[go: nahoru, domu]

1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Firmware uploader
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 *   * Redistributions of source code must retain the above copyright
13 *     notice, this list of conditions and the following disclaimer.
14 *   * Redistributions in binary form must reproduce the above copyright
15 *     notice, this list of conditions and the following disclaimer in
16 *     the documentation and/or other materials provided with the
17 *     distribution.
18 *   * Neither the name of Intel Corporation nor the names of its
19 *     contributors may be used to endorse or promote products derived
20 *     from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 *  - Initial implementation
39 *
40 *
41 * THE PROCEDURE
42 *
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
46 *
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
52 *
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint.
55 *
56 * Upon entrance to boot mode, the device sends (preceded with a few
57 * zero length packets (ZLPs) on the notification endpoint in USB) a
58 * reboot barker (4 le32 words with the same value). We ack it by
59 * sending the same barker to the device. The device acks with a
60 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
61 * then is fully booted. At this point we can upload the firmware.
62 *
63 * Note that different iterations of the device and EEPROM
64 * configurations will send different [re]boot barkers; these are
65 * collected in i2400m_barker_db along with the firmware
66 * characteristics they require.
67 *
68 * This process is accomplished by the i2400m_bootrom_init()
69 * function. All the device interaction happens through the
70 * i2400m_bm_cmd() [boot mode command]. Special return values will
71 * indicate if the device did reset during the process.
72 *
73 * After this, we read the MAC address and then (if needed)
74 * reinitialize the device. We need to read it ahead of time because
75 * in the future, we might not upload the firmware until userspace
76 * 'ifconfig up's the device.
77 *
78 * We can then upload the firmware file. The file is composed of a BCF
79 * header (basic data, keys and signatures) and a list of write
80 * commands and payloads. Optionally more BCF headers might follow the
81 * main payload. We first upload the header [i2400m_dnload_init()] and
82 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
83 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
84 * the new firmware [i2400m_dnload_finalize()].
85 *
86 * Once firmware is uploaded, we are good to go :)
87 *
88 * When we don't know in which mode we are, we first try by sending a
89 * warm reset request that will take us to boot-mode. If we time out
90 * waiting for a reboot barker, that means maybe we are already in
91 * boot mode, so we send a reboot barker.
92 *
93 * COMMAND EXECUTION
94 *
95 * This code (and process) is single threaded; for executing commands,
96 * we post a URB to the notification endpoint, post the command, wait
97 * for data on the notification buffer. We don't need to worry about
98 * others as we know we are the only ones in there.
99 *
100 * BACKEND IMPLEMENTATION
101 *
102 * This code is bus-generic; the bus-specific driver provides back end
103 * implementations to send a boot mode command to the device and to
104 * read an acknolwedgement from it (or an asynchronous notification)
105 * from it.
106 *
107 * FIRMWARE LOADING
108 *
109 * Note that in some cases, we can't just load a firmware file (for
110 * example, when resuming). For that, we might cache the firmware
111 * file. Thus, when doing the bootstrap, if there is a cache firmware
112 * file, it is used; if not, loading from disk is attempted.
113 *
114 * ROADMAP
115 *
116 * i2400m_barker_db_init              Called by i2400m_driver_init()
117 *   i2400m_barker_db_add
118 *
119 * i2400m_barker_db_exit              Called by i2400m_driver_exit()
120 *
121 * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
122 *   request_firmware
123 *   i2400m_fw_bootstrap
124 *     i2400m_fw_check
125 *       i2400m_fw_hdr_check
126 *     i2400m_fw_dnload
127 *   release_firmware
128 *
129 * i2400m_fw_dnload
130 *   i2400m_bootrom_init
131 *     i2400m_bm_cmd
132 *     i2400m_reset
133 *   i2400m_dnload_init
134 *     i2400m_dnload_init_signed
135 *     i2400m_dnload_init_nonsigned
136 *       i2400m_download_chunk
137 *         i2400m_bm_cmd
138 *   i2400m_dnload_bcf
139 *     i2400m_bm_cmd
140 *   i2400m_dnload_finalize
141 *     i2400m_bm_cmd
142 *
143 * i2400m_bm_cmd
144 *   i2400m->bus_bm_cmd_send()
145 *   i2400m->bus_bm_wait_for_ack
146 *   __i2400m_bm_ack_verify
147 *     i2400m_is_boot_barker
148 *
149 * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
150 *                                    commands before sending
151 *
152 * i2400m_pm_notifier                 Called on Power Management events
153 *   i2400m_fw_cache
154 *   i2400m_fw_uncache
155 */
156#include <linux/firmware.h>
157#include <linux/sched.h>
158#include <linux/slab.h>
159#include <linux/usb.h>
160#include <linux/export.h>
161#include "i2400m.h"
162
163
164#define D_SUBMODULE fw
165#include "debug-levels.h"
166
167
168static const __le32 i2400m_ACK_BARKER[4] = {
169	cpu_to_le32(I2400M_ACK_BARKER),
170	cpu_to_le32(I2400M_ACK_BARKER),
171	cpu_to_le32(I2400M_ACK_BARKER),
172	cpu_to_le32(I2400M_ACK_BARKER)
173};
174
175
176/**
177 * Prepare a boot-mode command for delivery
178 *
179 * @cmd: pointer to bootrom header to prepare
180 *
181 * Computes checksum if so needed. After calling this function, DO NOT
182 * modify the command or header as the checksum won't work anymore.
183 *
184 * We do it from here because some times we cannot do it in the
185 * original context the command was sent (it is a const), so when we
186 * copy it to our staging buffer, we add the checksum there.
187 */
188void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
189{
190	if (i2400m_brh_get_use_checksum(cmd)) {
191		int i;
192		u32 checksum = 0;
193		const u32 *checksum_ptr = (void *) cmd->payload;
194		for (i = 0; i < cmd->data_size / 4; i++)
195			checksum += cpu_to_le32(*checksum_ptr++);
196		checksum += cmd->command + cmd->target_addr + cmd->data_size;
197		cmd->block_checksum = cpu_to_le32(checksum);
198	}
199}
200EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
201
202
203/*
204 * Database of known barkers.
205 *
206 * A barker is what the device sends indicating he is ready to be
207 * bootloaded. Different versions of the device will send different
208 * barkers. Depending on the barker, it might mean the device wants
209 * some kind of firmware or the other.
210 */
211static struct i2400m_barker_db {
212	__le32 data[4];
213} *i2400m_barker_db;
214static size_t i2400m_barker_db_used, i2400m_barker_db_size;
215
216
217static
218int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
219		       gfp_t gfp_flags)
220{
221	size_t old_count = *_count,
222		new_count = old_count ? 2 * old_count : 2,
223		old_size = el_size * old_count,
224		new_size = el_size * new_count;
225	void *nptr = krealloc(*ptr, new_size, gfp_flags);
226	if (nptr) {
227		/* zero the other half or the whole thing if old_count
228		 * was zero */
229		if (old_size == 0)
230			memset(nptr, 0, new_size);
231		else
232			memset(nptr + old_size, 0, old_size);
233		*_count = new_count;
234		*ptr = nptr;
235		return 0;
236	} else
237		return -ENOMEM;
238}
239
240
241/*
242 * Add a barker to the database
243 *
244 * This cannot used outside of this module and only at at module_init
245 * time. This is to avoid the need to do locking.
246 */
247static
248int i2400m_barker_db_add(u32 barker_id)
249{
250	int result;
251
252	struct i2400m_barker_db *barker;
253	if (i2400m_barker_db_used >= i2400m_barker_db_size) {
254		result = i2400m_zrealloc_2x(
255			(void **) &i2400m_barker_db, &i2400m_barker_db_size,
256			sizeof(i2400m_barker_db[0]), GFP_KERNEL);
257		if (result < 0)
258			return result;
259	}
260	barker = i2400m_barker_db + i2400m_barker_db_used++;
261	barker->data[0] = le32_to_cpu(barker_id);
262	barker->data[1] = le32_to_cpu(barker_id);
263	barker->data[2] = le32_to_cpu(barker_id);
264	barker->data[3] = le32_to_cpu(barker_id);
265	return 0;
266}
267
268
269void i2400m_barker_db_exit(void)
270{
271	kfree(i2400m_barker_db);
272	i2400m_barker_db = NULL;
273	i2400m_barker_db_size = 0;
274	i2400m_barker_db_used = 0;
275}
276
277
278/*
279 * Helper function to add all the known stable barkers to the barker
280 * database.
281 */
282static
283int i2400m_barker_db_known_barkers(void)
284{
285	int result;
286
287	result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
288	if (result < 0)
289		goto error_add;
290	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
291	if (result < 0)
292		goto error_add;
293	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
294	if (result < 0)
295		goto error_add;
296error_add:
297       return result;
298}
299
300
301/*
302 * Initialize the barker database
303 *
304 * This can only be used from the module_init function for this
305 * module; this is to avoid the need to do locking.
306 *
307 * @options: command line argument with extra barkers to
308 *     recognize. This is a comma-separated list of 32-bit hex
309 *     numbers. They are appended to the existing list. Setting 0
310 *     cleans the existing list and starts a new one.
311 */
312int i2400m_barker_db_init(const char *_options)
313{
314	int result;
315	char *options = NULL, *options_orig, *token;
316
317	i2400m_barker_db = NULL;
318	i2400m_barker_db_size = 0;
319	i2400m_barker_db_used = 0;
320
321	result = i2400m_barker_db_known_barkers();
322	if (result < 0)
323		goto error_add;
324	/* parse command line options from i2400m.barkers */
325	if (_options != NULL) {
326		unsigned barker;
327
328		options_orig = kstrdup(_options, GFP_KERNEL);
329		if (options_orig == NULL) {
330			result = -ENOMEM;
331			goto error_parse;
332		}
333		options = options_orig;
334
335		while ((token = strsep(&options, ",")) != NULL) {
336			if (*token == '\0')	/* eat joint commas */
337				continue;
338			if (sscanf(token, "%x", &barker) != 1
339			    || barker > 0xffffffff) {
340				printk(KERN_ERR "%s: can't recognize "
341				       "i2400m.barkers value '%s' as "
342				       "a 32-bit number\n",
343				       __func__, token);
344				result = -EINVAL;
345				goto error_parse;
346			}
347			if (barker == 0) {
348				/* clean list and start new */
349				i2400m_barker_db_exit();
350				continue;
351			}
352			result = i2400m_barker_db_add(barker);
353			if (result < 0)
354				goto error_add;
355		}
356		kfree(options_orig);
357	}
358	return 0;
359
360error_parse:
361error_add:
362	kfree(i2400m_barker_db);
363	return result;
364}
365
366
367/*
368 * Recognize a boot barker
369 *
370 * @buf: buffer where the boot barker.
371 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
372 *     here so the function can check it for the caller.
373 *
374 * Note that as a side effect, upon identifying the obtained boot
375 * barker, this function will set i2400m->barker to point to the right
376 * barker database entry. Subsequent calls to the function will result
377 * in verifying that the same type of boot barker is returned when the
378 * device [re]boots (as long as the same device instance is used).
379 *
380 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
381 *     buffer in @buf doesn't match any boot barker in the database or
382 *     -EILSEQ if the buffer doesn't have the right size.
383 */
384int i2400m_is_boot_barker(struct i2400m *i2400m,
385			  const void *buf, size_t buf_size)
386{
387	int result;
388	struct device *dev = i2400m_dev(i2400m);
389	struct i2400m_barker_db *barker;
390	int i;
391
392	result = -ENOENT;
393	if (buf_size != sizeof(i2400m_barker_db[i].data))
394		return result;
395
396	/* Short circuit if we have already discovered the barker
397	 * associated with the device. */
398	if (i2400m->barker
399	    && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
400		unsigned index = (i2400m->barker - i2400m_barker_db)
401			/ sizeof(*i2400m->barker);
402		d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
403			 index, le32_to_cpu(i2400m->barker->data[0]));
404		return 0;
405	}
406
407	for (i = 0; i < i2400m_barker_db_used; i++) {
408		barker = &i2400m_barker_db[i];
409		BUILD_BUG_ON(sizeof(barker->data) != 16);
410		if (memcmp(buf, barker->data, sizeof(barker->data)))
411			continue;
412
413		if (i2400m->barker == NULL) {
414			i2400m->barker = barker;
415			d_printf(1, dev, "boot barker set to #%u/%08x\n",
416				 i, le32_to_cpu(barker->data[0]));
417			if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
418				i2400m->sboot = 0;
419			else
420				i2400m->sboot = 1;
421		} else if (i2400m->barker != barker) {
422			dev_err(dev, "HW inconsistency: device "
423				"reports a different boot barker "
424				"than set (from %08x to %08x)\n",
425				le32_to_cpu(i2400m->barker->data[0]),
426				le32_to_cpu(barker->data[0]));
427			result = -EIO;
428		} else
429			d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
430				 i, le32_to_cpu(barker->data[0]));
431		result = 0;
432		break;
433	}
434	return result;
435}
436EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
437
438
439/*
440 * Verify the ack data received
441 *
442 * Given a reply to a boot mode command, chew it and verify everything
443 * is ok.
444 *
445 * @opcode: opcode which generated this ack. For error messages.
446 * @ack: pointer to ack data we received
447 * @ack_size: size of that data buffer
448 * @flags: I2400M_BM_CMD_* flags we called the command with.
449 *
450 * Way too long function -- maybe it should be further split
451 */
452static
453ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
454			       struct i2400m_bootrom_header *ack,
455			       size_t ack_size, int flags)
456{
457	ssize_t result = -ENOMEM;
458	struct device *dev = i2400m_dev(i2400m);
459
460	d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
461		  i2400m, opcode, ack, ack_size);
462	if (ack_size < sizeof(*ack)) {
463		result = -EIO;
464		dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
465			"return enough data (%zu bytes vs %zu expected)\n",
466			opcode, ack_size, sizeof(*ack));
467		goto error_ack_short;
468	}
469	result = i2400m_is_boot_barker(i2400m, ack, ack_size);
470	if (result >= 0) {
471		result = -ERESTARTSYS;
472		d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
473		goto error_reboot;
474	}
475	if (ack_size == sizeof(i2400m_ACK_BARKER)
476		 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
477		result = -EISCONN;
478		d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
479			 opcode);
480		goto error_reboot_ack;
481	}
482	result = 0;
483	if (flags & I2400M_BM_CMD_RAW)
484		goto out_raw;
485	ack->data_size = le32_to_cpu(ack->data_size);
486	ack->target_addr = le32_to_cpu(ack->target_addr);
487	ack->block_checksum = le32_to_cpu(ack->block_checksum);
488	d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
489		 "response %u csum %u rr %u da %u\n",
490		 opcode, i2400m_brh_get_opcode(ack),
491		 i2400m_brh_get_response(ack),
492		 i2400m_brh_get_use_checksum(ack),
493		 i2400m_brh_get_response_required(ack),
494		 i2400m_brh_get_direct_access(ack));
495	result = -EIO;
496	if (i2400m_brh_get_signature(ack) != 0xcbbc) {
497		dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
498			"0x%04x\n", opcode, i2400m_brh_get_signature(ack));
499		goto error_ack_signature;
500	}
501	if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
502		dev_err(dev, "boot-mode cmd %d: HW BUG? "
503			"received response for opcode %u, expected %u\n",
504			opcode, i2400m_brh_get_opcode(ack), opcode);
505		goto error_ack_opcode;
506	}
507	if (i2400m_brh_get_response(ack) != 0) {	/* failed? */
508		dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
509			opcode, i2400m_brh_get_response(ack));
510		goto error_ack_failed;
511	}
512	if (ack_size < ack->data_size + sizeof(*ack)) {
513		dev_err(dev, "boot-mode cmd %d: SW BUG "
514			"driver provided only %zu bytes for %zu bytes "
515			"of data\n", opcode, ack_size,
516			(size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
517		goto error_ack_short_buffer;
518	}
519	result = ack_size;
520	/* Don't you love this stack of empty targets? Well, I don't
521	 * either, but it helps track exactly who comes in here and
522	 * why :) */
523error_ack_short_buffer:
524error_ack_failed:
525error_ack_opcode:
526error_ack_signature:
527out_raw:
528error_reboot_ack:
529error_reboot:
530error_ack_short:
531	d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
532		i2400m, opcode, ack, ack_size, (int) result);
533	return result;
534}
535
536
537/**
538 * i2400m_bm_cmd - Execute a boot mode command
539 *
540 * @cmd: buffer containing the command data (pointing at the header).
541 *     This data can be ANYWHERE (for USB, we will copy it to an
542 *     specific buffer). Make sure everything is in proper little
543 *     endian.
544 *
545 *     A raw buffer can be also sent, just cast it and set flags to
546 *     I2400M_BM_CMD_RAW.
547 *
548 *     This function will generate a checksum for you if the
549 *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
550 *     is set).
551 *
552 *     You can use the i2400m->bm_cmd_buf to stage your commands and
553 *     send them.
554 *
555 *     If NULL, no command is sent (we just wait for an ack).
556 *
557 * @cmd_size: size of the command. Will be auto padded to the
558 *     bus-specific drivers padding requirements.
559 *
560 * @ack: buffer where to place the acknowledgement. If it is a regular
561 *     command response, all fields will be returned with the right,
562 *     native endianess.
563 *
564 *     You *cannot* use i2400m->bm_ack_buf for this buffer.
565 *
566 * @ack_size: size of @ack, 16 aligned; you need to provide at least
567 *     sizeof(*ack) bytes and then enough to contain the return data
568 *     from the command
569 *
570 * @flags: see I2400M_BM_CMD_* above.
571 *
572 * @returns: bytes received by the notification; if < 0, an errno code
573 *     denoting an error or:
574 *
575 *     -ERESTARTSYS  The device has rebooted
576 *
577 * Executes a boot-mode command and waits for a response, doing basic
578 * validation on it; if a zero length response is received, it retries
579 * waiting for a response until a non-zero one is received (timing out
580 * after %I2400M_BOOT_RETRIES retries).
581 */
582static
583ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
584		      const struct i2400m_bootrom_header *cmd, size_t cmd_size,
585		      struct i2400m_bootrom_header *ack, size_t ack_size,
586		      int flags)
587{
588	ssize_t result = -ENOMEM, rx_bytes;
589	struct device *dev = i2400m_dev(i2400m);
590	int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
591
592	d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
593		  i2400m, cmd, cmd_size, ack, ack_size);
594	BUG_ON(ack_size < sizeof(*ack));
595	BUG_ON(i2400m->boot_mode == 0);
596
597	if (cmd != NULL) {		/* send the command */
598		result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
599		if (result < 0)
600			goto error_cmd_send;
601		if ((flags & I2400M_BM_CMD_RAW) == 0)
602			d_printf(5, dev,
603				 "boot-mode cmd %d csum %u rr %u da %u: "
604				 "addr 0x%04x size %u block csum 0x%04x\n",
605				 opcode, i2400m_brh_get_use_checksum(cmd),
606				 i2400m_brh_get_response_required(cmd),
607				 i2400m_brh_get_direct_access(cmd),
608				 cmd->target_addr, cmd->data_size,
609				 cmd->block_checksum);
610	}
611	result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
612	if (result < 0) {
613		dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
614			opcode, (int) result);	/* bah, %zd doesn't work */
615		goto error_wait_for_ack;
616	}
617	rx_bytes = result;
618	/* verify the ack and read more if necessary [result is the
619	 * final amount of bytes we get in the ack]  */
620	result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
621	if (result < 0)
622		goto error_bad_ack;
623	/* Don't you love this stack of empty targets? Well, I don't
624	 * either, but it helps track exactly who comes in here and
625	 * why :) */
626	result = rx_bytes;
627error_bad_ack:
628error_wait_for_ack:
629error_cmd_send:
630	d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
631		i2400m, cmd, cmd_size, ack, ack_size, (int) result);
632	return result;
633}
634
635
636/**
637 * i2400m_download_chunk - write a single chunk of data to the device's memory
638 *
639 * @i2400m: device descriptor
640 * @buf: the buffer to write
641 * @buf_len: length of the buffer to write
642 * @addr: address in the device memory space
643 * @direct: bootrom write mode
644 * @do_csum: should a checksum validation be performed
645 */
646static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
647				 size_t __chunk_len, unsigned long addr,
648				 unsigned int direct, unsigned int do_csum)
649{
650	int ret;
651	size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
652	struct device *dev = i2400m_dev(i2400m);
653	struct {
654		struct i2400m_bootrom_header cmd;
655		u8 cmd_payload[chunk_len];
656	} __packed *buf;
657	struct i2400m_bootrom_header ack;
658
659	d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
660		  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
661		  addr, direct, do_csum);
662	buf = i2400m->bm_cmd_buf;
663	memcpy(buf->cmd_payload, chunk, __chunk_len);
664	memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
665
666	buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
667					      __chunk_len & 0x3 ? 0 : do_csum,
668					      __chunk_len & 0xf ? 0 : direct);
669	buf->cmd.target_addr = cpu_to_le32(addr);
670	buf->cmd.data_size = cpu_to_le32(__chunk_len);
671	ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
672			    &ack, sizeof(ack), 0);
673	if (ret >= 0)
674		ret = 0;
675	d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
676		"direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
677		addr, direct, do_csum, ret);
678	return ret;
679}
680
681
682/*
683 * Download a BCF file's sections to the device
684 *
685 * @i2400m: device descriptor
686 * @bcf: pointer to firmware data (first header followed by the
687 *     payloads). Assumed verified and consistent.
688 * @bcf_len: length (in bytes) of the @bcf buffer.
689 *
690 * Returns: < 0 errno code on error or the offset to the jump instruction.
691 *
692 * Given a BCF file, downloads each section (a command and a payload)
693 * to the device's address space. Actually, it just executes each
694 * command i the BCF file.
695 *
696 * The section size has to be aligned to 4 bytes AND the padding has
697 * to be taken from the firmware file, as the signature takes it into
698 * account.
699 */
700static
701ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
702			  const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
703{
704	ssize_t ret;
705	struct device *dev = i2400m_dev(i2400m);
706	size_t offset,		/* iterator offset */
707		data_size,	/* Size of the data payload */
708		section_size,	/* Size of the whole section (cmd + payload) */
709		section = 1;
710	const struct i2400m_bootrom_header *bh;
711	struct i2400m_bootrom_header ack;
712
713	d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
714		  i2400m, bcf, bcf_len);
715	/* Iterate over the command blocks in the BCF file that start
716	 * after the header */
717	offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
718	while (1) {	/* start sending the file */
719		bh = (void *) bcf + offset;
720		data_size = le32_to_cpu(bh->data_size);
721		section_size = ALIGN(sizeof(*bh) + data_size, 4);
722		d_printf(7, dev,
723			 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
724			 section, offset, sizeof(*bh) + data_size,
725			 le32_to_cpu(bh->target_addr));
726		/*
727		 * We look for JUMP cmd from the bootmode header,
728		 * either I2400M_BRH_SIGNED_JUMP for secure boot
729		 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
730		 * should be the bootmode header with JUMP cmd.
731		 */
732		if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
733			i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
734			d_printf(5, dev,  "jump found @%zu\n", offset);
735			break;
736		}
737		if (offset + section_size > bcf_len) {
738			dev_err(dev, "fw %s: bad section #%zu, "
739				"end (@%zu) beyond EOF (@%zu)\n",
740				i2400m->fw_name, section,
741				offset + section_size,  bcf_len);
742			ret = -EINVAL;
743			goto error_section_beyond_eof;
744		}
745		__i2400m_msleep(20);
746		ret = i2400m_bm_cmd(i2400m, bh, section_size,
747				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
748		if (ret < 0) {
749			dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
750				"failed %d\n", i2400m->fw_name, section,
751				offset, sizeof(*bh) + data_size, (int) ret);
752			goto error_send;
753		}
754		offset += section_size;
755		section++;
756	}
757	ret = offset;
758error_section_beyond_eof:
759error_send:
760	d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
761		i2400m, bcf, bcf_len, (int) ret);
762	return ret;
763}
764
765
766/*
767 * Indicate if the device emitted a reboot barker that indicates
768 * "signed boot"
769 */
770static
771unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
772{
773	return likely(i2400m->sboot);
774}
775
776
777/*
778 * Do the final steps of uploading firmware
779 *
780 * @bcf_hdr: BCF header we are actually using
781 * @bcf: pointer to the firmware image (which matches the first header
782 *     that is followed by the actual payloads).
783 * @offset: [byte] offset into @bcf for the command we need to send.
784 *
785 * Depending on the boot mode (signed vs non-signed), different
786 * actions need to be taken.
787 */
788static
789int i2400m_dnload_finalize(struct i2400m *i2400m,
790			   const struct i2400m_bcf_hdr *bcf_hdr,
791			   const struct i2400m_bcf_hdr *bcf, size_t offset)
792{
793	int ret = 0;
794	struct device *dev = i2400m_dev(i2400m);
795	struct i2400m_bootrom_header *cmd, ack;
796	struct {
797		struct i2400m_bootrom_header cmd;
798		u8 cmd_pl[0];
799	} __packed *cmd_buf;
800	size_t signature_block_offset, signature_block_size;
801
802	d_fnstart(3, dev, "offset %zu\n", offset);
803	cmd = (void *) bcf + offset;
804	if (i2400m_boot_is_signed(i2400m) == 0) {
805		struct i2400m_bootrom_header jump_ack;
806		d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
807			le32_to_cpu(cmd->target_addr));
808		cmd_buf = i2400m->bm_cmd_buf;
809		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
810		cmd = &cmd_buf->cmd;
811		/* now cmd points to the actual bootrom_header in cmd_buf */
812		i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
813		cmd->data_size = 0;
814		ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
815				    &jump_ack, sizeof(jump_ack), 0);
816	} else {
817		d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
818			 le32_to_cpu(cmd->target_addr));
819		cmd_buf = i2400m->bm_cmd_buf;
820		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
821		signature_block_offset =
822			sizeof(*bcf_hdr)
823			+ le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
824			+ le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
825		signature_block_size =
826			le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
827		memcpy(cmd_buf->cmd_pl,
828		       (void *) bcf_hdr + signature_block_offset,
829		       signature_block_size);
830		ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
831				    sizeof(cmd_buf->cmd) + signature_block_size,
832				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
833	}
834	d_fnend(3, dev, "returning %d\n", ret);
835	return ret;
836}
837
838
839/**
840 * i2400m_bootrom_init - Reboots a powered device into boot mode
841 *
842 * @i2400m: device descriptor
843 * @flags:
844 *      I2400M_BRI_SOFT: a reboot barker has been seen
845 *          already, so don't wait for it.
846 *
847 *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
848 *          for a reboot barker notification. This is a one shot; if
849 *          the state machine needs to send a reboot command it will.
850 *
851 * Returns:
852 *
853 *     < 0 errno code on error, 0 if ok.
854 *
855 * Description:
856 *
857 * Tries hard enough to put the device in boot-mode. There are two
858 * main phases to this:
859 *
860 * a. (1) send a reboot command and (2) get a reboot barker
861 *
862 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
863 *        getting an ack barker in return
864 *
865 * We want to skip (a) in some cases [soft]. The state machine is
866 * horrible, but it is basically: on each phase, send what has to be
867 * sent (if any), wait for the answer and act on the answer. We might
868 * have to backtrack and retry, so we keep a max tries counter for
869 * that.
870 *
871 * It sucks because we don't know ahead of time which is going to be
872 * the reboot barker (the device might send different ones depending
873 * on its EEPROM config) and once the device reboots and waits for the
874 * echo/ack reboot barker being sent back, it doesn't understand
875 * anything else. So we can be left at the point where we don't know
876 * what to send to it -- cold reset and bus reset seem to have little
877 * effect. So the function iterates (in this case) through all the
878 * known barkers and tries them all until an ACK is
879 * received. Otherwise, it gives up.
880 *
881 * If we get a timeout after sending a warm reset, we do it again.
882 */
883int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
884{
885	int result;
886	struct device *dev = i2400m_dev(i2400m);
887	struct i2400m_bootrom_header *cmd;
888	struct i2400m_bootrom_header ack;
889	int count = i2400m->bus_bm_retries;
890	int ack_timeout_cnt = 1;
891	unsigned i;
892
893	BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
894	BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
895
896	d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
897	result = -ENOMEM;
898	cmd = i2400m->bm_cmd_buf;
899	if (flags & I2400M_BRI_SOFT)
900		goto do_reboot_ack;
901do_reboot:
902	ack_timeout_cnt = 1;
903	if (--count < 0)
904		goto error_timeout;
905	d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
906		 count);
907	if ((flags & I2400M_BRI_NO_REBOOT) == 0)
908		i2400m_reset(i2400m, I2400M_RT_WARM);
909	result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
910			       I2400M_BM_CMD_RAW);
911	flags &= ~I2400M_BRI_NO_REBOOT;
912	switch (result) {
913	case -ERESTARTSYS:
914		/*
915		 * at this point, i2400m_bm_cmd(), through
916		 * __i2400m_bm_ack_process(), has updated
917		 * i2400m->barker and we are good to go.
918		 */
919		d_printf(4, dev, "device reboot: got reboot barker\n");
920		break;
921	case -EISCONN:	/* we don't know how it got here...but we follow it */
922		d_printf(4, dev, "device reboot: got ack barker - whatever\n");
923		goto do_reboot;
924	case -ETIMEDOUT:
925		/*
926		 * Device has timed out, we might be in boot mode
927		 * already and expecting an ack; if we don't know what
928		 * the barker is, we just send them all. Cold reset
929		 * and bus reset don't work. Beats me.
930		 */
931		if (i2400m->barker != NULL) {
932			dev_err(dev, "device boot: reboot barker timed out, "
933				"trying (set) %08x echo/ack\n",
934				le32_to_cpu(i2400m->barker->data[0]));
935			goto do_reboot_ack;
936		}
937		for (i = 0; i < i2400m_barker_db_used; i++) {
938			struct i2400m_barker_db *barker = &i2400m_barker_db[i];
939			memcpy(cmd, barker->data, sizeof(barker->data));
940			result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
941					       &ack, sizeof(ack),
942					       I2400M_BM_CMD_RAW);
943			if (result == -EISCONN) {
944				dev_warn(dev, "device boot: got ack barker "
945					 "after sending echo/ack barker "
946					 "#%d/%08x; rebooting j.i.c.\n",
947					 i, le32_to_cpu(barker->data[0]));
948				flags &= ~I2400M_BRI_NO_REBOOT;
949				goto do_reboot;
950			}
951		}
952		dev_err(dev, "device boot: tried all the echo/acks, could "
953			"not get device to respond; giving up");
954		result = -ESHUTDOWN;
955	case -EPROTO:
956	case -ESHUTDOWN:	/* dev is gone */
957	case -EINTR:		/* user cancelled */
958		goto error_dev_gone;
959	default:
960		dev_err(dev, "device reboot: error %d while waiting "
961			"for reboot barker - rebooting\n", result);
962		d_dump(1, dev, &ack, result);
963		goto do_reboot;
964	}
965	/* At this point we ack back with 4 REBOOT barkers and expect
966	 * 4 ACK barkers. This is ugly, as we send a raw command --
967	 * hence the cast. _bm_cmd() will catch the reboot ack
968	 * notification and report it as -EISCONN. */
969do_reboot_ack:
970	d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
971	memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
972	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
973			       &ack, sizeof(ack), I2400M_BM_CMD_RAW);
974	switch (result) {
975	case -ERESTARTSYS:
976		d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
977		if (--count < 0)
978			goto error_timeout;
979		goto do_reboot_ack;
980	case -EISCONN:
981		d_printf(4, dev, "reboot ack: got ack barker - good\n");
982		break;
983	case -ETIMEDOUT:	/* no response, maybe it is the other type? */
984		if (ack_timeout_cnt-- < 0) {
985			d_printf(4, dev, "reboot ack timedout: retrying\n");
986			goto do_reboot_ack;
987		} else {
988			dev_err(dev, "reboot ack timedout too long: "
989				"trying reboot\n");
990			goto do_reboot;
991		}
992		break;
993	case -EPROTO:
994	case -ESHUTDOWN:	/* dev is gone */
995		goto error_dev_gone;
996	default:
997		dev_err(dev, "device reboot ack: error %d while waiting for "
998			"reboot ack barker - rebooting\n", result);
999		goto do_reboot;
1000	}
1001	d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
1002	result = 0;
1003exit_timeout:
1004error_dev_gone:
1005	d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1006		i2400m, flags, result);
1007	return result;
1008
1009error_timeout:
1010	dev_err(dev, "Timed out waiting for reboot ack\n");
1011	result = -ETIMEDOUT;
1012	goto exit_timeout;
1013}
1014
1015
1016/*
1017 * Read the MAC addr
1018 *
1019 * The position this function reads is fixed in device memory and
1020 * always available, even without firmware.
1021 *
1022 * Note we specify we want to read only six bytes, but provide space
1023 * for 16, as we always get it rounded up.
1024 */
1025int i2400m_read_mac_addr(struct i2400m *i2400m)
1026{
1027	int result;
1028	struct device *dev = i2400m_dev(i2400m);
1029	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1030	struct i2400m_bootrom_header *cmd;
1031	struct {
1032		struct i2400m_bootrom_header ack;
1033		u8 ack_pl[16];
1034	} __packed ack_buf;
1035
1036	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1037	cmd = i2400m->bm_cmd_buf;
1038	cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1039	cmd->target_addr = cpu_to_le32(0x00203fe8);
1040	cmd->data_size = cpu_to_le32(6);
1041	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1042			       &ack_buf.ack, sizeof(ack_buf), 0);
1043	if (result < 0) {
1044		dev_err(dev, "BM: read mac addr failed: %d\n", result);
1045		goto error_read_mac;
1046	}
1047	d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1048	if (i2400m->bus_bm_mac_addr_impaired == 1) {
1049		ack_buf.ack_pl[0] = 0x00;
1050		ack_buf.ack_pl[1] = 0x16;
1051		ack_buf.ack_pl[2] = 0xd3;
1052		get_random_bytes(&ack_buf.ack_pl[3], 3);
1053		dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1054			"mac addr is %pM\n", ack_buf.ack_pl);
1055		result = 0;
1056	}
1057	net_dev->addr_len = ETH_ALEN;
1058	memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1059error_read_mac:
1060	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1061	return result;
1062}
1063
1064
1065/*
1066 * Initialize a non signed boot
1067 *
1068 * This implies sending some magic values to the device's memory. Note
1069 * we convert the values to little endian in the same array
1070 * declaration.
1071 */
1072static
1073int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1074{
1075	unsigned i = 0;
1076	int ret = 0;
1077	struct device *dev = i2400m_dev(i2400m);
1078	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1079	if (i2400m->bus_bm_pokes_table) {
1080		while (i2400m->bus_bm_pokes_table[i].address) {
1081			ret = i2400m_download_chunk(
1082				i2400m,
1083				&i2400m->bus_bm_pokes_table[i].data,
1084				sizeof(i2400m->bus_bm_pokes_table[i].data),
1085				i2400m->bus_bm_pokes_table[i].address, 1, 1);
1086			if (ret < 0)
1087				break;
1088			i++;
1089		}
1090	}
1091	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1092	return ret;
1093}
1094
1095
1096/*
1097 * Initialize the signed boot process
1098 *
1099 * @i2400m: device descriptor
1100 *
1101 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1102 *     memory (it has gone through basic validation).
1103 *
1104 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1105 *     rebooted.
1106 *
1107 * This writes the firmware BCF header to the device using the
1108 * HASH_PAYLOAD_ONLY command.
1109 */
1110static
1111int i2400m_dnload_init_signed(struct i2400m *i2400m,
1112			      const struct i2400m_bcf_hdr *bcf_hdr)
1113{
1114	int ret;
1115	struct device *dev = i2400m_dev(i2400m);
1116	struct {
1117		struct i2400m_bootrom_header cmd;
1118		struct i2400m_bcf_hdr cmd_pl;
1119	} __packed *cmd_buf;
1120	struct i2400m_bootrom_header ack;
1121
1122	d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1123	cmd_buf = i2400m->bm_cmd_buf;
1124	cmd_buf->cmd.command =
1125		i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1126	cmd_buf->cmd.target_addr = 0;
1127	cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1128	memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1129	ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1130			    &ack, sizeof(ack), 0);
1131	if (ret >= 0)
1132		ret = 0;
1133	d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1134	return ret;
1135}
1136
1137
1138/*
1139 * Initialize the firmware download at the device size
1140 *
1141 * Multiplex to the one that matters based on the device's mode
1142 * (signed or non-signed).
1143 */
1144static
1145int i2400m_dnload_init(struct i2400m *i2400m,
1146		       const struct i2400m_bcf_hdr *bcf_hdr)
1147{
1148	int result;
1149	struct device *dev = i2400m_dev(i2400m);
1150
1151	if (i2400m_boot_is_signed(i2400m)) {
1152		d_printf(1, dev, "signed boot\n");
1153		result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1154		if (result == -ERESTARTSYS)
1155			return result;
1156		if (result < 0)
1157			dev_err(dev, "firmware %s: signed boot download "
1158				"initialization failed: %d\n",
1159				i2400m->fw_name, result);
1160	} else {
1161		/* non-signed boot process without pokes */
1162		d_printf(1, dev, "non-signed boot\n");
1163		result = i2400m_dnload_init_nonsigned(i2400m);
1164		if (result == -ERESTARTSYS)
1165			return result;
1166		if (result < 0)
1167			dev_err(dev, "firmware %s: non-signed download "
1168				"initialization failed: %d\n",
1169				i2400m->fw_name, result);
1170	}
1171	return result;
1172}
1173
1174
1175/*
1176 * Run consistency tests on the firmware file and load up headers
1177 *
1178 * Check for the firmware being made for the i2400m device,
1179 * etc...These checks are mostly informative, as the device will make
1180 * them too; but the driver's response is more informative on what
1181 * went wrong.
1182 *
1183 * This will also look at all the headers present on the firmware
1184 * file, and update i2400m->fw_bcf_hdr to point to them.
1185 */
1186static
1187int i2400m_fw_hdr_check(struct i2400m *i2400m,
1188			const struct i2400m_bcf_hdr *bcf_hdr,
1189			size_t index, size_t offset)
1190{
1191	struct device *dev = i2400m_dev(i2400m);
1192
1193	unsigned module_type, header_len, major_version, minor_version,
1194		module_id, module_vendor, date, size;
1195
1196	module_type = le32_to_cpu(bcf_hdr->module_type);
1197	header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1198	major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1199		>> 16;
1200	minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1201	module_id = le32_to_cpu(bcf_hdr->module_id);
1202	module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1203	date = le32_to_cpu(bcf_hdr->date);
1204	size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1205
1206	d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1207		 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1208		 i2400m->fw_name, index, offset,
1209		 module_type, module_vendor, module_id,
1210		 major_version, minor_version, header_len, size, date);
1211
1212	/* Hard errors */
1213	if (major_version != 1) {
1214		dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1215			"v%u.%u not supported\n",
1216			i2400m->fw_name, index, offset,
1217			major_version, minor_version);
1218		return -EBADF;
1219	}
1220
1221	if (module_type != 6) {		/* built for the right hardware? */
1222		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1223			"type 0x%x; aborting\n",
1224			i2400m->fw_name, index, offset,
1225			module_type);
1226		return -EBADF;
1227	}
1228
1229	if (module_vendor != 0x8086) {
1230		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1231			"vendor 0x%x; aborting\n",
1232			i2400m->fw_name, index, offset, module_vendor);
1233		return -EBADF;
1234	}
1235
1236	if (date < 0x20080300)
1237		dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1238			 "too old; unsupported\n",
1239			 i2400m->fw_name, index, offset, date);
1240	return 0;
1241}
1242
1243
1244/*
1245 * Run consistency tests on the firmware file and load up headers
1246 *
1247 * Check for the firmware being made for the i2400m device,
1248 * etc...These checks are mostly informative, as the device will make
1249 * them too; but the driver's response is more informative on what
1250 * went wrong.
1251 *
1252 * This will also look at all the headers present on the firmware
1253 * file, and update i2400m->fw_hdrs to point to them.
1254 */
1255static
1256int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1257{
1258	int result;
1259	struct device *dev = i2400m_dev(i2400m);
1260	size_t headers = 0;
1261	const struct i2400m_bcf_hdr *bcf_hdr;
1262	const void *itr, *next, *top;
1263	size_t slots = 0, used_slots = 0;
1264
1265	for (itr = bcf, top = itr + bcf_size;
1266	     itr < top;
1267	     headers++, itr = next) {
1268		size_t leftover, offset, header_len, size;
1269
1270		leftover = top - itr;
1271		offset = itr - bcf;
1272		if (leftover <= sizeof(*bcf_hdr)) {
1273			dev_err(dev, "firmware %s: %zu B left at @%zx, "
1274				"not enough for BCF header\n",
1275				i2400m->fw_name, leftover, offset);
1276			break;
1277		}
1278		bcf_hdr = itr;
1279		/* Only the first header is supposed to be followed by
1280		 * payload */
1281		header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1282		size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1283		if (headers == 0)
1284			next = itr + size;
1285		else
1286			next = itr + header_len;
1287
1288		result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1289		if (result < 0)
1290			continue;
1291		if (used_slots + 1 >= slots) {
1292			/* +1 -> we need to account for the one we'll
1293			 * occupy and at least an extra one for
1294			 * always being NULL */
1295			result = i2400m_zrealloc_2x(
1296				(void **) &i2400m->fw_hdrs, &slots,
1297				sizeof(i2400m->fw_hdrs[0]),
1298				GFP_KERNEL);
1299			if (result < 0)
1300				goto error_zrealloc;
1301		}
1302		i2400m->fw_hdrs[used_slots] = bcf_hdr;
1303		used_slots++;
1304	}
1305	if (headers == 0) {
1306		dev_err(dev, "firmware %s: no usable headers found\n",
1307			i2400m->fw_name);
1308		result = -EBADF;
1309	} else
1310		result = 0;
1311error_zrealloc:
1312	return result;
1313}
1314
1315
1316/*
1317 * Match a barker to a BCF header module ID
1318 *
1319 * The device sends a barker which tells the firmware loader which
1320 * header in the BCF file has to be used. This does the matching.
1321 */
1322static
1323unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1324			      const struct i2400m_bcf_hdr *bcf_hdr)
1325{
1326	u32 barker = le32_to_cpu(i2400m->barker->data[0])
1327		& 0x7fffffff;
1328	u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1329		& 0x7fffffff;	/* high bit used for something else */
1330
1331	/* special case for 5x50 */
1332	if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1333		return 1;
1334	if (module_id == barker)
1335		return 1;
1336	return 0;
1337}
1338
1339static
1340const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1341{
1342	struct device *dev = i2400m_dev(i2400m);
1343	const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1344	unsigned i = 0;
1345	u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1346
1347	d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1348	if (barker == I2400M_NBOOT_BARKER) {
1349		bcf_hdr = i2400m->fw_hdrs[0];
1350		d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1351			 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1352		return bcf_hdr;
1353	}
1354	for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1355		bcf_hdr = *bcf_itr;
1356		if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1357			d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1358				 i, le32_to_cpu(bcf_hdr->module_id));
1359			return bcf_hdr;
1360		} else
1361			d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1362				 i, le32_to_cpu(bcf_hdr->module_id));
1363	}
1364	dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1365		barker);
1366	return NULL;
1367}
1368
1369
1370/*
1371 * Download the firmware to the device
1372 *
1373 * @i2400m: device descriptor
1374 * @bcf: pointer to loaded (and minimally verified for consistency)
1375 *    firmware
1376 * @bcf_size: size of the @bcf buffer (header plus payloads)
1377 *
1378 * The process for doing this is described in this file's header.
1379 *
1380 * Note we only reinitialize boot-mode if the flags say so. Some hw
1381 * iterations need it, some don't. In any case, if we loop, we always
1382 * need to reinitialize the boot room, hence the flags modification.
1383 */
1384static
1385int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1386		     size_t fw_size, enum i2400m_bri flags)
1387{
1388	int ret = 0;
1389	struct device *dev = i2400m_dev(i2400m);
1390	int count = i2400m->bus_bm_retries;
1391	const struct i2400m_bcf_hdr *bcf_hdr;
1392	size_t bcf_size;
1393
1394	d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1395		  i2400m, bcf, fw_size);
1396	i2400m->boot_mode = 1;
1397	wmb();		/* Make sure other readers see it */
1398hw_reboot:
1399	if (count-- == 0) {
1400		ret = -ERESTARTSYS;
1401		dev_err(dev, "device rebooted too many times, aborting\n");
1402		goto error_too_many_reboots;
1403	}
1404	if (flags & I2400M_BRI_MAC_REINIT) {
1405		ret = i2400m_bootrom_init(i2400m, flags);
1406		if (ret < 0) {
1407			dev_err(dev, "bootrom init failed: %d\n", ret);
1408			goto error_bootrom_init;
1409		}
1410	}
1411	flags |= I2400M_BRI_MAC_REINIT;
1412
1413	/*
1414	 * Initialize the download, push the bytes to the device and
1415	 * then jump to the new firmware. Note @ret is passed with the
1416	 * offset of the jump instruction to _dnload_finalize()
1417	 *
1418	 * Note we need to use the BCF header in the firmware image
1419	 * that matches the barker that the device sent when it
1420	 * rebooted, so it has to be passed along.
1421	 */
1422	ret = -EBADF;
1423	bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1424	if (bcf_hdr == NULL)
1425		goto error_bcf_hdr_find;
1426
1427	ret = i2400m_dnload_init(i2400m, bcf_hdr);
1428	if (ret == -ERESTARTSYS)
1429		goto error_dev_rebooted;
1430	if (ret < 0)
1431		goto error_dnload_init;
1432
1433	/*
1434	 * bcf_size refers to one header size plus the fw sections size
1435	 * indicated by the header,ie. if there are other extended headers
1436	 * at the tail, they are not counted
1437	 */
1438	bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1439	ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1440	if (ret == -ERESTARTSYS)
1441		goto error_dev_rebooted;
1442	if (ret < 0) {
1443		dev_err(dev, "fw %s: download failed: %d\n",
1444			i2400m->fw_name, ret);
1445		goto error_dnload_bcf;
1446	}
1447
1448	ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1449	if (ret == -ERESTARTSYS)
1450		goto error_dev_rebooted;
1451	if (ret < 0) {
1452		dev_err(dev, "fw %s: "
1453			"download finalization failed: %d\n",
1454			i2400m->fw_name, ret);
1455		goto error_dnload_finalize;
1456	}
1457
1458	d_printf(2, dev, "fw %s successfully uploaded\n",
1459		 i2400m->fw_name);
1460	i2400m->boot_mode = 0;
1461	wmb();		/* Make sure i2400m_msg_to_dev() sees boot_mode */
1462error_dnload_finalize:
1463error_dnload_bcf:
1464error_dnload_init:
1465error_bcf_hdr_find:
1466error_bootrom_init:
1467error_too_many_reboots:
1468	d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1469		i2400m, bcf, fw_size, ret);
1470	return ret;
1471
1472error_dev_rebooted:
1473	dev_err(dev, "device rebooted, %d tries left\n", count);
1474	/* we got the notification already, no need to wait for it again */
1475	flags |= I2400M_BRI_SOFT;
1476	goto hw_reboot;
1477}
1478
1479static
1480int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1481			enum i2400m_bri flags)
1482{
1483	int ret;
1484	struct device *dev = i2400m_dev(i2400m);
1485	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
1486
1487	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1488	bcf = (void *) fw->data;
1489	ret = i2400m_fw_check(i2400m, bcf, fw->size);
1490	if (ret >= 0)
1491		ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1492	if (ret < 0)
1493		dev_err(dev, "%s: cannot use: %d, skipping\n",
1494			i2400m->fw_name, ret);
1495	kfree(i2400m->fw_hdrs);
1496	i2400m->fw_hdrs = NULL;
1497	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1498	return ret;
1499}
1500
1501
1502/* Refcounted container for firmware data */
1503struct i2400m_fw {
1504	struct kref kref;
1505	const struct firmware *fw;
1506};
1507
1508
1509static
1510void i2400m_fw_destroy(struct kref *kref)
1511{
1512	struct i2400m_fw *i2400m_fw =
1513		container_of(kref, struct i2400m_fw, kref);
1514	release_firmware(i2400m_fw->fw);
1515	kfree(i2400m_fw);
1516}
1517
1518
1519static
1520struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1521{
1522	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1523		kref_get(&i2400m_fw->kref);
1524	return i2400m_fw;
1525}
1526
1527
1528static
1529void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1530{
1531	kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1532}
1533
1534
1535/**
1536 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1537 *
1538 * @i2400m: device descriptor
1539 *
1540 * Returns: >= 0 if ok, < 0 errno code on error.
1541 *
1542 * This sets up the firmware upload environment, loads the firmware
1543 * file from disk, verifies and then calls the firmware upload process
1544 * per se.
1545 *
1546 * Can be called either from probe, or after a warm reset.  Can not be
1547 * called from within an interrupt.  All the flow in this code is
1548 * single-threade; all I/Os are synchronous.
1549 */
1550int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1551{
1552	int ret, itr;
1553	struct device *dev = i2400m_dev(i2400m);
1554	struct i2400m_fw *i2400m_fw;
1555	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
1556	const struct firmware *fw;
1557	const char *fw_name;
1558
1559	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1560
1561	ret = -ENODEV;
1562	spin_lock(&i2400m->rx_lock);
1563	i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1564	spin_unlock(&i2400m->rx_lock);
1565	if (i2400m_fw == (void *) ~0) {
1566		dev_err(dev, "can't load firmware now!");
1567		goto out;
1568	} else if (i2400m_fw != NULL) {
1569		dev_info(dev, "firmware %s: loading from cache\n",
1570			 i2400m->fw_name);
1571		ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1572		i2400m_fw_put(i2400m_fw);
1573		goto out;
1574	}
1575
1576	/* Load firmware files to memory. */
1577	for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1578		fw_name = i2400m->bus_fw_names[itr];
1579		if (fw_name == NULL) {
1580			dev_err(dev, "Could not find a usable firmware image\n");
1581			break;
1582		}
1583		d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1584		ret = request_firmware(&fw, fw_name, dev);
1585		if (ret < 0) {
1586			dev_err(dev, "fw %s: cannot load file: %d\n",
1587				fw_name, ret);
1588			continue;
1589		}
1590		i2400m->fw_name = fw_name;
1591		ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1592		release_firmware(fw);
1593		if (ret >= 0)	/* firmware loaded successfully */
1594			break;
1595		i2400m->fw_name = NULL;
1596	}
1597out:
1598	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1599	return ret;
1600}
1601EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1602
1603
1604void i2400m_fw_cache(struct i2400m *i2400m)
1605{
1606	int result;
1607	struct i2400m_fw *i2400m_fw;
1608	struct device *dev = i2400m_dev(i2400m);
1609
1610	/* if there is anything there, free it -- now, this'd be weird */
1611	spin_lock(&i2400m->rx_lock);
1612	i2400m_fw = i2400m->fw_cached;
1613	spin_unlock(&i2400m->rx_lock);
1614	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1615		i2400m_fw_put(i2400m_fw);
1616		WARN(1, "%s:%u: still cached fw still present?\n",
1617		     __func__, __LINE__);
1618	}
1619
1620	if (i2400m->fw_name == NULL) {
1621		dev_err(dev, "firmware n/a: can't cache\n");
1622		i2400m_fw = (void *) ~0;
1623		goto out;
1624	}
1625
1626	i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1627	if (i2400m_fw == NULL)
1628		goto out;
1629	kref_init(&i2400m_fw->kref);
1630	result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1631	if (result < 0) {
1632		dev_err(dev, "firmware %s: failed to cache: %d\n",
1633			i2400m->fw_name, result);
1634		kfree(i2400m_fw);
1635		i2400m_fw = (void *) ~0;
1636	} else
1637		dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1638out:
1639	spin_lock(&i2400m->rx_lock);
1640	i2400m->fw_cached = i2400m_fw;
1641	spin_unlock(&i2400m->rx_lock);
1642}
1643
1644
1645void i2400m_fw_uncache(struct i2400m *i2400m)
1646{
1647	struct i2400m_fw *i2400m_fw;
1648
1649	spin_lock(&i2400m->rx_lock);
1650	i2400m_fw = i2400m->fw_cached;
1651	i2400m->fw_cached = NULL;
1652	spin_unlock(&i2400m->rx_lock);
1653
1654	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1655		i2400m_fw_put(i2400m_fw);
1656}
1657
1658