[go: nahoru, domu]

1/*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/kmod.h>
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
27#include <linux/dma-mapping.h>
28#include <linux/dmaengine.h>
29#include <linux/mutex.h>
30#include <linux/of_device.h>
31#include <linux/of_irq.h>
32#include <linux/clk/clk-conf.h>
33#include <linux/slab.h>
34#include <linux/mod_devicetable.h>
35#include <linux/spi/spi.h>
36#include <linux/of_gpio.h>
37#include <linux/pm_runtime.h>
38#include <linux/pm_domain.h>
39#include <linux/export.h>
40#include <linux/sched/rt.h>
41#include <linux/delay.h>
42#include <linux/kthread.h>
43#include <linux/ioport.h>
44#include <linux/acpi.h>
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/spi.h>
48
49static void spidev_release(struct device *dev)
50{
51	struct spi_device	*spi = to_spi_device(dev);
52
53	/* spi masters may cleanup for released devices */
54	if (spi->master->cleanup)
55		spi->master->cleanup(spi);
56
57	spi_master_put(spi->master);
58	kfree(spi);
59}
60
61static ssize_t
62modalias_show(struct device *dev, struct device_attribute *a, char *buf)
63{
64	const struct spi_device	*spi = to_spi_device(dev);
65	int len;
66
67	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
68	if (len != -ENODEV)
69		return len;
70
71	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
72}
73static DEVICE_ATTR_RO(modalias);
74
75static struct attribute *spi_dev_attrs[] = {
76	&dev_attr_modalias.attr,
77	NULL,
78};
79ATTRIBUTE_GROUPS(spi_dev);
80
81/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
82 * and the sysfs version makes coldplug work too.
83 */
84
85static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
86						const struct spi_device *sdev)
87{
88	while (id->name[0]) {
89		if (!strcmp(sdev->modalias, id->name))
90			return id;
91		id++;
92	}
93	return NULL;
94}
95
96const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
97{
98	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
99
100	return spi_match_id(sdrv->id_table, sdev);
101}
102EXPORT_SYMBOL_GPL(spi_get_device_id);
103
104static int spi_match_device(struct device *dev, struct device_driver *drv)
105{
106	const struct spi_device	*spi = to_spi_device(dev);
107	const struct spi_driver	*sdrv = to_spi_driver(drv);
108
109	/* Attempt an OF style match */
110	if (of_driver_match_device(dev, drv))
111		return 1;
112
113	/* Then try ACPI */
114	if (acpi_driver_match_device(dev, drv))
115		return 1;
116
117	if (sdrv->id_table)
118		return !!spi_match_id(sdrv->id_table, spi);
119
120	return strcmp(spi->modalias, drv->name) == 0;
121}
122
123static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
124{
125	const struct spi_device		*spi = to_spi_device(dev);
126	int rc;
127
128	rc = acpi_device_uevent_modalias(dev, env);
129	if (rc != -ENODEV)
130		return rc;
131
132	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
133	return 0;
134}
135
136#ifdef CONFIG_PM_SLEEP
137static int spi_legacy_suspend(struct device *dev, pm_message_t message)
138{
139	int			value = 0;
140	struct spi_driver	*drv = to_spi_driver(dev->driver);
141
142	/* suspend will stop irqs and dma; no more i/o */
143	if (drv) {
144		if (drv->suspend)
145			value = drv->suspend(to_spi_device(dev), message);
146		else
147			dev_dbg(dev, "... can't suspend\n");
148	}
149	return value;
150}
151
152static int spi_legacy_resume(struct device *dev)
153{
154	int			value = 0;
155	struct spi_driver	*drv = to_spi_driver(dev->driver);
156
157	/* resume may restart the i/o queue */
158	if (drv) {
159		if (drv->resume)
160			value = drv->resume(to_spi_device(dev));
161		else
162			dev_dbg(dev, "... can't resume\n");
163	}
164	return value;
165}
166
167static int spi_pm_suspend(struct device *dev)
168{
169	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
170
171	if (pm)
172		return pm_generic_suspend(dev);
173	else
174		return spi_legacy_suspend(dev, PMSG_SUSPEND);
175}
176
177static int spi_pm_resume(struct device *dev)
178{
179	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
180
181	if (pm)
182		return pm_generic_resume(dev);
183	else
184		return spi_legacy_resume(dev);
185}
186
187static int spi_pm_freeze(struct device *dev)
188{
189	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
190
191	if (pm)
192		return pm_generic_freeze(dev);
193	else
194		return spi_legacy_suspend(dev, PMSG_FREEZE);
195}
196
197static int spi_pm_thaw(struct device *dev)
198{
199	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
200
201	if (pm)
202		return pm_generic_thaw(dev);
203	else
204		return spi_legacy_resume(dev);
205}
206
207static int spi_pm_poweroff(struct device *dev)
208{
209	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
210
211	if (pm)
212		return pm_generic_poweroff(dev);
213	else
214		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
215}
216
217static int spi_pm_restore(struct device *dev)
218{
219	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
220
221	if (pm)
222		return pm_generic_restore(dev);
223	else
224		return spi_legacy_resume(dev);
225}
226#else
227#define spi_pm_suspend	NULL
228#define spi_pm_resume	NULL
229#define spi_pm_freeze	NULL
230#define spi_pm_thaw	NULL
231#define spi_pm_poweroff	NULL
232#define spi_pm_restore	NULL
233#endif
234
235static const struct dev_pm_ops spi_pm = {
236	.suspend = spi_pm_suspend,
237	.resume = spi_pm_resume,
238	.freeze = spi_pm_freeze,
239	.thaw = spi_pm_thaw,
240	.poweroff = spi_pm_poweroff,
241	.restore = spi_pm_restore,
242	SET_RUNTIME_PM_OPS(
243		pm_generic_runtime_suspend,
244		pm_generic_runtime_resume,
245		NULL
246	)
247};
248
249struct bus_type spi_bus_type = {
250	.name		= "spi",
251	.dev_groups	= spi_dev_groups,
252	.match		= spi_match_device,
253	.uevent		= spi_uevent,
254	.pm		= &spi_pm,
255};
256EXPORT_SYMBOL_GPL(spi_bus_type);
257
258
259static int spi_drv_probe(struct device *dev)
260{
261	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
262	int ret;
263
264	ret = of_clk_set_defaults(dev->of_node, false);
265	if (ret)
266		return ret;
267
268	ret = dev_pm_domain_attach(dev, true);
269	if (ret != -EPROBE_DEFER) {
270		ret = sdrv->probe(to_spi_device(dev));
271		if (ret)
272			dev_pm_domain_detach(dev, true);
273	}
274
275	return ret;
276}
277
278static int spi_drv_remove(struct device *dev)
279{
280	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
281	int ret;
282
283	ret = sdrv->remove(to_spi_device(dev));
284	dev_pm_domain_detach(dev, true);
285
286	return ret;
287}
288
289static void spi_drv_shutdown(struct device *dev)
290{
291	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
292
293	sdrv->shutdown(to_spi_device(dev));
294}
295
296/**
297 * spi_register_driver - register a SPI driver
298 * @sdrv: the driver to register
299 * Context: can sleep
300 */
301int spi_register_driver(struct spi_driver *sdrv)
302{
303	sdrv->driver.bus = &spi_bus_type;
304	if (sdrv->probe)
305		sdrv->driver.probe = spi_drv_probe;
306	if (sdrv->remove)
307		sdrv->driver.remove = spi_drv_remove;
308	if (sdrv->shutdown)
309		sdrv->driver.shutdown = spi_drv_shutdown;
310	return driver_register(&sdrv->driver);
311}
312EXPORT_SYMBOL_GPL(spi_register_driver);
313
314/*-------------------------------------------------------------------------*/
315
316/* SPI devices should normally not be created by SPI device drivers; that
317 * would make them board-specific.  Similarly with SPI master drivers.
318 * Device registration normally goes into like arch/.../mach.../board-YYY.c
319 * with other readonly (flashable) information about mainboard devices.
320 */
321
322struct boardinfo {
323	struct list_head	list;
324	struct spi_board_info	board_info;
325};
326
327static LIST_HEAD(board_list);
328static LIST_HEAD(spi_master_list);
329
330/*
331 * Used to protect add/del opertion for board_info list and
332 * spi_master list, and their matching process
333 */
334static DEFINE_MUTEX(board_lock);
335
336/**
337 * spi_alloc_device - Allocate a new SPI device
338 * @master: Controller to which device is connected
339 * Context: can sleep
340 *
341 * Allows a driver to allocate and initialize a spi_device without
342 * registering it immediately.  This allows a driver to directly
343 * fill the spi_device with device parameters before calling
344 * spi_add_device() on it.
345 *
346 * Caller is responsible to call spi_add_device() on the returned
347 * spi_device structure to add it to the SPI master.  If the caller
348 * needs to discard the spi_device without adding it, then it should
349 * call spi_dev_put() on it.
350 *
351 * Returns a pointer to the new device, or NULL.
352 */
353struct spi_device *spi_alloc_device(struct spi_master *master)
354{
355	struct spi_device	*spi;
356
357	if (!spi_master_get(master))
358		return NULL;
359
360	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
361	if (!spi) {
362		spi_master_put(master);
363		return NULL;
364	}
365
366	spi->master = master;
367	spi->dev.parent = &master->dev;
368	spi->dev.bus = &spi_bus_type;
369	spi->dev.release = spidev_release;
370	spi->cs_gpio = -ENOENT;
371	device_initialize(&spi->dev);
372	return spi;
373}
374EXPORT_SYMBOL_GPL(spi_alloc_device);
375
376static void spi_dev_set_name(struct spi_device *spi)
377{
378	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
379
380	if (adev) {
381		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
382		return;
383	}
384
385	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
386		     spi->chip_select);
387}
388
389static int spi_dev_check(struct device *dev, void *data)
390{
391	struct spi_device *spi = to_spi_device(dev);
392	struct spi_device *new_spi = data;
393
394	if (spi->master == new_spi->master &&
395	    spi->chip_select == new_spi->chip_select)
396		return -EBUSY;
397	return 0;
398}
399
400/**
401 * spi_add_device - Add spi_device allocated with spi_alloc_device
402 * @spi: spi_device to register
403 *
404 * Companion function to spi_alloc_device.  Devices allocated with
405 * spi_alloc_device can be added onto the spi bus with this function.
406 *
407 * Returns 0 on success; negative errno on failure
408 */
409int spi_add_device(struct spi_device *spi)
410{
411	static DEFINE_MUTEX(spi_add_lock);
412	struct spi_master *master = spi->master;
413	struct device *dev = master->dev.parent;
414	int status;
415
416	/* Chipselects are numbered 0..max; validate. */
417	if (spi->chip_select >= master->num_chipselect) {
418		dev_err(dev, "cs%d >= max %d\n",
419			spi->chip_select,
420			master->num_chipselect);
421		return -EINVAL;
422	}
423
424	/* Set the bus ID string */
425	spi_dev_set_name(spi);
426
427	/* We need to make sure there's no other device with this
428	 * chipselect **BEFORE** we call setup(), else we'll trash
429	 * its configuration.  Lock against concurrent add() calls.
430	 */
431	mutex_lock(&spi_add_lock);
432
433	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
434	if (status) {
435		dev_err(dev, "chipselect %d already in use\n",
436				spi->chip_select);
437		goto done;
438	}
439
440	if (master->cs_gpios)
441		spi->cs_gpio = master->cs_gpios[spi->chip_select];
442
443	/* Drivers may modify this initial i/o setup, but will
444	 * normally rely on the device being setup.  Devices
445	 * using SPI_CS_HIGH can't coexist well otherwise...
446	 */
447	status = spi_setup(spi);
448	if (status < 0) {
449		dev_err(dev, "can't setup %s, status %d\n",
450				dev_name(&spi->dev), status);
451		goto done;
452	}
453
454	/* Device may be bound to an active driver when this returns */
455	status = device_add(&spi->dev);
456	if (status < 0)
457		dev_err(dev, "can't add %s, status %d\n",
458				dev_name(&spi->dev), status);
459	else
460		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
461
462done:
463	mutex_unlock(&spi_add_lock);
464	return status;
465}
466EXPORT_SYMBOL_GPL(spi_add_device);
467
468/**
469 * spi_new_device - instantiate one new SPI device
470 * @master: Controller to which device is connected
471 * @chip: Describes the SPI device
472 * Context: can sleep
473 *
474 * On typical mainboards, this is purely internal; and it's not needed
475 * after board init creates the hard-wired devices.  Some development
476 * platforms may not be able to use spi_register_board_info though, and
477 * this is exported so that for example a USB or parport based adapter
478 * driver could add devices (which it would learn about out-of-band).
479 *
480 * Returns the new device, or NULL.
481 */
482struct spi_device *spi_new_device(struct spi_master *master,
483				  struct spi_board_info *chip)
484{
485	struct spi_device	*proxy;
486	int			status;
487
488	/* NOTE:  caller did any chip->bus_num checks necessary.
489	 *
490	 * Also, unless we change the return value convention to use
491	 * error-or-pointer (not NULL-or-pointer), troubleshootability
492	 * suggests syslogged diagnostics are best here (ugh).
493	 */
494
495	proxy = spi_alloc_device(master);
496	if (!proxy)
497		return NULL;
498
499	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
500
501	proxy->chip_select = chip->chip_select;
502	proxy->max_speed_hz = chip->max_speed_hz;
503	proxy->mode = chip->mode;
504	proxy->irq = chip->irq;
505	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
506	proxy->dev.platform_data = (void *) chip->platform_data;
507	proxy->controller_data = chip->controller_data;
508	proxy->controller_state = NULL;
509
510	status = spi_add_device(proxy);
511	if (status < 0) {
512		spi_dev_put(proxy);
513		return NULL;
514	}
515
516	return proxy;
517}
518EXPORT_SYMBOL_GPL(spi_new_device);
519
520static void spi_match_master_to_boardinfo(struct spi_master *master,
521				struct spi_board_info *bi)
522{
523	struct spi_device *dev;
524
525	if (master->bus_num != bi->bus_num)
526		return;
527
528	dev = spi_new_device(master, bi);
529	if (!dev)
530		dev_err(master->dev.parent, "can't create new device for %s\n",
531			bi->modalias);
532}
533
534/**
535 * spi_register_board_info - register SPI devices for a given board
536 * @info: array of chip descriptors
537 * @n: how many descriptors are provided
538 * Context: can sleep
539 *
540 * Board-specific early init code calls this (probably during arch_initcall)
541 * with segments of the SPI device table.  Any device nodes are created later,
542 * after the relevant parent SPI controller (bus_num) is defined.  We keep
543 * this table of devices forever, so that reloading a controller driver will
544 * not make Linux forget about these hard-wired devices.
545 *
546 * Other code can also call this, e.g. a particular add-on board might provide
547 * SPI devices through its expansion connector, so code initializing that board
548 * would naturally declare its SPI devices.
549 *
550 * The board info passed can safely be __initdata ... but be careful of
551 * any embedded pointers (platform_data, etc), they're copied as-is.
552 */
553int spi_register_board_info(struct spi_board_info const *info, unsigned n)
554{
555	struct boardinfo *bi;
556	int i;
557
558	if (!n)
559		return -EINVAL;
560
561	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
562	if (!bi)
563		return -ENOMEM;
564
565	for (i = 0; i < n; i++, bi++, info++) {
566		struct spi_master *master;
567
568		memcpy(&bi->board_info, info, sizeof(*info));
569		mutex_lock(&board_lock);
570		list_add_tail(&bi->list, &board_list);
571		list_for_each_entry(master, &spi_master_list, list)
572			spi_match_master_to_boardinfo(master, &bi->board_info);
573		mutex_unlock(&board_lock);
574	}
575
576	return 0;
577}
578
579/*-------------------------------------------------------------------------*/
580
581static void spi_set_cs(struct spi_device *spi, bool enable)
582{
583	if (spi->mode & SPI_CS_HIGH)
584		enable = !enable;
585
586	if (spi->cs_gpio >= 0)
587		gpio_set_value(spi->cs_gpio, !enable);
588	else if (spi->master->set_cs)
589		spi->master->set_cs(spi, !enable);
590}
591
592#ifdef CONFIG_HAS_DMA
593static int spi_map_buf(struct spi_master *master, struct device *dev,
594		       struct sg_table *sgt, void *buf, size_t len,
595		       enum dma_data_direction dir)
596{
597	const bool vmalloced_buf = is_vmalloc_addr(buf);
598	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
599	const int sgs = DIV_ROUND_UP(len, desc_len);
600	struct page *vm_page;
601	void *sg_buf;
602	size_t min;
603	int i, ret;
604
605	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
606	if (ret != 0)
607		return ret;
608
609	for (i = 0; i < sgs; i++) {
610		min = min_t(size_t, len, desc_len);
611
612		if (vmalloced_buf) {
613			vm_page = vmalloc_to_page(buf);
614			if (!vm_page) {
615				sg_free_table(sgt);
616				return -ENOMEM;
617			}
618			sg_set_page(&sgt->sgl[i], vm_page,
619				    min, offset_in_page(buf));
620		} else {
621			sg_buf = buf;
622			sg_set_buf(&sgt->sgl[i], sg_buf, min);
623		}
624
625
626		buf += min;
627		len -= min;
628	}
629
630	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
631	if (!ret)
632		ret = -ENOMEM;
633	if (ret < 0) {
634		sg_free_table(sgt);
635		return ret;
636	}
637
638	sgt->nents = ret;
639
640	return 0;
641}
642
643static void spi_unmap_buf(struct spi_master *master, struct device *dev,
644			  struct sg_table *sgt, enum dma_data_direction dir)
645{
646	if (sgt->orig_nents) {
647		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
648		sg_free_table(sgt);
649	}
650}
651
652static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
653{
654	struct device *tx_dev, *rx_dev;
655	struct spi_transfer *xfer;
656	int ret;
657
658	if (!master->can_dma)
659		return 0;
660
661	tx_dev = master->dma_tx->device->dev;
662	rx_dev = master->dma_rx->device->dev;
663
664	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
665		if (!master->can_dma(master, msg->spi, xfer))
666			continue;
667
668		if (xfer->tx_buf != NULL) {
669			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
670					  (void *)xfer->tx_buf, xfer->len,
671					  DMA_TO_DEVICE);
672			if (ret != 0)
673				return ret;
674		}
675
676		if (xfer->rx_buf != NULL) {
677			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
678					  xfer->rx_buf, xfer->len,
679					  DMA_FROM_DEVICE);
680			if (ret != 0) {
681				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
682					      DMA_TO_DEVICE);
683				return ret;
684			}
685		}
686	}
687
688	master->cur_msg_mapped = true;
689
690	return 0;
691}
692
693static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
694{
695	struct spi_transfer *xfer;
696	struct device *tx_dev, *rx_dev;
697
698	if (!master->cur_msg_mapped || !master->can_dma)
699		return 0;
700
701	tx_dev = master->dma_tx->device->dev;
702	rx_dev = master->dma_rx->device->dev;
703
704	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
705		if (!master->can_dma(master, msg->spi, xfer))
706			continue;
707
708		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
709		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
710	}
711
712	return 0;
713}
714#else /* !CONFIG_HAS_DMA */
715static inline int __spi_map_msg(struct spi_master *master,
716				struct spi_message *msg)
717{
718	return 0;
719}
720
721static inline int spi_unmap_msg(struct spi_master *master,
722				struct spi_message *msg)
723{
724	return 0;
725}
726#endif /* !CONFIG_HAS_DMA */
727
728static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
729{
730	struct spi_transfer *xfer;
731	void *tmp;
732	unsigned int max_tx, max_rx;
733
734	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
735		max_tx = 0;
736		max_rx = 0;
737
738		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
739			if ((master->flags & SPI_MASTER_MUST_TX) &&
740			    !xfer->tx_buf)
741				max_tx = max(xfer->len, max_tx);
742			if ((master->flags & SPI_MASTER_MUST_RX) &&
743			    !xfer->rx_buf)
744				max_rx = max(xfer->len, max_rx);
745		}
746
747		if (max_tx) {
748			tmp = krealloc(master->dummy_tx, max_tx,
749				       GFP_KERNEL | GFP_DMA);
750			if (!tmp)
751				return -ENOMEM;
752			master->dummy_tx = tmp;
753			memset(tmp, 0, max_tx);
754		}
755
756		if (max_rx) {
757			tmp = krealloc(master->dummy_rx, max_rx,
758				       GFP_KERNEL | GFP_DMA);
759			if (!tmp)
760				return -ENOMEM;
761			master->dummy_rx = tmp;
762		}
763
764		if (max_tx || max_rx) {
765			list_for_each_entry(xfer, &msg->transfers,
766					    transfer_list) {
767				if (!xfer->tx_buf)
768					xfer->tx_buf = master->dummy_tx;
769				if (!xfer->rx_buf)
770					xfer->rx_buf = master->dummy_rx;
771			}
772		}
773	}
774
775	return __spi_map_msg(master, msg);
776}
777
778/*
779 * spi_transfer_one_message - Default implementation of transfer_one_message()
780 *
781 * This is a standard implementation of transfer_one_message() for
782 * drivers which impelment a transfer_one() operation.  It provides
783 * standard handling of delays and chip select management.
784 */
785static int spi_transfer_one_message(struct spi_master *master,
786				    struct spi_message *msg)
787{
788	struct spi_transfer *xfer;
789	bool keep_cs = false;
790	int ret = 0;
791	int ms = 1;
792
793	spi_set_cs(msg->spi, true);
794
795	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
796		trace_spi_transfer_start(msg, xfer);
797
798		if (xfer->tx_buf || xfer->rx_buf) {
799			reinit_completion(&master->xfer_completion);
800
801			ret = master->transfer_one(master, msg->spi, xfer);
802			if (ret < 0) {
803				dev_err(&msg->spi->dev,
804					"SPI transfer failed: %d\n", ret);
805				goto out;
806			}
807
808			if (ret > 0) {
809				ret = 0;
810				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
811				ms += ms + 100; /* some tolerance */
812
813				ms = wait_for_completion_timeout(&master->xfer_completion,
814								 msecs_to_jiffies(ms));
815			}
816
817			if (ms == 0) {
818				dev_err(&msg->spi->dev,
819					"SPI transfer timed out\n");
820				msg->status = -ETIMEDOUT;
821			}
822		} else {
823			if (xfer->len)
824				dev_err(&msg->spi->dev,
825					"Bufferless transfer has length %u\n",
826					xfer->len);
827		}
828
829		trace_spi_transfer_stop(msg, xfer);
830
831		if (msg->status != -EINPROGRESS)
832			goto out;
833
834		if (xfer->delay_usecs)
835			udelay(xfer->delay_usecs);
836
837		if (xfer->cs_change) {
838			if (list_is_last(&xfer->transfer_list,
839					 &msg->transfers)) {
840				keep_cs = true;
841			} else {
842				spi_set_cs(msg->spi, false);
843				udelay(10);
844				spi_set_cs(msg->spi, true);
845			}
846		}
847
848		msg->actual_length += xfer->len;
849	}
850
851out:
852	if (ret != 0 || !keep_cs)
853		spi_set_cs(msg->spi, false);
854
855	if (msg->status == -EINPROGRESS)
856		msg->status = ret;
857
858	spi_finalize_current_message(master);
859
860	return ret;
861}
862
863/**
864 * spi_finalize_current_transfer - report completion of a transfer
865 * @master: the master reporting completion
866 *
867 * Called by SPI drivers using the core transfer_one_message()
868 * implementation to notify it that the current interrupt driven
869 * transfer has finished and the next one may be scheduled.
870 */
871void spi_finalize_current_transfer(struct spi_master *master)
872{
873	complete(&master->xfer_completion);
874}
875EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
876
877/**
878 * spi_pump_messages - kthread work function which processes spi message queue
879 * @work: pointer to kthread work struct contained in the master struct
880 *
881 * This function checks if there is any spi message in the queue that
882 * needs processing and if so call out to the driver to initialize hardware
883 * and transfer each message.
884 *
885 */
886static void spi_pump_messages(struct kthread_work *work)
887{
888	struct spi_master *master =
889		container_of(work, struct spi_master, pump_messages);
890	unsigned long flags;
891	bool was_busy = false;
892	int ret;
893
894	/* Lock queue and check for queue work */
895	spin_lock_irqsave(&master->queue_lock, flags);
896	if (list_empty(&master->queue) || !master->running) {
897		if (!master->busy) {
898			spin_unlock_irqrestore(&master->queue_lock, flags);
899			return;
900		}
901		master->busy = false;
902		spin_unlock_irqrestore(&master->queue_lock, flags);
903		kfree(master->dummy_rx);
904		master->dummy_rx = NULL;
905		kfree(master->dummy_tx);
906		master->dummy_tx = NULL;
907		if (master->unprepare_transfer_hardware &&
908		    master->unprepare_transfer_hardware(master))
909			dev_err(&master->dev,
910				"failed to unprepare transfer hardware\n");
911		if (master->auto_runtime_pm) {
912			pm_runtime_mark_last_busy(master->dev.parent);
913			pm_runtime_put_autosuspend(master->dev.parent);
914		}
915		trace_spi_master_idle(master);
916		return;
917	}
918
919	/* Make sure we are not already running a message */
920	if (master->cur_msg) {
921		spin_unlock_irqrestore(&master->queue_lock, flags);
922		return;
923	}
924	/* Extract head of queue */
925	master->cur_msg =
926		list_first_entry(&master->queue, struct spi_message, queue);
927
928	list_del_init(&master->cur_msg->queue);
929	if (master->busy)
930		was_busy = true;
931	else
932		master->busy = true;
933	spin_unlock_irqrestore(&master->queue_lock, flags);
934
935	if (!was_busy && master->auto_runtime_pm) {
936		ret = pm_runtime_get_sync(master->dev.parent);
937		if (ret < 0) {
938			dev_err(&master->dev, "Failed to power device: %d\n",
939				ret);
940			return;
941		}
942	}
943
944	if (!was_busy)
945		trace_spi_master_busy(master);
946
947	if (!was_busy && master->prepare_transfer_hardware) {
948		ret = master->prepare_transfer_hardware(master);
949		if (ret) {
950			dev_err(&master->dev,
951				"failed to prepare transfer hardware\n");
952
953			if (master->auto_runtime_pm)
954				pm_runtime_put(master->dev.parent);
955			return;
956		}
957	}
958
959	trace_spi_message_start(master->cur_msg);
960
961	if (master->prepare_message) {
962		ret = master->prepare_message(master, master->cur_msg);
963		if (ret) {
964			dev_err(&master->dev,
965				"failed to prepare message: %d\n", ret);
966			master->cur_msg->status = ret;
967			spi_finalize_current_message(master);
968			return;
969		}
970		master->cur_msg_prepared = true;
971	}
972
973	ret = spi_map_msg(master, master->cur_msg);
974	if (ret) {
975		master->cur_msg->status = ret;
976		spi_finalize_current_message(master);
977		return;
978	}
979
980	ret = master->transfer_one_message(master, master->cur_msg);
981	if (ret) {
982		dev_err(&master->dev,
983			"failed to transfer one message from queue\n");
984		return;
985	}
986}
987
988static int spi_init_queue(struct spi_master *master)
989{
990	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
991
992	INIT_LIST_HEAD(&master->queue);
993	spin_lock_init(&master->queue_lock);
994
995	master->running = false;
996	master->busy = false;
997
998	init_kthread_worker(&master->kworker);
999	master->kworker_task = kthread_run(kthread_worker_fn,
1000					   &master->kworker, "%s",
1001					   dev_name(&master->dev));
1002	if (IS_ERR(master->kworker_task)) {
1003		dev_err(&master->dev, "failed to create message pump task\n");
1004		return -ENOMEM;
1005	}
1006	init_kthread_work(&master->pump_messages, spi_pump_messages);
1007
1008	/*
1009	 * Master config will indicate if this controller should run the
1010	 * message pump with high (realtime) priority to reduce the transfer
1011	 * latency on the bus by minimising the delay between a transfer
1012	 * request and the scheduling of the message pump thread. Without this
1013	 * setting the message pump thread will remain at default priority.
1014	 */
1015	if (master->rt) {
1016		dev_info(&master->dev,
1017			"will run message pump with realtime priority\n");
1018		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1019	}
1020
1021	return 0;
1022}
1023
1024/**
1025 * spi_get_next_queued_message() - called by driver to check for queued
1026 * messages
1027 * @master: the master to check for queued messages
1028 *
1029 * If there are more messages in the queue, the next message is returned from
1030 * this call.
1031 */
1032struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1033{
1034	struct spi_message *next;
1035	unsigned long flags;
1036
1037	/* get a pointer to the next message, if any */
1038	spin_lock_irqsave(&master->queue_lock, flags);
1039	next = list_first_entry_or_null(&master->queue, struct spi_message,
1040					queue);
1041	spin_unlock_irqrestore(&master->queue_lock, flags);
1042
1043	return next;
1044}
1045EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1046
1047/**
1048 * spi_finalize_current_message() - the current message is complete
1049 * @master: the master to return the message to
1050 *
1051 * Called by the driver to notify the core that the message in the front of the
1052 * queue is complete and can be removed from the queue.
1053 */
1054void spi_finalize_current_message(struct spi_master *master)
1055{
1056	struct spi_message *mesg;
1057	unsigned long flags;
1058	int ret;
1059
1060	spin_lock_irqsave(&master->queue_lock, flags);
1061	mesg = master->cur_msg;
1062	master->cur_msg = NULL;
1063
1064	queue_kthread_work(&master->kworker, &master->pump_messages);
1065	spin_unlock_irqrestore(&master->queue_lock, flags);
1066
1067	spi_unmap_msg(master, mesg);
1068
1069	if (master->cur_msg_prepared && master->unprepare_message) {
1070		ret = master->unprepare_message(master, mesg);
1071		if (ret) {
1072			dev_err(&master->dev,
1073				"failed to unprepare message: %d\n", ret);
1074		}
1075	}
1076	master->cur_msg_prepared = false;
1077
1078	mesg->state = NULL;
1079	if (mesg->complete)
1080		mesg->complete(mesg->context);
1081
1082	trace_spi_message_done(mesg);
1083}
1084EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1085
1086static int spi_start_queue(struct spi_master *master)
1087{
1088	unsigned long flags;
1089
1090	spin_lock_irqsave(&master->queue_lock, flags);
1091
1092	if (master->running || master->busy) {
1093		spin_unlock_irqrestore(&master->queue_lock, flags);
1094		return -EBUSY;
1095	}
1096
1097	master->running = true;
1098	master->cur_msg = NULL;
1099	spin_unlock_irqrestore(&master->queue_lock, flags);
1100
1101	queue_kthread_work(&master->kworker, &master->pump_messages);
1102
1103	return 0;
1104}
1105
1106static int spi_stop_queue(struct spi_master *master)
1107{
1108	unsigned long flags;
1109	unsigned limit = 500;
1110	int ret = 0;
1111
1112	spin_lock_irqsave(&master->queue_lock, flags);
1113
1114	/*
1115	 * This is a bit lame, but is optimized for the common execution path.
1116	 * A wait_queue on the master->busy could be used, but then the common
1117	 * execution path (pump_messages) would be required to call wake_up or
1118	 * friends on every SPI message. Do this instead.
1119	 */
1120	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1121		spin_unlock_irqrestore(&master->queue_lock, flags);
1122		usleep_range(10000, 11000);
1123		spin_lock_irqsave(&master->queue_lock, flags);
1124	}
1125
1126	if (!list_empty(&master->queue) || master->busy)
1127		ret = -EBUSY;
1128	else
1129		master->running = false;
1130
1131	spin_unlock_irqrestore(&master->queue_lock, flags);
1132
1133	if (ret) {
1134		dev_warn(&master->dev,
1135			 "could not stop message queue\n");
1136		return ret;
1137	}
1138	return ret;
1139}
1140
1141static int spi_destroy_queue(struct spi_master *master)
1142{
1143	int ret;
1144
1145	ret = spi_stop_queue(master);
1146
1147	/*
1148	 * flush_kthread_worker will block until all work is done.
1149	 * If the reason that stop_queue timed out is that the work will never
1150	 * finish, then it does no good to call flush/stop thread, so
1151	 * return anyway.
1152	 */
1153	if (ret) {
1154		dev_err(&master->dev, "problem destroying queue\n");
1155		return ret;
1156	}
1157
1158	flush_kthread_worker(&master->kworker);
1159	kthread_stop(master->kworker_task);
1160
1161	return 0;
1162}
1163
1164/**
1165 * spi_queued_transfer - transfer function for queued transfers
1166 * @spi: spi device which is requesting transfer
1167 * @msg: spi message which is to handled is queued to driver queue
1168 */
1169static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1170{
1171	struct spi_master *master = spi->master;
1172	unsigned long flags;
1173
1174	spin_lock_irqsave(&master->queue_lock, flags);
1175
1176	if (!master->running) {
1177		spin_unlock_irqrestore(&master->queue_lock, flags);
1178		return -ESHUTDOWN;
1179	}
1180	msg->actual_length = 0;
1181	msg->status = -EINPROGRESS;
1182
1183	list_add_tail(&msg->queue, &master->queue);
1184	if (!master->busy)
1185		queue_kthread_work(&master->kworker, &master->pump_messages);
1186
1187	spin_unlock_irqrestore(&master->queue_lock, flags);
1188	return 0;
1189}
1190
1191static int spi_master_initialize_queue(struct spi_master *master)
1192{
1193	int ret;
1194
1195	master->transfer = spi_queued_transfer;
1196	if (!master->transfer_one_message)
1197		master->transfer_one_message = spi_transfer_one_message;
1198
1199	/* Initialize and start queue */
1200	ret = spi_init_queue(master);
1201	if (ret) {
1202		dev_err(&master->dev, "problem initializing queue\n");
1203		goto err_init_queue;
1204	}
1205	master->queued = true;
1206	ret = spi_start_queue(master);
1207	if (ret) {
1208		dev_err(&master->dev, "problem starting queue\n");
1209		goto err_start_queue;
1210	}
1211
1212	return 0;
1213
1214err_start_queue:
1215	spi_destroy_queue(master);
1216err_init_queue:
1217	return ret;
1218}
1219
1220/*-------------------------------------------------------------------------*/
1221
1222#if defined(CONFIG_OF)
1223/**
1224 * of_register_spi_devices() - Register child devices onto the SPI bus
1225 * @master:	Pointer to spi_master device
1226 *
1227 * Registers an spi_device for each child node of master node which has a 'reg'
1228 * property.
1229 */
1230static void of_register_spi_devices(struct spi_master *master)
1231{
1232	struct spi_device *spi;
1233	struct device_node *nc;
1234	int rc;
1235	u32 value;
1236
1237	if (!master->dev.of_node)
1238		return;
1239
1240	for_each_available_child_of_node(master->dev.of_node, nc) {
1241		/* Alloc an spi_device */
1242		spi = spi_alloc_device(master);
1243		if (!spi) {
1244			dev_err(&master->dev, "spi_device alloc error for %s\n",
1245				nc->full_name);
1246			spi_dev_put(spi);
1247			continue;
1248		}
1249
1250		/* Select device driver */
1251		if (of_modalias_node(nc, spi->modalias,
1252				     sizeof(spi->modalias)) < 0) {
1253			dev_err(&master->dev, "cannot find modalias for %s\n",
1254				nc->full_name);
1255			spi_dev_put(spi);
1256			continue;
1257		}
1258
1259		/* Device address */
1260		rc = of_property_read_u32(nc, "reg", &value);
1261		if (rc) {
1262			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1263				nc->full_name, rc);
1264			spi_dev_put(spi);
1265			continue;
1266		}
1267		spi->chip_select = value;
1268
1269		/* Mode (clock phase/polarity/etc.) */
1270		if (of_find_property(nc, "spi-cpha", NULL))
1271			spi->mode |= SPI_CPHA;
1272		if (of_find_property(nc, "spi-cpol", NULL))
1273			spi->mode |= SPI_CPOL;
1274		if (of_find_property(nc, "spi-cs-high", NULL))
1275			spi->mode |= SPI_CS_HIGH;
1276		if (of_find_property(nc, "spi-3wire", NULL))
1277			spi->mode |= SPI_3WIRE;
1278		if (of_find_property(nc, "spi-lsb-first", NULL))
1279			spi->mode |= SPI_LSB_FIRST;
1280
1281		/* Device DUAL/QUAD mode */
1282		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1283			switch (value) {
1284			case 1:
1285				break;
1286			case 2:
1287				spi->mode |= SPI_TX_DUAL;
1288				break;
1289			case 4:
1290				spi->mode |= SPI_TX_QUAD;
1291				break;
1292			default:
1293				dev_warn(&master->dev,
1294					 "spi-tx-bus-width %d not supported\n",
1295					 value);
1296				break;
1297			}
1298		}
1299
1300		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1301			switch (value) {
1302			case 1:
1303				break;
1304			case 2:
1305				spi->mode |= SPI_RX_DUAL;
1306				break;
1307			case 4:
1308				spi->mode |= SPI_RX_QUAD;
1309				break;
1310			default:
1311				dev_warn(&master->dev,
1312					 "spi-rx-bus-width %d not supported\n",
1313					 value);
1314				break;
1315			}
1316		}
1317
1318		/* Device speed */
1319		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1320		if (rc) {
1321			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1322				nc->full_name, rc);
1323			spi_dev_put(spi);
1324			continue;
1325		}
1326		spi->max_speed_hz = value;
1327
1328		/* IRQ */
1329		spi->irq = irq_of_parse_and_map(nc, 0);
1330
1331		/* Store a pointer to the node in the device structure */
1332		of_node_get(nc);
1333		spi->dev.of_node = nc;
1334
1335		/* Register the new device */
1336		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1337		rc = spi_add_device(spi);
1338		if (rc) {
1339			dev_err(&master->dev, "spi_device register error %s\n",
1340				nc->full_name);
1341			spi_dev_put(spi);
1342		}
1343
1344	}
1345}
1346#else
1347static void of_register_spi_devices(struct spi_master *master) { }
1348#endif
1349
1350#ifdef CONFIG_ACPI
1351static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1352{
1353	struct spi_device *spi = data;
1354
1355	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1356		struct acpi_resource_spi_serialbus *sb;
1357
1358		sb = &ares->data.spi_serial_bus;
1359		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1360			spi->chip_select = sb->device_selection;
1361			spi->max_speed_hz = sb->connection_speed;
1362
1363			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1364				spi->mode |= SPI_CPHA;
1365			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1366				spi->mode |= SPI_CPOL;
1367			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1368				spi->mode |= SPI_CS_HIGH;
1369		}
1370	} else if (spi->irq < 0) {
1371		struct resource r;
1372
1373		if (acpi_dev_resource_interrupt(ares, 0, &r))
1374			spi->irq = r.start;
1375	}
1376
1377	/* Always tell the ACPI core to skip this resource */
1378	return 1;
1379}
1380
1381static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1382				       void *data, void **return_value)
1383{
1384	struct spi_master *master = data;
1385	struct list_head resource_list;
1386	struct acpi_device *adev;
1387	struct spi_device *spi;
1388	int ret;
1389
1390	if (acpi_bus_get_device(handle, &adev))
1391		return AE_OK;
1392	if (acpi_bus_get_status(adev) || !adev->status.present)
1393		return AE_OK;
1394
1395	spi = spi_alloc_device(master);
1396	if (!spi) {
1397		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1398			dev_name(&adev->dev));
1399		return AE_NO_MEMORY;
1400	}
1401
1402	ACPI_COMPANION_SET(&spi->dev, adev);
1403	spi->irq = -1;
1404
1405	INIT_LIST_HEAD(&resource_list);
1406	ret = acpi_dev_get_resources(adev, &resource_list,
1407				     acpi_spi_add_resource, spi);
1408	acpi_dev_free_resource_list(&resource_list);
1409
1410	if (ret < 0 || !spi->max_speed_hz) {
1411		spi_dev_put(spi);
1412		return AE_OK;
1413	}
1414
1415	adev->power.flags.ignore_parent = true;
1416	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1417	if (spi_add_device(spi)) {
1418		adev->power.flags.ignore_parent = false;
1419		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1420			dev_name(&adev->dev));
1421		spi_dev_put(spi);
1422	}
1423
1424	return AE_OK;
1425}
1426
1427static void acpi_register_spi_devices(struct spi_master *master)
1428{
1429	acpi_status status;
1430	acpi_handle handle;
1431
1432	handle = ACPI_HANDLE(master->dev.parent);
1433	if (!handle)
1434		return;
1435
1436	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1437				     acpi_spi_add_device, NULL,
1438				     master, NULL);
1439	if (ACPI_FAILURE(status))
1440		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1441}
1442#else
1443static inline void acpi_register_spi_devices(struct spi_master *master) {}
1444#endif /* CONFIG_ACPI */
1445
1446static void spi_master_release(struct device *dev)
1447{
1448	struct spi_master *master;
1449
1450	master = container_of(dev, struct spi_master, dev);
1451	kfree(master);
1452}
1453
1454static struct class spi_master_class = {
1455	.name		= "spi_master",
1456	.owner		= THIS_MODULE,
1457	.dev_release	= spi_master_release,
1458};
1459
1460
1461
1462/**
1463 * spi_alloc_master - allocate SPI master controller
1464 * @dev: the controller, possibly using the platform_bus
1465 * @size: how much zeroed driver-private data to allocate; the pointer to this
1466 *	memory is in the driver_data field of the returned device,
1467 *	accessible with spi_master_get_devdata().
1468 * Context: can sleep
1469 *
1470 * This call is used only by SPI master controller drivers, which are the
1471 * only ones directly touching chip registers.  It's how they allocate
1472 * an spi_master structure, prior to calling spi_register_master().
1473 *
1474 * This must be called from context that can sleep.  It returns the SPI
1475 * master structure on success, else NULL.
1476 *
1477 * The caller is responsible for assigning the bus number and initializing
1478 * the master's methods before calling spi_register_master(); and (after errors
1479 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1480 * leak.
1481 */
1482struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1483{
1484	struct spi_master	*master;
1485
1486	if (!dev)
1487		return NULL;
1488
1489	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1490	if (!master)
1491		return NULL;
1492
1493	device_initialize(&master->dev);
1494	master->bus_num = -1;
1495	master->num_chipselect = 1;
1496	master->dev.class = &spi_master_class;
1497	master->dev.parent = get_device(dev);
1498	spi_master_set_devdata(master, &master[1]);
1499
1500	return master;
1501}
1502EXPORT_SYMBOL_GPL(spi_alloc_master);
1503
1504#ifdef CONFIG_OF
1505static int of_spi_register_master(struct spi_master *master)
1506{
1507	int nb, i, *cs;
1508	struct device_node *np = master->dev.of_node;
1509
1510	if (!np)
1511		return 0;
1512
1513	nb = of_gpio_named_count(np, "cs-gpios");
1514	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1515
1516	/* Return error only for an incorrectly formed cs-gpios property */
1517	if (nb == 0 || nb == -ENOENT)
1518		return 0;
1519	else if (nb < 0)
1520		return nb;
1521
1522	cs = devm_kzalloc(&master->dev,
1523			  sizeof(int) * master->num_chipselect,
1524			  GFP_KERNEL);
1525	master->cs_gpios = cs;
1526
1527	if (!master->cs_gpios)
1528		return -ENOMEM;
1529
1530	for (i = 0; i < master->num_chipselect; i++)
1531		cs[i] = -ENOENT;
1532
1533	for (i = 0; i < nb; i++)
1534		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1535
1536	return 0;
1537}
1538#else
1539static int of_spi_register_master(struct spi_master *master)
1540{
1541	return 0;
1542}
1543#endif
1544
1545/**
1546 * spi_register_master - register SPI master controller
1547 * @master: initialized master, originally from spi_alloc_master()
1548 * Context: can sleep
1549 *
1550 * SPI master controllers connect to their drivers using some non-SPI bus,
1551 * such as the platform bus.  The final stage of probe() in that code
1552 * includes calling spi_register_master() to hook up to this SPI bus glue.
1553 *
1554 * SPI controllers use board specific (often SOC specific) bus numbers,
1555 * and board-specific addressing for SPI devices combines those numbers
1556 * with chip select numbers.  Since SPI does not directly support dynamic
1557 * device identification, boards need configuration tables telling which
1558 * chip is at which address.
1559 *
1560 * This must be called from context that can sleep.  It returns zero on
1561 * success, else a negative error code (dropping the master's refcount).
1562 * After a successful return, the caller is responsible for calling
1563 * spi_unregister_master().
1564 */
1565int spi_register_master(struct spi_master *master)
1566{
1567	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1568	struct device		*dev = master->dev.parent;
1569	struct boardinfo	*bi;
1570	int			status = -ENODEV;
1571	int			dynamic = 0;
1572
1573	if (!dev)
1574		return -ENODEV;
1575
1576	status = of_spi_register_master(master);
1577	if (status)
1578		return status;
1579
1580	/* even if it's just one always-selected device, there must
1581	 * be at least one chipselect
1582	 */
1583	if (master->num_chipselect == 0)
1584		return -EINVAL;
1585
1586	if ((master->bus_num < 0) && master->dev.of_node)
1587		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1588
1589	/* convention:  dynamically assigned bus IDs count down from the max */
1590	if (master->bus_num < 0) {
1591		/* FIXME switch to an IDR based scheme, something like
1592		 * I2C now uses, so we can't run out of "dynamic" IDs
1593		 */
1594		master->bus_num = atomic_dec_return(&dyn_bus_id);
1595		dynamic = 1;
1596	}
1597
1598	spin_lock_init(&master->bus_lock_spinlock);
1599	mutex_init(&master->bus_lock_mutex);
1600	master->bus_lock_flag = 0;
1601	init_completion(&master->xfer_completion);
1602	if (!master->max_dma_len)
1603		master->max_dma_len = INT_MAX;
1604
1605	/* register the device, then userspace will see it.
1606	 * registration fails if the bus ID is in use.
1607	 */
1608	dev_set_name(&master->dev, "spi%u", master->bus_num);
1609	status = device_add(&master->dev);
1610	if (status < 0)
1611		goto done;
1612	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1613			dynamic ? " (dynamic)" : "");
1614
1615	/* If we're using a queued driver, start the queue */
1616	if (master->transfer)
1617		dev_info(dev, "master is unqueued, this is deprecated\n");
1618	else {
1619		status = spi_master_initialize_queue(master);
1620		if (status) {
1621			device_del(&master->dev);
1622			goto done;
1623		}
1624	}
1625
1626	mutex_lock(&board_lock);
1627	list_add_tail(&master->list, &spi_master_list);
1628	list_for_each_entry(bi, &board_list, list)
1629		spi_match_master_to_boardinfo(master, &bi->board_info);
1630	mutex_unlock(&board_lock);
1631
1632	/* Register devices from the device tree and ACPI */
1633	of_register_spi_devices(master);
1634	acpi_register_spi_devices(master);
1635done:
1636	return status;
1637}
1638EXPORT_SYMBOL_GPL(spi_register_master);
1639
1640static void devm_spi_unregister(struct device *dev, void *res)
1641{
1642	spi_unregister_master(*(struct spi_master **)res);
1643}
1644
1645/**
1646 * dev_spi_register_master - register managed SPI master controller
1647 * @dev:    device managing SPI master
1648 * @master: initialized master, originally from spi_alloc_master()
1649 * Context: can sleep
1650 *
1651 * Register a SPI device as with spi_register_master() which will
1652 * automatically be unregister
1653 */
1654int devm_spi_register_master(struct device *dev, struct spi_master *master)
1655{
1656	struct spi_master **ptr;
1657	int ret;
1658
1659	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1660	if (!ptr)
1661		return -ENOMEM;
1662
1663	ret = spi_register_master(master);
1664	if (!ret) {
1665		*ptr = master;
1666		devres_add(dev, ptr);
1667	} else {
1668		devres_free(ptr);
1669	}
1670
1671	return ret;
1672}
1673EXPORT_SYMBOL_GPL(devm_spi_register_master);
1674
1675static int __unregister(struct device *dev, void *null)
1676{
1677	spi_unregister_device(to_spi_device(dev));
1678	return 0;
1679}
1680
1681/**
1682 * spi_unregister_master - unregister SPI master controller
1683 * @master: the master being unregistered
1684 * Context: can sleep
1685 *
1686 * This call is used only by SPI master controller drivers, which are the
1687 * only ones directly touching chip registers.
1688 *
1689 * This must be called from context that can sleep.
1690 */
1691void spi_unregister_master(struct spi_master *master)
1692{
1693	int dummy;
1694
1695	if (master->queued) {
1696		if (spi_destroy_queue(master))
1697			dev_err(&master->dev, "queue remove failed\n");
1698	}
1699
1700	mutex_lock(&board_lock);
1701	list_del(&master->list);
1702	mutex_unlock(&board_lock);
1703
1704	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1705	device_unregister(&master->dev);
1706}
1707EXPORT_SYMBOL_GPL(spi_unregister_master);
1708
1709int spi_master_suspend(struct spi_master *master)
1710{
1711	int ret;
1712
1713	/* Basically no-ops for non-queued masters */
1714	if (!master->queued)
1715		return 0;
1716
1717	ret = spi_stop_queue(master);
1718	if (ret)
1719		dev_err(&master->dev, "queue stop failed\n");
1720
1721	return ret;
1722}
1723EXPORT_SYMBOL_GPL(spi_master_suspend);
1724
1725int spi_master_resume(struct spi_master *master)
1726{
1727	int ret;
1728
1729	if (!master->queued)
1730		return 0;
1731
1732	ret = spi_start_queue(master);
1733	if (ret)
1734		dev_err(&master->dev, "queue restart failed\n");
1735
1736	return ret;
1737}
1738EXPORT_SYMBOL_GPL(spi_master_resume);
1739
1740static int __spi_master_match(struct device *dev, const void *data)
1741{
1742	struct spi_master *m;
1743	const u16 *bus_num = data;
1744
1745	m = container_of(dev, struct spi_master, dev);
1746	return m->bus_num == *bus_num;
1747}
1748
1749/**
1750 * spi_busnum_to_master - look up master associated with bus_num
1751 * @bus_num: the master's bus number
1752 * Context: can sleep
1753 *
1754 * This call may be used with devices that are registered after
1755 * arch init time.  It returns a refcounted pointer to the relevant
1756 * spi_master (which the caller must release), or NULL if there is
1757 * no such master registered.
1758 */
1759struct spi_master *spi_busnum_to_master(u16 bus_num)
1760{
1761	struct device		*dev;
1762	struct spi_master	*master = NULL;
1763
1764	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1765				__spi_master_match);
1766	if (dev)
1767		master = container_of(dev, struct spi_master, dev);
1768	/* reference got in class_find_device */
1769	return master;
1770}
1771EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1772
1773
1774/*-------------------------------------------------------------------------*/
1775
1776/* Core methods for SPI master protocol drivers.  Some of the
1777 * other core methods are currently defined as inline functions.
1778 */
1779
1780/**
1781 * spi_setup - setup SPI mode and clock rate
1782 * @spi: the device whose settings are being modified
1783 * Context: can sleep, and no requests are queued to the device
1784 *
1785 * SPI protocol drivers may need to update the transfer mode if the
1786 * device doesn't work with its default.  They may likewise need
1787 * to update clock rates or word sizes from initial values.  This function
1788 * changes those settings, and must be called from a context that can sleep.
1789 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1790 * effect the next time the device is selected and data is transferred to
1791 * or from it.  When this function returns, the spi device is deselected.
1792 *
1793 * Note that this call will fail if the protocol driver specifies an option
1794 * that the underlying controller or its driver does not support.  For
1795 * example, not all hardware supports wire transfers using nine bit words,
1796 * LSB-first wire encoding, or active-high chipselects.
1797 */
1798int spi_setup(struct spi_device *spi)
1799{
1800	unsigned	bad_bits, ugly_bits;
1801	int		status = 0;
1802
1803	/* check mode to prevent that DUAL and QUAD set at the same time
1804	 */
1805	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1806		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1807		dev_err(&spi->dev,
1808		"setup: can not select dual and quad at the same time\n");
1809		return -EINVAL;
1810	}
1811	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1812	 */
1813	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1814		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1815		return -EINVAL;
1816	/* help drivers fail *cleanly* when they need options
1817	 * that aren't supported with their current master
1818	 */
1819	bad_bits = spi->mode & ~spi->master->mode_bits;
1820	ugly_bits = bad_bits &
1821		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1822	if (ugly_bits) {
1823		dev_warn(&spi->dev,
1824			 "setup: ignoring unsupported mode bits %x\n",
1825			 ugly_bits);
1826		spi->mode &= ~ugly_bits;
1827		bad_bits &= ~ugly_bits;
1828	}
1829	if (bad_bits) {
1830		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1831			bad_bits);
1832		return -EINVAL;
1833	}
1834
1835	if (!spi->bits_per_word)
1836		spi->bits_per_word = 8;
1837
1838	if (!spi->max_speed_hz)
1839		spi->max_speed_hz = spi->master->max_speed_hz;
1840
1841	if (spi->master->setup)
1842		status = spi->master->setup(spi);
1843
1844	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1845			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1846			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1847			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1848			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1849			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1850			spi->bits_per_word, spi->max_speed_hz,
1851			status);
1852
1853	return status;
1854}
1855EXPORT_SYMBOL_GPL(spi_setup);
1856
1857static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1858{
1859	struct spi_master *master = spi->master;
1860	struct spi_transfer *xfer;
1861	int w_size;
1862
1863	if (list_empty(&message->transfers))
1864		return -EINVAL;
1865
1866	/* Half-duplex links include original MicroWire, and ones with
1867	 * only one data pin like SPI_3WIRE (switches direction) or where
1868	 * either MOSI or MISO is missing.  They can also be caused by
1869	 * software limitations.
1870	 */
1871	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1872			|| (spi->mode & SPI_3WIRE)) {
1873		unsigned flags = master->flags;
1874
1875		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1876			if (xfer->rx_buf && xfer->tx_buf)
1877				return -EINVAL;
1878			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1879				return -EINVAL;
1880			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1881				return -EINVAL;
1882		}
1883	}
1884
1885	/**
1886	 * Set transfer bits_per_word and max speed as spi device default if
1887	 * it is not set for this transfer.
1888	 * Set transfer tx_nbits and rx_nbits as single transfer default
1889	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1890	 */
1891	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1892		message->frame_length += xfer->len;
1893		if (!xfer->bits_per_word)
1894			xfer->bits_per_word = spi->bits_per_word;
1895
1896		if (!xfer->speed_hz)
1897			xfer->speed_hz = spi->max_speed_hz;
1898
1899		if (master->max_speed_hz &&
1900		    xfer->speed_hz > master->max_speed_hz)
1901			xfer->speed_hz = master->max_speed_hz;
1902
1903		if (master->bits_per_word_mask) {
1904			/* Only 32 bits fit in the mask */
1905			if (xfer->bits_per_word > 32)
1906				return -EINVAL;
1907			if (!(master->bits_per_word_mask &
1908					BIT(xfer->bits_per_word - 1)))
1909				return -EINVAL;
1910		}
1911
1912		/*
1913		 * SPI transfer length should be multiple of SPI word size
1914		 * where SPI word size should be power-of-two multiple
1915		 */
1916		if (xfer->bits_per_word <= 8)
1917			w_size = 1;
1918		else if (xfer->bits_per_word <= 16)
1919			w_size = 2;
1920		else
1921			w_size = 4;
1922
1923		/* No partial transfers accepted */
1924		if (xfer->len % w_size)
1925			return -EINVAL;
1926
1927		if (xfer->speed_hz && master->min_speed_hz &&
1928		    xfer->speed_hz < master->min_speed_hz)
1929			return -EINVAL;
1930
1931		if (xfer->tx_buf && !xfer->tx_nbits)
1932			xfer->tx_nbits = SPI_NBITS_SINGLE;
1933		if (xfer->rx_buf && !xfer->rx_nbits)
1934			xfer->rx_nbits = SPI_NBITS_SINGLE;
1935		/* check transfer tx/rx_nbits:
1936		 * 1. check the value matches one of single, dual and quad
1937		 * 2. check tx/rx_nbits match the mode in spi_device
1938		 */
1939		if (xfer->tx_buf) {
1940			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1941				xfer->tx_nbits != SPI_NBITS_DUAL &&
1942				xfer->tx_nbits != SPI_NBITS_QUAD)
1943				return -EINVAL;
1944			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1945				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1946				return -EINVAL;
1947			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1948				!(spi->mode & SPI_TX_QUAD))
1949				return -EINVAL;
1950		}
1951		/* check transfer rx_nbits */
1952		if (xfer->rx_buf) {
1953			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1954				xfer->rx_nbits != SPI_NBITS_DUAL &&
1955				xfer->rx_nbits != SPI_NBITS_QUAD)
1956				return -EINVAL;
1957			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1958				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1959				return -EINVAL;
1960			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1961				!(spi->mode & SPI_RX_QUAD))
1962				return -EINVAL;
1963		}
1964	}
1965
1966	message->status = -EINPROGRESS;
1967
1968	return 0;
1969}
1970
1971static int __spi_async(struct spi_device *spi, struct spi_message *message)
1972{
1973	struct spi_master *master = spi->master;
1974
1975	message->spi = spi;
1976
1977	trace_spi_message_submit(message);
1978
1979	return master->transfer(spi, message);
1980}
1981
1982/**
1983 * spi_async - asynchronous SPI transfer
1984 * @spi: device with which data will be exchanged
1985 * @message: describes the data transfers, including completion callback
1986 * Context: any (irqs may be blocked, etc)
1987 *
1988 * This call may be used in_irq and other contexts which can't sleep,
1989 * as well as from task contexts which can sleep.
1990 *
1991 * The completion callback is invoked in a context which can't sleep.
1992 * Before that invocation, the value of message->status is undefined.
1993 * When the callback is issued, message->status holds either zero (to
1994 * indicate complete success) or a negative error code.  After that
1995 * callback returns, the driver which issued the transfer request may
1996 * deallocate the associated memory; it's no longer in use by any SPI
1997 * core or controller driver code.
1998 *
1999 * Note that although all messages to a spi_device are handled in
2000 * FIFO order, messages may go to different devices in other orders.
2001 * Some device might be higher priority, or have various "hard" access
2002 * time requirements, for example.
2003 *
2004 * On detection of any fault during the transfer, processing of
2005 * the entire message is aborted, and the device is deselected.
2006 * Until returning from the associated message completion callback,
2007 * no other spi_message queued to that device will be processed.
2008 * (This rule applies equally to all the synchronous transfer calls,
2009 * which are wrappers around this core asynchronous primitive.)
2010 */
2011int spi_async(struct spi_device *spi, struct spi_message *message)
2012{
2013	struct spi_master *master = spi->master;
2014	int ret;
2015	unsigned long flags;
2016
2017	ret = __spi_validate(spi, message);
2018	if (ret != 0)
2019		return ret;
2020
2021	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2022
2023	if (master->bus_lock_flag)
2024		ret = -EBUSY;
2025	else
2026		ret = __spi_async(spi, message);
2027
2028	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2029
2030	return ret;
2031}
2032EXPORT_SYMBOL_GPL(spi_async);
2033
2034/**
2035 * spi_async_locked - version of spi_async with exclusive bus usage
2036 * @spi: device with which data will be exchanged
2037 * @message: describes the data transfers, including completion callback
2038 * Context: any (irqs may be blocked, etc)
2039 *
2040 * This call may be used in_irq and other contexts which can't sleep,
2041 * as well as from task contexts which can sleep.
2042 *
2043 * The completion callback is invoked in a context which can't sleep.
2044 * Before that invocation, the value of message->status is undefined.
2045 * When the callback is issued, message->status holds either zero (to
2046 * indicate complete success) or a negative error code.  After that
2047 * callback returns, the driver which issued the transfer request may
2048 * deallocate the associated memory; it's no longer in use by any SPI
2049 * core or controller driver code.
2050 *
2051 * Note that although all messages to a spi_device are handled in
2052 * FIFO order, messages may go to different devices in other orders.
2053 * Some device might be higher priority, or have various "hard" access
2054 * time requirements, for example.
2055 *
2056 * On detection of any fault during the transfer, processing of
2057 * the entire message is aborted, and the device is deselected.
2058 * Until returning from the associated message completion callback,
2059 * no other spi_message queued to that device will be processed.
2060 * (This rule applies equally to all the synchronous transfer calls,
2061 * which are wrappers around this core asynchronous primitive.)
2062 */
2063int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2064{
2065	struct spi_master *master = spi->master;
2066	int ret;
2067	unsigned long flags;
2068
2069	ret = __spi_validate(spi, message);
2070	if (ret != 0)
2071		return ret;
2072
2073	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2074
2075	ret = __spi_async(spi, message);
2076
2077	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2078
2079	return ret;
2080
2081}
2082EXPORT_SYMBOL_GPL(spi_async_locked);
2083
2084
2085/*-------------------------------------------------------------------------*/
2086
2087/* Utility methods for SPI master protocol drivers, layered on
2088 * top of the core.  Some other utility methods are defined as
2089 * inline functions.
2090 */
2091
2092static void spi_complete(void *arg)
2093{
2094	complete(arg);
2095}
2096
2097static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2098		      int bus_locked)
2099{
2100	DECLARE_COMPLETION_ONSTACK(done);
2101	int status;
2102	struct spi_master *master = spi->master;
2103
2104	message->complete = spi_complete;
2105	message->context = &done;
2106
2107	if (!bus_locked)
2108		mutex_lock(&master->bus_lock_mutex);
2109
2110	status = spi_async_locked(spi, message);
2111
2112	if (!bus_locked)
2113		mutex_unlock(&master->bus_lock_mutex);
2114
2115	if (status == 0) {
2116		wait_for_completion(&done);
2117		status = message->status;
2118	}
2119	message->context = NULL;
2120	return status;
2121}
2122
2123/**
2124 * spi_sync - blocking/synchronous SPI data transfers
2125 * @spi: device with which data will be exchanged
2126 * @message: describes the data transfers
2127 * Context: can sleep
2128 *
2129 * This call may only be used from a context that may sleep.  The sleep
2130 * is non-interruptible, and has no timeout.  Low-overhead controller
2131 * drivers may DMA directly into and out of the message buffers.
2132 *
2133 * Note that the SPI device's chip select is active during the message,
2134 * and then is normally disabled between messages.  Drivers for some
2135 * frequently-used devices may want to minimize costs of selecting a chip,
2136 * by leaving it selected in anticipation that the next message will go
2137 * to the same chip.  (That may increase power usage.)
2138 *
2139 * Also, the caller is guaranteeing that the memory associated with the
2140 * message will not be freed before this call returns.
2141 *
2142 * It returns zero on success, else a negative error code.
2143 */
2144int spi_sync(struct spi_device *spi, struct spi_message *message)
2145{
2146	return __spi_sync(spi, message, 0);
2147}
2148EXPORT_SYMBOL_GPL(spi_sync);
2149
2150/**
2151 * spi_sync_locked - version of spi_sync with exclusive bus usage
2152 * @spi: device with which data will be exchanged
2153 * @message: describes the data transfers
2154 * Context: can sleep
2155 *
2156 * This call may only be used from a context that may sleep.  The sleep
2157 * is non-interruptible, and has no timeout.  Low-overhead controller
2158 * drivers may DMA directly into and out of the message buffers.
2159 *
2160 * This call should be used by drivers that require exclusive access to the
2161 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2162 * be released by a spi_bus_unlock call when the exclusive access is over.
2163 *
2164 * It returns zero on success, else a negative error code.
2165 */
2166int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2167{
2168	return __spi_sync(spi, message, 1);
2169}
2170EXPORT_SYMBOL_GPL(spi_sync_locked);
2171
2172/**
2173 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2174 * @master: SPI bus master that should be locked for exclusive bus access
2175 * Context: can sleep
2176 *
2177 * This call may only be used from a context that may sleep.  The sleep
2178 * is non-interruptible, and has no timeout.
2179 *
2180 * This call should be used by drivers that require exclusive access to the
2181 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2182 * exclusive access is over. Data transfer must be done by spi_sync_locked
2183 * and spi_async_locked calls when the SPI bus lock is held.
2184 *
2185 * It returns zero on success, else a negative error code.
2186 */
2187int spi_bus_lock(struct spi_master *master)
2188{
2189	unsigned long flags;
2190
2191	mutex_lock(&master->bus_lock_mutex);
2192
2193	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2194	master->bus_lock_flag = 1;
2195	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2196
2197	/* mutex remains locked until spi_bus_unlock is called */
2198
2199	return 0;
2200}
2201EXPORT_SYMBOL_GPL(spi_bus_lock);
2202
2203/**
2204 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2205 * @master: SPI bus master that was locked for exclusive bus access
2206 * Context: can sleep
2207 *
2208 * This call may only be used from a context that may sleep.  The sleep
2209 * is non-interruptible, and has no timeout.
2210 *
2211 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2212 * call.
2213 *
2214 * It returns zero on success, else a negative error code.
2215 */
2216int spi_bus_unlock(struct spi_master *master)
2217{
2218	master->bus_lock_flag = 0;
2219
2220	mutex_unlock(&master->bus_lock_mutex);
2221
2222	return 0;
2223}
2224EXPORT_SYMBOL_GPL(spi_bus_unlock);
2225
2226/* portable code must never pass more than 32 bytes */
2227#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2228
2229static u8	*buf;
2230
2231/**
2232 * spi_write_then_read - SPI synchronous write followed by read
2233 * @spi: device with which data will be exchanged
2234 * @txbuf: data to be written (need not be dma-safe)
2235 * @n_tx: size of txbuf, in bytes
2236 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2237 * @n_rx: size of rxbuf, in bytes
2238 * Context: can sleep
2239 *
2240 * This performs a half duplex MicroWire style transaction with the
2241 * device, sending txbuf and then reading rxbuf.  The return value
2242 * is zero for success, else a negative errno status code.
2243 * This call may only be used from a context that may sleep.
2244 *
2245 * Parameters to this routine are always copied using a small buffer;
2246 * portable code should never use this for more than 32 bytes.
2247 * Performance-sensitive or bulk transfer code should instead use
2248 * spi_{async,sync}() calls with dma-safe buffers.
2249 */
2250int spi_write_then_read(struct spi_device *spi,
2251		const void *txbuf, unsigned n_tx,
2252		void *rxbuf, unsigned n_rx)
2253{
2254	static DEFINE_MUTEX(lock);
2255
2256	int			status;
2257	struct spi_message	message;
2258	struct spi_transfer	x[2];
2259	u8			*local_buf;
2260
2261	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2262	 * copying here, (as a pure convenience thing), but we can
2263	 * keep heap costs out of the hot path unless someone else is
2264	 * using the pre-allocated buffer or the transfer is too large.
2265	 */
2266	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2267		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2268				    GFP_KERNEL | GFP_DMA);
2269		if (!local_buf)
2270			return -ENOMEM;
2271	} else {
2272		local_buf = buf;
2273	}
2274
2275	spi_message_init(&message);
2276	memset(x, 0, sizeof(x));
2277	if (n_tx) {
2278		x[0].len = n_tx;
2279		spi_message_add_tail(&x[0], &message);
2280	}
2281	if (n_rx) {
2282		x[1].len = n_rx;
2283		spi_message_add_tail(&x[1], &message);
2284	}
2285
2286	memcpy(local_buf, txbuf, n_tx);
2287	x[0].tx_buf = local_buf;
2288	x[1].rx_buf = local_buf + n_tx;
2289
2290	/* do the i/o */
2291	status = spi_sync(spi, &message);
2292	if (status == 0)
2293		memcpy(rxbuf, x[1].rx_buf, n_rx);
2294
2295	if (x[0].tx_buf == buf)
2296		mutex_unlock(&lock);
2297	else
2298		kfree(local_buf);
2299
2300	return status;
2301}
2302EXPORT_SYMBOL_GPL(spi_write_then_read);
2303
2304/*-------------------------------------------------------------------------*/
2305
2306static int __init spi_init(void)
2307{
2308	int	status;
2309
2310	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2311	if (!buf) {
2312		status = -ENOMEM;
2313		goto err0;
2314	}
2315
2316	status = bus_register(&spi_bus_type);
2317	if (status < 0)
2318		goto err1;
2319
2320	status = class_register(&spi_master_class);
2321	if (status < 0)
2322		goto err2;
2323	return 0;
2324
2325err2:
2326	bus_unregister(&spi_bus_type);
2327err1:
2328	kfree(buf);
2329	buf = NULL;
2330err0:
2331	return status;
2332}
2333
2334/* board_info is normally registered in arch_initcall(),
2335 * but even essential drivers wait till later
2336 *
2337 * REVISIT only boardinfo really needs static linking. the rest (device and
2338 * driver registration) _could_ be dynamically linked (modular) ... costs
2339 * include needing to have boardinfo data structures be much more public.
2340 */
2341postcore_initcall(spi_init);
2342
2343