int tx_pi;			/* TX producer index */
88	int txqlen;
89	u32 emcr, ehar_h, ehar_l;
90	spinlock_t ioc3_lock;
91	struct mii_if_info mii;
92
93	struct pci_dev *pdev;
94
95	/* Members used by autonegotiation  */
96	struct timer_list ioc3_timer;
97};
98
99static inline struct net_device *priv_netdev(struct ioc3_private *dev)
100{
101	return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
102}
103
104static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
105static void ioc3_set_multicast_list(struct net_device *dev);
106static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
107static void ioc3_timeout(struct net_device *dev);
108static inline unsigned int ioc3_hash(const unsigned char *addr);
109static inline void ioc3_stop(struct ioc3_private *ip);
110static void ioc3_init(struct net_device *dev);
111
112static const char ioc3_str[] = "IOC3 Ethernet";
113static const struct ethtool_ops ioc3_ethtool_ops;
114
115/* We use this to acquire receive skb's that we can DMA directly into. */
116
117#define IOC3_CACHELINE	128UL
118
119static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
120{
121	return (~addr + 1) & (IOC3_CACHELINE - 1UL);
122}
123
124static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
125	unsigned int gfp_mask)
126{
127	struct sk_buff *skb;
128
129	skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
130	if (likely(skb)) {
131		int offset = aligned_rx_skb_addr((unsigned long) skb->data);
132		if (offset)
133			skb_reserve(skb, offset);
134	}
135
136	return skb;
137}
138
139static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
140{
141#ifdef CONFIG_SGI_IP27
142	vdev <<= 57;   /* Shift to PCI64_ATTR_VIRTUAL */
143
144	return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
145	       ((unsigned long)ptr & TO_PHYS_MASK);
146#else
147	return virt_to_bus(ptr);
148#endif
149}
150
151/* BEWARE: The IOC3 documentation documents the size of rx buffers as
152   1644 while it's actually 1664.  This one was nasty to track down ...  */
153#define RX_OFFSET		10
154#define RX_BUF_ALLOC_SIZE	(1664 + RX_OFFSET + IOC3_CACHELINE)
155
156/* DMA barrier to separate cached and uncached accesses.  */
157#define BARRIER()							\
158	__asm__("sync" ::: "memory")
159
160
161#define IOC3_SIZE 0x100000
162
163/*
164 * IOC3 is a big endian device
165 *
166 * Unorthodox but makes the users of these macros more readable - the pointer
167 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
168 * in the environment.
169 */
170#define ioc3_r_mcr()		be32_to_cpu(ioc3->mcr)
171#define ioc3_w_mcr(v)		do { ioc3->mcr = cpu_to_be32(v); } while (0)
172#define ioc3_w_gpcr_s(v)	do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
173#define ioc3_r_emcr()		be32_to_cpu(ioc3->emcr)
174#define ioc3_w_emcr(v)		do { ioc3->emcr = cpu_to_be32(v); } while (0)
175#define ioc3_r_eisr()		be32_to_cpu(ioc3->eisr)
176#define ioc3_w_eisr(v)		do { ioc3->eisr = cpu_to_be32(v); } while (0)
177#define ioc3_r_eier()		be32_to_cpu(ioc3->eier)
178#define ioc3_w_eier(v)		do { ioc3->eier = cpu_to_be32(v); } while (0)
179#define ioc3_r_ercsr()		be32_to_cpu(ioc3->ercsr)
180#define ioc3_w_ercsr(v)		do { ioc3->ercsr = cpu_to_be32(v); } while (0)
181#define ioc3_r_erbr_h()		be32_to_cpu(ioc3->erbr_h)
182#define ioc3_w_erbr_h(v)	do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
183#define ioc3_r_erbr_l()		be32_to_cpu(ioc3->erbr_l)
184#define ioc3_w_erbr_l(v)	do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
185#define ioc3_r_erbar()		be32_to_cpu(ioc3->erbar)
186#define ioc3_w_erbar(v)		do { ioc3->erbar = cpu_to_be32(v); } while (0)
187#define ioc3_r_ercir()		be32_to_cpu(ioc3->ercir)
188#define ioc3_w_ercir(v)		do { ioc3->ercir = cpu_to_be32(v); } while (0)
189#define ioc3_r_erpir()		be32_to_cpu(ioc3->erpir)
190#define ioc3_w_erpir(v)		do { ioc3->erpir = cpu_to_be32(v); } while (0)
191#define ioc3_r_ertr()		be32_to_cpu(ioc3->ertr)
192#define ioc3_w_ertr(v)		do { ioc3->ertr = cpu_to_be32(v); } while (0)
193#define ioc3_r_etcsr()		be32_to_cpu(ioc3->etcsr)
194#define ioc3_w_etcsr(v)		do { ioc3->etcsr = cpu_to_be32(v); } while (0)
195#define ioc3_r_ersr()		be32_to_cpu(ioc3->ersr)
196#define ioc3_w_ersr(v)		do { ioc3->ersr = cpu_to_be32(v); } while (0)
197#define ioc3_r_etcdc()		be32_to_cpu(ioc3->etcdc)
198#define ioc3_w_etcdc(v)		do { ioc3->etcdc = cpu_to_be32(v); } while (0)
199#define ioc3_r_ebir()		be32_to_cpu(ioc3->ebir)
200#define ioc3_w_ebir(v)		do { ioc3->ebir = cpu_to_be32(v); } while (0)
201#define ioc3_r_etbr_h()		be32_to_cpu(ioc3->etbr_h)
202#define ioc3_w_etbr_h(v)	do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
203#define ioc3_r_etbr_l()		be32_to_cpu(ioc3->etbr_l)
204#define ioc3_w_etbr_l(v)	do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
205#define ioc3_r_etcir()		be32_to_cpu(ioc3->etcir)
206#define ioc3_w_etcir(v)		do { ioc3->etcir = cpu_to_be32(v); } while (0)
207#define ioc3_r_etpir()		be32_to_cpu(ioc3->etpir)
208#define ioc3_w_etpir(v)		do { ioc3->etpir = cpu_to_be32(v); } while (0)
209#define ioc3_r_emar_h()		be32_to_cpu(ioc3->emar_h)
210#define ioc3_w_emar_h(v)	do { ioc3->emar_h = cpu_to_be32(v); } while (0)
211#define ioc3_r_emar_l()		be32_to_cpu(ioc3->emar_l)
212#define ioc3_w_emar_l(v)	do { ioc3->emar_l = cpu_to_be32(v); } while (0)
213#define ioc3_r_ehar_h()		be32_to_cpu(ioc3->ehar_h)
214#define ioc3_w_ehar_h(v)	do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
215#define ioc3_r_ehar_l()		be32_to_cpu(ioc3->ehar_l)
216#define ioc3_w_ehar_l(v)	do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
217#define ioc3_r_micr()		be32_to_cpu(ioc3->micr)
218#define ioc3_w_micr(v)		do { ioc3->micr = cpu_to_be32(v); } while (0)
219#define ioc3_r_midr_r()		be32_to_cpu(ioc3->midr_r)
220#define ioc3_w_midr_r(v)	do { ioc3->midr_r = cpu_to_be32(v); } while (0)
221#define ioc3_r_midr_w()		be32_to_cpu(ioc3->midr_w)
222#define ioc3_w_midr_w(v)	do { ioc3->midr_w = cpu_to_be32(v); } while (0)
223
224static inline u32 mcr_pack(u32 pulse, u32 sample)
225{
226	return (pulse << 10) | (sample << 2);
227}
228
229static int nic_wait(struct ioc3 *ioc3)
230{
231	u32 mcr;
232
233        do {
234                mcr = ioc3_r_mcr();
235        } while (!(mcr & 2));
236
237        return mcr & 1;
238}
239
240static int nic_reset(struct ioc3 *ioc3)
241{
242        int presence;
243
244	ioc3_w_mcr(mcr_pack(500, 65));
245	presence = nic_wait(ioc3);
246
247	ioc3_w_mcr(mcr_pack(0, 500));
248	nic_wait(ioc3);
249
250        return presence;
251}
252
253static inline int nic_read_bit(struct ioc3 *ioc3)
254{
255	int result;
256
257	ioc3_w_mcr(mcr_pack(6, 13));
258	result = nic_wait(ioc3);
259	ioc3_w_mcr(mcr_pack(0, 100));
260	nic_wait(ioc3);
261
262	return result;
263}
264
265static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
266{
267	if (bit)
268		ioc3_w_mcr(mcr_pack(6, 110));
269	else
270		ioc3_w_mcr(mcr_pack(80, 30));
271
272	nic_wait(ioc3);
273}
274
275/*
276 * Read a byte from an iButton device
277 */
278static u32 nic_read_byte(struct ioc3 *ioc3)
279{
280	u32 result = 0;
281	int i;
282
283	for (i = 0; i < 8; i++)
284		result = (result >> 1) | (nic_read_bit(ioc3) << 7);
285
286	return result;
287}
288
289/*
290 * Write a byte to an iButton device
291 */
292static void nic_write_byte(struct ioc3 *ioc3, int byte)
293{
294	int i, bit;
295
296	for (i = 8; i; i--) {
297		bit = byte & 1;
298		byte >>= 1;
299
300		nic_write_bit(ioc3, bit);
301	}
302}
303
304static u64 nic_find(struct ioc3 *ioc3, int *last)
305{
306	int a, b, index, disc;
307	u64 address = 0;
308
309	nic_reset(ioc3);
310	/* Search ROM.  */
311	nic_write_byte(ioc3, 0xf0);
312
313	/* Algorithm from ``Book of iButton Standards''.  */
314	for (index = 0, disc = 0; index < 64; index++) {
315		a = nic_read_bit(ioc3);
316		b = nic_read_bit(ioc3);
317
318		if (a && b) {
319			printk("NIC search failed (not fatal).\n");
320			*last = 0;
321			return 0;
322		}
323
324		if (!a && !b) {
325			if (index == *last) {
326				address |= 1UL << index;
327			} else if (index > *last) {
328				address &= ~(1UL << index);
329				disc = index;
330			} else if ((address & (1UL << index)) == 0)
331				disc = index;
332			nic_write_bit(ioc3, address & (1UL << index));
333			continue;
334		} else {
335			if (a)
336				address |= 1UL << index;
337			else
338				address &= ~(1UL << index);
339			nic_write_bit(ioc3, a);
340			continue;
341		}
342	}
343
344	*last = disc;
345
346	return address;
347}
348
349static int nic_init(struct ioc3 *ioc3)
350{
351	const char *unknown = "unknown";
352	const char *type = unknown;
353	u8 crc;
354	u8 serial[6];
355	int save = 0, i;
356
357	while (1) {
358		u64 reg;
359		reg = nic_find(ioc3, &save);
360
361		switch (reg & 0xff) {
362		case 0x91:
363			type = "DS1981U";
364			break;
365		default:
366			if (save == 0) {
367				/* Let the caller try again.  */
368				return -1;
369			}
370			continue;
371		}
372
373		nic_reset(ioc3);
374
375		/* Match ROM.  */
376		nic_write_byte(ioc3, 0x55);
377		for (i = 0; i < 8; i++)
378			nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
379
380		reg >>= 8; /* Shift out type.  */
381		for (i = 0; i < 6; i++) {
382			serial[i] = reg & 0xff;
383			reg >>= 8;
384		}
385		crc = reg & 0xff;
386		break;
387	}
388
389	printk("Found %s NIC", type);
390	if (type != unknown)
391		printk (" registration number %pM, CRC %02x", serial, crc);
392	printk(".\n");
393
394	return 0;
395}
396
397/*
398 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
399 * SN0 / SN00 nodeboards and PCI cards.
400 */
401static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
402{
403	struct ioc3 *ioc3 = ip->regs;
404	u8 nic[14];
405	int tries = 2; /* There may be some problem with the battery?  */
406	int i;
407
408	ioc3_w_gpcr_s(1 << 21);
409
410	while (tries--) {
411		if (!nic_init(ioc3))
412			break;
413		udelay(500);
414	}
415
416	if (tries < 0) {
417		printk("Failed to read MAC address\n");
418		return;
419	}
420
421	/* Read Memory.  */
422	nic_write_byte(ioc3, 0xf0);
423	nic_write_byte(ioc3, 0x00);
424	nic_write_byte(ioc3, 0x00);
425
426	for (i = 13; i >= 0; i--)
427		nic[i] = nic_read_byte(ioc3);
428
429	for (i = 2; i < 8; i++)
430		priv_netdev(ip)->dev_addr[i - 2] = nic[i];
431}
432
433/*
434 * Ok, this is hosed by design.  It's necessary to know what machine the
435 * NIC is in in order to know how to read the NIC address.  We also have
436 * to know if it's a PCI card or a NIC in on the node board ...
437 */
438static void ioc3_get_eaddr(struct ioc3_private *ip)
439{
440	ioc3_get_eaddr_nic(ip);
441
442	printk("Ethernet address is %pM.\n", priv_netdev(ip)->dev_addr);
443}
444
445static void __ioc3_set_mac_address(struct net_device *dev)
446{
447	struct ioc3_private *ip = netdev_priv(dev);
448	struct ioc3 *ioc3 = ip->regs;
449
450	ioc3_w_emar_h((dev->dev_addr[5] <<  8) | dev->dev_addr[4]);
451	ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
452	              (dev->dev_addr[1] <<  8) | dev->dev_addr[0]);
453}
454
455static int ioc3_set_mac_address(struct net_device *dev, void *addr)
456{
457	struct ioc3_private *ip = netdev_priv(dev);
458	struct sockaddr *sa = addr;
459
460	memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
461
462	spin_lock_irq(&ip->ioc3_lock);
463	__ioc3_set_mac_address(dev);
464	spin_unlock_irq(&ip->ioc3_lock);
465
466	return 0;
467}
468
469/*
470 * Caller must hold the ioc3_lock ever for MII readers.  This is also
471 * used to protect the transmitter side but it's low contention.
472 */
473static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
474{
475	struct ioc3_private *ip = netdev_priv(dev);
476	struct ioc3 *ioc3 = ip->regs;
477
478	while (ioc3_r_micr() & MICR_BUSY);
479	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
480	while (ioc3_r_micr() & MICR_BUSY);
481
482	return ioc3_r_midr_r() & MIDR_DATA_MASK;
483}
484
485static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
486{
487	struct ioc3_private *ip = netdev_priv(dev);
488	struct ioc3 *ioc3 = ip->regs;
489
490	while (ioc3_r_micr() & MICR_BUSY);
491	ioc3_w_midr_w(data);
492	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
493	while (ioc3_r_micr() & MICR_BUSY);
494}
495
496static int ioc3_mii_init(struct ioc3_private *ip);
497
498static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
499{
500	struct ioc3_private *ip = netdev_priv(dev);
501	struct ioc3 *ioc3 = ip->regs;
502
503	dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
504	return &dev->stats;
505}
506
507static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
508{
509	struct ethhdr *eh = eth_hdr(skb);
510	uint32_t csum, ehsum;
511	unsigned int proto;
512	struct iphdr *ih;
513	uint16_t *ew;
514	unsigned char *cp;
515
516	/*
517	 * Did hardware handle the checksum at all?  The cases we can handle
518	 * are:
519	 *
520	 * - TCP and UDP checksums of IPv4 only.
521	 * - IPv6 would be doable but we keep that for later ...
522	 * - Only unfragmented packets.  Did somebody already tell you
523	 *   fragmentation is evil?
524	 * - don't care about packet size.  Worst case when processing a
525	 *   malformed packet we'll try to access the packet at ip header +
526	 *   64 bytes which is still inside the skb.  Even in the unlikely
527	 *   case where the checksum is right the higher layers will still
528	 *   drop the packet as appropriate.
529	 */
530	if (eh->h_proto != htons(ETH_P_IP))
531		return;
532
533	ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
534	if (ip_is_fragment(ih))
535		return;
536
537	proto = ih->protocol;
538	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
539		return;
540
541	/* Same as tx - compute csum of pseudo header  */
542	csum = hwsum +
543	       (ih->tot_len - (ih->ihl << 2)) +
544	       htons((uint16_t)ih->protocol) +
545	       (ih->saddr >> 16) + (ih->saddr & 0xffff) +
546	       (ih->daddr >> 16) + (ih->daddr & 0xffff);
547
548	/* Sum up ethernet dest addr, src addr and protocol  */
549	ew = (uint16_t *) eh;
550	ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
551
552	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
553	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
554
555	csum += 0xffff ^ ehsum;
556
557	/* In the next step we also subtract the 1's complement
558	   checksum of the trailing ethernet CRC.  */
559	cp = (char *)eh + len;	/* points at trailing CRC */
560	if (len & 1) {
561		csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
562		csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
563	} else {
564		csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
565		csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
566	}
567
568	csum = (csum & 0xffff) + (csum >> 16);
569	csum = (csum & 0xffff) + (csum >> 16);
570
571	if (csum == 0xffff)
572		skb->ip_summed = CHECKSUM_UNNECESSARY;
573}
574
575static inline void ioc3_rx(struct net_device *dev)
576{
577	struct ioc3_private *ip = netdev_priv(dev);
578	struct sk_buff *skb, *new_skb;
579	struct ioc3 *ioc3 = ip->regs;
580	int rx_entry, n_entry, len;
581	struct ioc3_erxbuf *rxb;
582	unsigned long *rxr;
583	u32 w0, err;
584
585	rxr = ip->rxr;		/* Ring base */
586	rx_entry = ip->rx_ci;				/* RX consume index */
587	n_entry = ip->rx_pi;
588
589	skb = ip->rx_skbs[rx_entry];
590	rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
591	w0 = be32_to_cpu(rxb->w0);
592
593	while (w0 & ERXBUF_V) {
594		err = be32_to_cpu(rxb->err);		/* It's valid ...  */
595		if (err & ERXBUF_GOODPKT) {
596			len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
597			skb_trim(skb, len);
598			skb->protocol = eth_type_trans(skb, dev);
599
600			new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
601			if (!new_skb) {
602				/* Ouch, drop packet and just recycle packet
603				   to keep the ring filled.  */
604				dev->stats.rx_dropped++;
605				new_skb = skb;
606				goto next;
607			}
608
609			if (likely(dev->features & NETIF_F_RXCSUM))
610				ioc3_tcpudp_checksum(skb,
611					w0 & ERXBUF_IPCKSUM_MASK, len);
612
613			netif_rx(skb);
614
615			ip->rx_skbs[rx_entry] = NULL;	/* Poison  */
616
617			/* Because we reserve afterwards. */
618			skb_put(new_skb, (1664 + RX_OFFSET));
619			rxb = (struct ioc3_erxbuf *) new_skb->data;
620			skb_reserve(new_skb, RX_OFFSET);
621
622			dev->stats.rx_packets++;		/* Statistics */
623			dev->stats.rx_bytes += len;
624		} else {
625			/* The frame is invalid and the skb never
626			   reached the network layer so we can just
627			   recycle it.  */
628			new_skb = skb;
629			dev->stats.rx_errors++;
630		}
631		if (err & ERXBUF_CRCERR)	/* Statistics */
632			dev->stats.rx_crc_errors++;
633		if (err & ERXBUF_FRAMERR)
634			dev->stats.rx_frame_errors++;
635next:
636		ip->rx_skbs[n_entry] = new_skb;
637		rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
638		rxb->w0 = 0;				/* Clear valid flag */
639		n_entry = (n_entry + 1) & 511;		/* Update erpir */
640
641		/* Now go on to the next ring entry.  */
642		rx_entry = (rx_entry + 1) & 511;
643		skb = ip->rx_skbs[rx_entry];
644		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
645		w0 = be32_to_cpu(rxb->w0);
646	}
647	ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
648	ip->rx_pi = n_entry;
649	ip->rx_ci = rx_entry;
650}
651
652static inline void ioc3_tx(struct net_device *dev)
653{
654	struct ioc3_private *ip = netdev_priv(dev);
655	unsigned long packets, bytes;
656	struct ioc3 *ioc3 = ip->regs;
657	int tx_entry, o_entry;
658	struct sk_buff *skb;
659	u32 etcir;
660
661	spin_lock(&ip->ioc3_lock);
662	etcir = ioc3_r_etcir();
663
664	tx_entry = (etcir >> 7) & 127;
665	o_entry = ip->tx_ci;
666	packets = 0;
667	bytes = 0;
668
669	while (o_entry != tx_entry) {
670		packets++;
671		skb = ip->tx_skbs[o_entry];
672		bytes += skb->len;
673		dev_kfree_skb_irq(skb);
674		ip->tx_skbs[o_entry] = NULL;
675
676		o_entry = (o_entry + 1) & 127;		/* Next */
677
678		etcir = ioc3_r_etcir();			/* More pkts sent?  */
679		tx_entry = (etcir >> 7) & 127;
680	}
681
682	dev->stats.tx_packets += packets;
683	dev->stats.tx_bytes += bytes;
684	ip->txqlen -= packets;
685
686	if (ip->txqlen < 128)
687		netif_wake_queue(dev);
688
689	ip->tx_ci = o_entry;
690	spin_unlock(&ip->ioc3_lock);
691}
692
693/*
694 * Deal with fatal IOC3 errors.  This condition might be caused by a hard or
695 * software problems, so we should try to recover
696 * more gracefully if this ever happens.  In theory we might be flooded
697 * with such error interrupts if something really goes wrong, so we might
698 * also consider to take the interface down.
699 */
700static void ioc3_error(struct net_device *dev, u32 eisr)
701{
702	struct ioc3_private *ip = netdev_priv(dev);
703	unsigned char *iface = dev->name;
704
705	spin_lock(&ip->ioc3_lock);
706
707	if (eisr & EISR_RXOFLO)
708		printk(KERN_ERR "%s: RX overflow.\n", iface);
709	if (eisr & EISR_RXBUFOFLO)
710		printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
711	if (eisr & EISR_RXMEMERR)
712		printk(KERN_ERR "%s: RX PCI error.\n", iface);
713	if (eisr & EISR_RXPARERR)
714		printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
715	if (eisr & EISR_TXBUFUFLO)
716		printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
717	if (eisr & EISR_TXMEMERR)
718		printk(KERN_ERR "%s: TX PCI error.\n", iface);
719
720	ioc3_stop(ip);
721	ioc3_init(dev);
722	ioc3_mii_init(ip);
723
724	netif_wake_queue(dev);
725
726	spin_unlock(&ip->ioc3_lock);
727}
728
729/* The interrupt handler does all of the Rx thread work and cleans up
730   after the Tx thread.  */
731static irqreturn_t ioc3_interrupt(int irq, void *_dev)
732{
733	struct net_device *dev = (struct net_device *)_dev;
734	struct ioc3_private *ip = netdev_priv(dev);
735	struct ioc3 *ioc3 = ip->regs;
736	const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
737	                    EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
738	                    EISR_TXEXPLICIT | EISR_TXMEMERR;
739	u32 eisr;
740
741	eisr = ioc3_r_eisr() & enabled;
742
743	ioc3_w_eisr(eisr);
744	(void) ioc3_r_eisr();				/* Flush */
745
746	if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
747	            EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
748		ioc3_error(dev, eisr);
749	if (eisr & EISR_RXTIMERINT)
750		ioc3_rx(dev);
751	if (eisr & EISR_TXEXPLICIT)
752		ioc3_tx(dev);
753
754	return IRQ_HANDLED;
755}
756
757static inline void ioc3_setup_duplex(struct ioc3_private *ip)
758{
759	struct ioc3 *ioc3 = ip->regs;
760
761	if (ip->mii.full_duplex) {
762		ioc3_w_etcsr(ETCSR_FD);
763		ip->emcr |= EMCR_DUPLEX;
764	} else {
765		ioc3_w_etcsr(ETCSR_HD);
766		ip->emcr &= ~EMCR_DUPLEX;
767	}
768	ioc3_w_emcr(ip->emcr);
769}
770
771static void ioc3_timer(unsigned long data)
772{
773	struct ioc3_private *ip = (struct ioc3_private *) data;
774
775	/* Print the link status if it has changed */
776	mii_check_media(&ip->mii, 1, 0);
777	ioc3_setup_duplex(ip);
778
779	ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
780	add_timer(&ip->ioc3_timer);
781}
782
783/*
784 * Try to find a PHY.  There is no apparent relation between the MII addresses
785 * in the SGI documentation and what we find in reality, so we simply probe
786 * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
787 * onboard IOC3s has the special oddity that probing doesn't seem to find it
788 * yet the interface seems to work fine, so if probing fails we for now will
789 * simply default to PHY 31 instead of bailing out.
790 */
791static int ioc3_mii_init(struct ioc3_private *ip)
792{
793	struct net_device *dev = priv_netdev(ip);
794	int i, found = 0, res = 0;
795	int ioc3_phy_workaround = 1;
796	u16 word;
797
798	for (i = 0; i < 32; i++) {
799		word = ioc3_mdio_read(dev, i, MII_PHYSID1);
800
801		if (word != 0xffff && word != 0x0000) {
802			found = 1;
803			break;			/* Found a PHY		*/
804		}
805	}
806
807	if (!found) {
808		if (ioc3_phy_workaround)
809			i = 31;
810		else {
811			ip->mii.phy_id = -1;
812			res = -ENODEV;
813			goto out;
814		}
815	}
816
817	ip->mii.phy_id = i;
818
819out:
820	return res;
821}
822
823static void ioc3_mii_start(struct ioc3_private *ip)
824{
825	ip->ioc3_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
826	ip->ioc3_timer.data = (unsigned long) ip;
827	ip->ioc3_timer.function = ioc3_timer;
828	add_timer(&ip->ioc3_timer);
829}
830
831static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
832{
833	struct sk_buff *skb;
834	int i;
835
836	for (i = ip->rx_ci; i & 15; i++) {
837		ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
838		ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
839	}
840	ip->rx_pi &= 511;
841	ip->rx_ci &= 511;
842
843	for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
844		struct ioc3_erxbuf *rxb;
845		skb = ip->rx_skbs[i];
846		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
847		rxb->w0 = 0;
848	}
849}
850
851static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
852{
853	struct sk_buff *skb;
854	int i;
855
856	for (i=0; i < 128; i++) {
857		skb = ip->tx_skbs[i];
858		if (skb) {
859			ip->tx_skbs[i] = NULL;
860			dev_kfree_skb_any(skb);
861		}
862		ip->txr[i].cmd = 0;
863	}
864	ip->tx_pi = 0;
865	ip->tx_ci = 0;
866}
867
868static void ioc3_free_rings(struct ioc3_private *ip)
869{
870	struct sk_buff *skb;
871	int rx_entry, n_entry;
872
873	if (ip->txr) {
874		ioc3_clean_tx_ring(ip);
875		free_pages((unsigned long)ip->txr, 2);
876		ip->txr = NULL;
877	}
878
879	if (ip->rxr) {
880		n_entry = ip->rx_ci;
881		rx_entry = ip->rx_pi;
882
883		while (n_entry != rx_entry) {
884			skb = ip->rx_skbs[n_entry];
885			if (skb)
886				dev_kfree_skb_any(skb);
887
888			n_entry = (n_entry + 1) & 511;
889		}
890		free_page((unsigned long)ip->rxr);
891		ip->rxr = NULL;
892	}
893}
894
895static void ioc3_alloc_rings(struct net_device *dev)
896{
897	struct ioc3_private *ip = netdev_priv(dev);
898	struct ioc3_erxbuf *rxb;
899	unsigned long *rxr;
900	int i;
901
902	if (ip->rxr == NULL) {
903		/* Allocate and initialize rx ring.  4kb = 512 entries  */
904		ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
905		rxr = ip->rxr;
906		if (!rxr)
907			printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
908
909		/* Now the rx buffers.  The RX ring may be larger but
910		   we only allocate 16 buffers for now.  Need to tune
911		   this for performance and memory later.  */
912		for (i = 0; i < RX_BUFFS; i++) {
913			struct sk_buff *skb;
914
915			skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
916			if (!skb) {
917				show_free_areas(0);
918				continue;
919			}
920
921			ip->rx_skbs[i] = skb;
922
923			/* Because we reserve afterwards. */
924			skb_put(skb, (1664 + RX_OFFSET));
925			rxb = (struct ioc3_erxbuf *) skb->data;
926			rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
927			skb_reserve(skb, RX_OFFSET);
928		}
929		ip->rx_ci = 0;
930		ip->rx_pi = RX_BUFFS;
931	}
932
933	if (ip->txr == NULL) {
934		/* Allocate and initialize tx rings.  16kb = 128 bufs.  */
935		ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
936		if (!ip->txr)
937			printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
938		ip->tx_pi = 0;
939		ip->tx_ci = 0;
940	}
941}
942
943static void ioc3_init_rings(struct net_device *dev)
944{
945	struct ioc3_private *ip = netdev_priv(dev);
946	struct ioc3 *ioc3 = ip->regs;
947	unsigned long ring;
948
949	ioc3_free_rings(ip);
950	ioc3_alloc_rings(dev);
951
952	ioc3_clean_rx_ring(ip);
953	ioc3_clean_tx_ring(ip);
954
955	/* Now the rx ring base, consume & produce registers.  */
956	ring = ioc3_map(ip->rxr, 0);
957	ioc3_w_erbr_h(ring >> 32);
958	ioc3_w_erbr_l(ring & 0xffffffff);
959	ioc3_w_ercir(ip->rx_ci << 3);
960	ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
961
962	ring = ioc3_map(ip->txr, 0);
963
964	ip->txqlen = 0;					/* nothing queued  */
965
966	/* Now the tx ring base, consume & produce registers.  */
967	ioc3_w_etbr_h(ring >> 32);
968	ioc3_w_etbr_l(ring & 0xffffffff);
969	ioc3_w_etpir(ip->tx_pi << 7);
970	ioc3_w_etcir(ip->tx_ci << 7);
971	(void) ioc3_r_etcir();				/* Flush */
972}
973
974static inline void ioc3_ssram_disc(struct ioc3_private *ip)
975{
976	struct ioc3 *ioc3 = ip->regs;
977	volatile u32 *ssram0 = &ioc3->ssram[0x0000];
978	volatile u32 *ssram1 = &ioc3->ssram[0x4000];
979	unsigned int pattern = 0x5555;
980
981	/* Assume the larger size SSRAM and enable parity checking */
982	ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
983
984	*ssram0 = pattern;
985	*ssram1 = ~pattern & IOC3_SSRAM_DM;
986
987	if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
988	    (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
989		/* set ssram size to 64 KB */
990		ip->emcr = EMCR_RAMPAR;
991		ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
992	} else
993		ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
994}
995
996static void ioc3_init(struct net_device *dev)
997{
998	struct ioc3_private *ip = netdev_priv(dev);
999	struct ioc3 *ioc3 = ip->regs;
1000
1001	del_timer_sync(&ip->ioc3_timer);	/* Kill if running	*/
1002
1003	ioc3_w_emcr(EMCR_RST);			/* Reset		*/
1004	(void) ioc3_r_emcr();			/* Flush WB		*/
1005	udelay(4);				/* Give it time ...	*/
1006	ioc3_w_emcr(0);
1007	(void) ioc3_r_emcr();
1008
1009	/* Misc registers  */
1010#ifdef CONFIG_SGI_IP27
1011	ioc3_w_erbar(PCI64_ATTR_BAR >> 32);	/* Barrier on last store */
1012#else
1013	ioc3_w_erbar(0);			/* Let PCI API get it right */
1014#endif
1015	(void) ioc3_r_etcdc();			/* Clear on read */
1016	ioc3_w_ercsr(15);			/* RX low watermark  */
1017	ioc3_w_ertr(0);				/* Interrupt immediately */
1018	__ioc3_set_mac_address(dev);
1019	ioc3_w_ehar_h(ip->ehar_h);
1020	ioc3_w_ehar_l(ip->ehar_l);
1021	ioc3_w_ersr(42);			/* XXX should be random */
1022
1023	ioc3_init_rings(dev);
1024
1025	ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1026	             EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1027	ioc3_w_emcr(ip->emcr);
1028	ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1029	            EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1030	            EISR_TXEXPLICIT | EISR_TXMEMERR);
1031	(void) ioc3_r_eier();
1032}
1033
1034static inline void ioc3_stop(struct ioc3_private *ip)
1035{
1036	struct ioc3 *ioc3 = ip->regs;
1037
1038	ioc3_w_emcr(0);				/* Shutup */
1039	ioc3_w_eier(0);				/* Disable interrupts */
1040	(void) ioc3_r_eier();			/* Flush */
1041}
1042
1043static int ioc3_open(struct net_device *dev)
1044{
1045	struct ioc3_private *ip = netdev_priv(dev);
1046
1047	if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1048		printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1049
1050		return -EAGAIN;
1051	}
1052
1053	ip->ehar_h = 0;
1054	ip->ehar_l = 0;
1055	ioc3_init(dev);
1056	ioc3_mii_start(ip);
1057
1058	netif_start_queue(dev);
1059	return 0;
1060}
1061
1062static int ioc3_close(struct net_device *dev)
1063{
1064	struct ioc3_private *ip = netdev_priv(dev);
1065
1066	del_timer_sync(&ip->ioc3_timer);
1067
1068	netif_stop_queue(dev);
1069
1070	ioc3_stop(ip);
1071	free_irq(dev->irq, dev);
1072
1073	ioc3_free_rings(ip);
1074	return 0;
1075}
1076
1077/*
1078 * MENET cards have four IOC3 chips, which are attached to two sets of
1079 * PCI slot resources each: the primary connections are on slots
1080 * 0..3 and the secondaries are on 4..7
1081 *
1082 * All four ethernets are brought out to connectors; six serial ports
1083 * (a pair from each of the first three IOC3s) are brought out to
1084 * MiniDINs; all other subdevices are left swinging in the wind, leave
1085 * them disabled.
1086 */
1087
1088static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1089{
1090	struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1091	int ret = 0;
1092
1093	if (dev) {
1094		if (dev->vendor == PCI_VENDOR_ID_SGI &&
1095			dev->device == PCI_DEVICE_ID_SGI_IOC3)
1096			ret = 1;
1097		pci_dev_put(dev);
1098	}
1099
1100	return ret;
1101}
1102
1103static int ioc3_is_menet(struct pci_dev *pdev)
1104{
1105	return pdev->bus->parent == NULL &&
1106	       ioc3_adjacent_is_ioc3(pdev, 0) &&
1107	       ioc3_adjacent_is_ioc3(pdev, 1) &&
1108	       ioc3_adjacent_is_ioc3(pdev, 2);
1109}
1110
1111#ifdef CONFIG_SERIAL_8250
1112/*
1113 * Note about serial ports and consoles:
1114 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1115 * connected to the master node (look in ip27_setup_console() and
1116 * ip27prom_console_write()).
1117 *
1118 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1119 * addresses on a partitioned machine. Since we currently use the ioc3
1120 * serial ports, we use dynamic serial port discovery that the serial.c
1121 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1122 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1123 * than UARTB's, although UARTA on o200s has traditionally been known as
1124 * port 0. So, we just use one serial port from each ioc3 (since the
1125 * serial driver adds addresses to get to higher ports).
1126 *
1127 * The first one to do a register_console becomes the preferred console
1128 * (if there is no kernel command line console= directive). /dev/console
1129 * (ie 5, 1) is then "aliased" into the device number returned by the
1130 * "device" routine referred to in this console structure
1131 * (ip27prom_console_dev).
1132 *
1133 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1134 * around ioc3 oddities in this respect.
1135 *
1136 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1137 * can be programmed in the SCR register if the DLAB bit is set.
1138 *
1139 * Register to interrupt zero because we share the interrupt with
1140 * the serial driver which we don't properly support yet.
1141 *
1142 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1143 * registered.
1144 */
1145static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1146{
1147#define COSMISC_CONSTANT 6
1148
1149	struct uart_8250_port port = {
1150	        .port = {
1151			.irq		= 0,
1152			.flags		= UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1153			.iotype		= UPIO_MEM,
1154			.regshift	= 0,
1155			.uartclk	= (22000000 << 1) / COSMISC_CONSTANT,
1156
1157			.membase	= (unsigned char __iomem *) uart,
1158			.mapbase	= (unsigned long) uart,
1159                }
1160	};
1161	unsigned char lcr;
1162
1163	lcr = uart->iu_lcr;
1164	uart->iu_lcr = lcr | UART_LCR_DLAB;
1165	uart->iu_scr = COSMISC_CONSTANT,
1166	uart->iu_lcr = lcr;
1167	uart->iu_lcr;
1168	serial8250_register_8250_port(&port);
1169}
1170
1171static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1172{
1173	/*
1174	 * We need to recognice and treat the fourth MENET serial as it
1175	 * does not have an SuperIO chip attached to it, therefore attempting
1176	 * to access it will result in bus errors.  We call something an
1177	 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1178	 * in it.  This is paranoid but we want to avoid blowing up on a
1179	 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1180	 * not paranoid enough ...
1181	 */
1182	if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1183		return;
1184
1185	/*
1186	 * Switch IOC3 to PIO mode.  It probably already was but let's be
1187	 * paranoid
1188	 */
1189	ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1190	ioc3->gpcr_s;
1191	ioc3->gppr_6 = 0;
1192	ioc3->gppr_6;
1193	ioc3->gppr_7 = 0;
1194	ioc3->gppr_7;
1195	ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1196	ioc3->sscr_a;
1197	ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1198	ioc3->sscr_b;
1199	/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1200	ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1201			    SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1202			    SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1203			    SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1204	ioc3->sio_iec |= SIO_IR_SA_INT;
1205	ioc3->sscr_a = 0;
1206	ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1207			    SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1208			    SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1209			    SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1210	ioc3->sio_iec |= SIO_IR_SB_INT;
1211	ioc3->sscr_b = 0;
1212
1213	ioc3_8250_register(&ioc3->sregs.uarta);
1214	ioc3_8250_register(&ioc3->sregs.uartb);
1215}
1216#endif
1217
1218static const struct net_device_ops ioc3_netdev_ops = {
1219	.ndo_open		= ioc3_open,
1220	.ndo_stop		= ioc3_close,
1221	.ndo_start_xmit		= ioc3_start_xmit,
1222	.ndo_tx_timeout		= ioc3_timeout,
1223	.ndo_get_stats		= ioc3_get_stats,
1224	.ndo_set_rx_mode	= ioc3_set_multicast_list,
1225	.ndo_do_ioctl		= ioc3_ioctl,
1226	.ndo_validate_addr	= eth_validate_addr,
1227	.ndo_set_mac_address	= ioc3_set_mac_address,
1228	.ndo_change_mtu		= eth_change_mtu,
1229};
1230
1231static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1232{
1233	unsigned int sw_physid1, sw_physid2;
1234	struct net_device *dev = NULL;
1235	struct ioc3_private *ip;
1236	struct ioc3 *ioc3;
1237	unsigned long ioc3_base, ioc3_size;
1238	u32 vendor, model, rev;
1239	int err, pci_using_dac;
1240
1241	/* Configure DMA attributes. */
1242	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1243	if (!err) {
1244		pci_using_dac = 1;
1245		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1246		if (err < 0) {
1247			printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1248			       "for consistent allocations\n", pci_name(pdev));
1249			goto out;
1250		}
1251	} else {
1252		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1253		if (err) {
1254			printk(KERN_ERR "%s: No usable DMA configuration, "
1255			       "aborting.\n", pci_name(pdev));
1256			goto out;
1257		}
1258		pci_using_dac = 0;
1259	}
1260
1261	if (pci_enable_device(pdev))
1262		return -ENODEV;
1263
1264	dev = alloc_etherdev(sizeof(struct ioc3_private));
1265	if (!dev) {
1266		err = -ENOMEM;
1267		goto out_disable;
1268	}
1269
1270	if (pci_using_dac)
1271		dev->features |= NETIF_F_HIGHDMA;
1272
1273	err = pci_request_regions(pdev, "ioc3");
1274	if (err)
1275		goto out_free;
1276
1277	SET_NETDEV_DEV(dev, &pdev->dev);
1278
1279	ip = netdev_priv(dev);
1280
1281	dev->irq = pdev->irq;
1282
1283	ioc3_base = pci_resource_start(pdev, 0);
1284	ioc3_size = pci_resource_len(pdev, 0);
1285	ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1286	if (!ioc3) {
1287		printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1288		       pci_name(pdev));
1289		err = -ENOMEM;
1290		goto out_res;
1291	}
1292	ip->regs = ioc3;
1293
1294#ifdef CONFIG_SERIAL_8250
1295	ioc3_serial_probe(pdev, ioc3);
1296#endif
1297
1298	spin_lock_init(&ip->ioc3_lock);
1299	init_timer(&ip->ioc3_timer);
1300
1301	ioc3_stop(ip);
1302	ioc3_init(dev);
1303
1304	ip->pdev = pdev;
1305
1306	ip->mii.phy_id_mask = 0x1f;
1307	ip->mii.reg_num_mask = 0x1f;
1308	ip->mii.dev = dev;
1309	ip->mii.mdio_read = ioc3_mdio_read;
1310	ip->mii.mdio_write = ioc3_mdio_write;
1311
1312	ioc3_mii_init(ip);
1313
1314	if (ip->mii.phy_id == -1) {
1315		printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1316		       pci_name(pdev));
1317		err = -ENODEV;
1318		goto out_stop;
1319	}
1320
1321	ioc3_mii_start(ip);
1322	ioc3_ssram_disc(ip);
1323	ioc3_get_eaddr(ip);
1324
1325	/* The IOC3-specific entries in the device structure. */
1326	dev->watchdog_timeo	= 5 * HZ;
1327	dev->netdev_ops		= &ioc3_netdev_ops;
1328	dev->ethtool_ops	= &ioc3_ethtool_ops;
1329	dev->hw_features	= NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1330	dev->features		= NETIF_F_IP_CSUM;
1331
1332	sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1333	sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1334
1335	err = register_netdev(dev);
1336	if (err)
1337		goto out_stop;
1338
1339	mii_check_media(&ip->mii, 1, 1);
1340	ioc3_setup_duplex(ip);
1341
1342	vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1343	model  = (sw_physid2 >> 4) & 0x3f;
1344	rev    = sw_physid2 & 0xf;
1345	printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1346	       "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1347	printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1348	       ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1349
1350	return 0;
1351
1352out_stop:
1353	ioc3_stop(ip);
1354	del_timer_sync(&ip->ioc3_timer);
1355	ioc3_free_rings(ip);
1356out_res:
1357	pci_release_regions(pdev);
1358out_free:
1359	free_netdev(dev);
1360out_disable:
1361	/*
1362	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1363	 * such a weird device ...
1364	 */
1365out:
1366	return err;
1367}
1368
1369static void ioc3_remove_one(struct pci_dev *pdev)
1370{
1371	struct net_device *dev = pci_get_drvdata(pdev);
1372	struct ioc3_private *ip = netdev_priv(dev);
1373	struct ioc3 *ioc3 = ip->regs;
1374
1375	unregister_netdev(dev);
1376	del_timer_sync(&ip->ioc3_timer);
1377
1378	iounmap(ioc3);
1379	pci_release_regions(pdev);
1380	free_netdev(dev);
1381	/*
1382	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1383	 * such a weird device ...
1384	 */
1385}
1386
1387static const struct pci_device_id ioc3_pci_tbl[] = {
1388	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1389	{ 0 }
1390};
1391MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1392
1393static struct pci_driver ioc3_driver = {
1394	.name		= "ioc3-eth",
1395	.id_table	= ioc3_pci_tbl,
1396	.probe		= ioc3_probe,
1397	.remove		= ioc3_remove_one,
1398};
1399
1400static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1401{
1402	unsigned long data;
1403	struct ioc3_private *ip = netdev_priv(dev);
1404	struct ioc3 *ioc3 = ip->regs;
1405	unsigned int len;
1406	struct ioc3_etxd *desc;
1407	uint32_t w0 = 0;
1408	int produce;
1409
1410	/*
1411	 * IOC3 has a fairly simple minded checksumming hardware which simply
1412	 * adds up the 1's complement checksum for the entire packet and
1413	 * inserts it at an offset which can be specified in the descriptor
1414	 * into the transmit packet.  This means we have to compensate for the
1415	 * MAC header which should not be summed and the TCP/UDP pseudo headers
1416	 * manually.
1417	 */
1418	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1419		const struct iphdr *ih = ip_hdr(skb);
1420		const int proto = ntohs(ih->protocol);
1421		unsigned int csoff;
1422		uint32_t csum, ehsum;
1423		uint16_t *eh;
1424
1425		/* The MAC header.  skb->mac seem the logic approach
1426		   to find the MAC header - except it's a NULL pointer ...  */
1427		eh = (uint16_t *) skb->data;
1428
1429		/* Sum up dest addr, src addr and protocol  */
1430		ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1431
1432		/* Fold ehsum.  can't use csum_fold which negates also ...  */
1433		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1434		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1435
1436		/* Skip IP header; it's sum is always zero and was
1437		   already filled in by ip_output.c */
1438		csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1439		                          ih->tot_len - (ih->ihl << 2),
1440		                          proto, 0xffff ^ ehsum);
1441
1442		csum = (csum & 0xffff) + (csum >> 16);	/* Fold again */
1443		csum = (csum & 0xffff) + (csum >> 16);
1444
1445		csoff = ETH_HLEN + (ih->ihl << 2);
1446		if (proto == IPPROTO_UDP) {
1447			csoff += offsetof(struct udphdr, check);
1448			udp_hdr(skb)->check = csum;
1449		}
1450		if (proto == IPPROTO_TCP) {
1451			csoff += offsetof(struct tcphdr, check);
1452			tcp_hdr(skb)->check = csum;
1453		}
1454
1455		w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1456	}
1457
1458	spin_lock_irq(&ip->ioc3_lock);
1459
1460	data = (unsigned long) skb->data;
1461	len = skb->len;
1462
1463	produce = ip->tx_pi;
1464	desc = &ip->txr[produce];
1465
1466	if (len <= 104) {
1467		/* Short packet, let's copy it directly into the ring.  */
1468		skb_copy_from_linear_data(skb, desc->data, skb->len);
1469		if (len < ETH_ZLEN) {
1470			/* Very short packet, pad with zeros at the end. */
1471			memset(desc->data + len, 0, ETH_ZLEN - len);
1472			len = ETH_ZLEN;
1473		}
1474		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1475		desc->bufcnt = cpu_to_be32(len);
1476	} else if ((data ^ (data + len - 1)) & 0x4000) {
1477		unsigned long b2 = (data | 0x3fffUL) + 1UL;
1478		unsigned long s1 = b2 - data;
1479		unsigned long s2 = data + len - b2;
1480
1481		desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1482		                           ETXD_B1V | ETXD_B2V | w0);
1483		desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1484		                           (s2 << ETXD_B2CNT_SHIFT));
1485		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1486		desc->p2     = cpu_to_be64(ioc3_map((void *) b2, 1));
1487	} else {
1488		/* Normal sized packet that doesn't cross a page boundary. */
1489		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1490		desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1491		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1492	}
1493
1494	BARRIER();
1495
1496	ip->tx_skbs[produce] = skb;			/* Remember skb */
1497	produce = (produce + 1) & 127;
1498	ip->tx_pi = produce;
1499	ioc3_w_etpir(produce << 7);			/* Fire ... */
1500
1501	ip->txqlen++;
1502
1503	if (ip->txqlen >= 127)
1504		netif_stop_queue(dev);
1505
1506	spin_unlock_irq(&ip->ioc3_lock);
1507
1508	return NETDEV_TX_OK;
1509}
1510
1511static void ioc3_timeout(struct net_device *dev)
1512{
1513	struct ioc3_private *ip = netdev_priv(dev);
1514
1515	printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1516
1517	spin_lock_irq(&ip->ioc3_lock);
1518
1519	ioc3_stop(ip);
1520	ioc3_init(dev);
1521	ioc3_mii_init(ip);
1522	ioc3_mii_start(ip);
1523
1524	spin_unlock_irq(&ip->ioc3_lock);
1525
1526	netif_wake_queue(dev);
1527}
1528
1529/*
1530 * Given a multicast ethernet address, this routine calculates the
1531 * address's bit index in the logical address filter mask
1532 */
1533
1534static inline unsigned int ioc3_hash(const unsigned char *addr)
1535{
1536	unsigned int temp = 0;
1537	u32 crc;
1538	int bits;
1539
1540	crc = ether_crc_le(ETH_ALEN, addr);
1541
1542	crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1543	for (bits = 6; --bits >= 0; ) {
1544		temp <<= 1;
1545		temp |= (crc & 0x1);
1546		crc >>= 1;
1547	}
1548
1549	return temp;
1550}
1551
1552static void ioc3_get_drvinfo (struct net_device *dev,
1553	struct ethtool_drvinfo *info)
1554{
1555	struct ioc3_private *ip = netdev_priv(dev);
1556
1557	strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1558	strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1559	strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1560}
1561
1562static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1563{
1564	struct ioc3_private *ip = netdev_priv(dev);
1565	int rc;
1566
1567	spin_lock_irq(&ip->ioc3_lock);
1568	rc = mii_ethtool_gset(&ip->mii, cmd);
1569	spin_unlock_irq(&ip->ioc3_lock);
1570
1571	return rc;
1572}
1573
1574static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1575{
1576	struct ioc3_private *ip = netdev_priv(dev);
1577	int rc;
1578
1579	spin_lock_irq(&ip->ioc3_lock);
1580	rc = mii_ethtool_sset(&ip->mii, cmd);
1581	spin_unlock_irq(&ip->ioc3_lock);
1582
1583	return rc;
1584}
1585
1586static int ioc3_nway_reset(struct net_device *dev)
1587{
1588	struct ioc3_private *ip = netdev_priv(dev);
1589	int rc;
1590
1591	spin_lock_irq(&ip->ioc3_lock);
1592	rc = mii_nway_restart(&ip->mii);
1593	spin_unlock_irq(&ip->ioc3_lock);
1594
1595	return rc;
1596}
1597
1598static u32 ioc3_get_link(struct net_device *dev)
1599{
1600	struct ioc3_private *ip = netdev_priv(dev);
1601	int rc;
1602
1603	spin_lock_irq(&ip->ioc3_lock);
1604	rc = mii_link_ok(&ip->mii);
1605	spin_unlock_irq(&ip->ioc3_lock);
1606
1607	return rc;
1608}
1609
1610static const struct ethtool_ops ioc3_ethtool_ops = {
1611	.get_drvinfo		= ioc3_get_drvinfo,
1612	.get_settings		= ioc3_get_settings,
1613	.set_settings		= ioc3_set_settings,
1614	.nway_reset		= ioc3_nway_reset,
1615	.get_link		= ioc3_get_link,
1616};
1617
1618static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1619{
1620	struct ioc3_private *ip = netdev_priv(dev);
1621	int rc;
1622
1623	spin_lock_irq(&ip->ioc3_lock);
1624	rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1625	spin_unlock_irq(&ip->ioc3_lock);
1626
1627	return rc;
1628}
1629
1630static void ioc3_set_multicast_list(struct net_device *dev)
1631{
1632	struct netdev_hw_addr *ha;
1633	struct ioc3_private *ip = netdev_priv(dev);
1634	struct ioc3 *ioc3 = ip->regs;
1635	u64 ehar = 0;
1636
1637	netif_stop_queue(dev);				/* Lock out others. */
1638
1639	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous.  */
1640		ip->emcr |= EMCR_PROMISC;
1641		ioc3_w_emcr(ip->emcr);
1642		(void) ioc3_r_emcr();
1643	} else {
1644		ip->emcr &= ~EMCR_PROMISC;
1645		ioc3_w_emcr(ip->emcr);			/* Clear promiscuous. */
1646		(void) ioc3_r_emcr();
1647
1648		if ((dev->flags & IFF_ALLMULTI) ||
1649		    (netdev_mc_count(dev) > 64)) {
1650			/* Too many for hashing to make sense or we want all
1651			   multicast packets anyway,  so skip computing all the
1652			   hashes and just accept all packets.  */
1653			ip->ehar_h = 0xffffffff;
1654			ip->ehar_l = 0xffffffff;
1655		} else {
1656			netdev_for_each_mc_addr(ha, dev) {
1657				ehar |= (1UL << ioc3_hash(ha->addr));
1658			}
1659			ip->ehar_h = ehar >> 32;
1660			ip->ehar_l = ehar & 0xffffffff;
1661		}
1662		ioc3_w_ehar_h(ip->ehar_h);
1663		ioc3_w_ehar_l(ip->ehar_l);
1664	}
1665
1666	netif_wake_queue(dev);			/* Let us get going again. */
1667}
1668
1669module_pci_driver(ioc3_driver);
1670MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1671MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1672MODULE_LICENSE("GPL");
1673