[go: nahoru, domu]

1/*
2 * lirc_serial.c
3 *
4 * lirc_serial - Device driver that records pulse- and pause-lengths
5 *	       (space-lengths) between DDCD event on a serial port.
6 *
7 * Copyright (C) 1996,97 Ralph Metzler <rjkm@thp.uni-koeln.de>
8 * Copyright (C) 1998 Trent Piepho <xyzzy@u.washington.edu>
9 * Copyright (C) 1998 Ben Pfaff <blp@gnu.org>
10 * Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de>
11 * Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support)
12 *  This program is free software; you can redistribute it and/or modify
13 *  it under the terms of the GNU General Public License as published by
14 *  the Free Software Foundation; either version 2 of the License, or
15 *  (at your option) any later version.
16 *
17 *  This program is distributed in the hope that it will be useful,
18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20 *  GNU General Public License for more details.
21 *
22 *  You should have received a copy of the GNU General Public License
23 *  along with this program; if not, write to the Free Software
24 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25 *
26 */
27
28/*
29 * Steve's changes to improve transmission fidelity:
30 *   - for systems with the rdtsc instruction and the clock counter, a
31 *     send_pule that times the pulses directly using the counter.
32 *     This means that the LIRC_SERIAL_TRANSMITTER_LATENCY fudge is
33 *     not needed. Measurement shows very stable waveform, even where
34 *     PCI activity slows the access to the UART, which trips up other
35 *     versions.
36 *   - For other system, non-integer-microsecond pulse/space lengths,
37 *     done using fixed point binary. So, much more accurate carrier
38 *     frequency.
39 *   - fine tuned transmitter latency, taking advantage of fractional
40 *     microseconds in previous change
41 *   - Fixed bug in the way transmitter latency was accounted for by
42 *     tuning the pulse lengths down - the send_pulse routine ignored
43 *     this overhead as it timed the overall pulse length - so the
44 *     pulse frequency was right but overall pulse length was too
45 *     long. Fixed by accounting for latency on each pulse/space
46 *     iteration.
47 *
48 * Steve Davies <steve@daviesfam.org>  July 2001
49 */
50
51#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52
53#include <linux/module.h>
54#include <linux/errno.h>
55#include <linux/signal.h>
56#include <linux/sched.h>
57#include <linux/fs.h>
58#include <linux/interrupt.h>
59#include <linux/ioport.h>
60#include <linux/kernel.h>
61#include <linux/serial_reg.h>
62#include <linux/time.h>
63#include <linux/string.h>
64#include <linux/types.h>
65#include <linux/wait.h>
66#include <linux/mm.h>
67#include <linux/delay.h>
68#include <linux/poll.h>
69#include <linux/platform_device.h>
70#include <linux/gpio.h>
71#include <linux/io.h>
72#include <linux/irq.h>
73#include <linux/fcntl.h>
74#include <linux/spinlock.h>
75
76/* From Intel IXP42X Developer's Manual (#252480-005): */
77/* ftp://download.intel.com/design/network/manuals/25248005.pdf */
78#define UART_IE_IXP42X_UUE   0x40 /* IXP42X UART Unit enable */
79#define UART_IE_IXP42X_RTOIE 0x10 /* IXP42X Receiver Data Timeout int.enable */
80
81#include <media/lirc.h>
82#include <media/lirc_dev.h>
83
84#define LIRC_DRIVER_NAME "lirc_serial"
85
86struct lirc_serial {
87	int signal_pin;
88	int signal_pin_change;
89	u8 on;
90	u8 off;
91	long (*send_pulse)(unsigned long length);
92	void (*send_space)(long length);
93	int features;
94	spinlock_t lock;
95};
96
97#define LIRC_HOMEBREW		0
98#define LIRC_IRDEO		1
99#define LIRC_IRDEO_REMOTE	2
100#define LIRC_ANIMAX		3
101#define LIRC_IGOR		4
102#define LIRC_NSLU2		5
103
104/*** module parameters ***/
105static int type;
106static int io;
107static int irq;
108static bool iommap;
109static int ioshift;
110static bool softcarrier = 1;
111static bool share_irq;
112static bool debug;
113static int sense = -1;	/* -1 = auto, 0 = active high, 1 = active low */
114static bool txsense;	/* 0 = active high, 1 = active low */
115
116#define dprintk(fmt, args...)					\
117	do {							\
118		if (debug)					\
119			printk(KERN_DEBUG LIRC_DRIVER_NAME ": "	\
120			       fmt, ## args);			\
121	} while (0)
122
123/* forward declarations */
124static long send_pulse_irdeo(unsigned long length);
125static long send_pulse_homebrew(unsigned long length);
126static void send_space_irdeo(long length);
127static void send_space_homebrew(long length);
128
129static struct lirc_serial hardware[] = {
130	[LIRC_HOMEBREW] = {
131		.lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_HOMEBREW].lock),
132		.signal_pin        = UART_MSR_DCD,
133		.signal_pin_change = UART_MSR_DDCD,
134		.on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
135		.off = (UART_MCR_RTS | UART_MCR_OUT2),
136		.send_pulse = send_pulse_homebrew,
137		.send_space = send_space_homebrew,
138#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
139		.features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
140				LIRC_CAN_SET_SEND_CARRIER |
141				LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
142#else
143		.features    = LIRC_CAN_REC_MODE2
144#endif
145	},
146
147	[LIRC_IRDEO] = {
148		.lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IRDEO].lock),
149		.signal_pin        = UART_MSR_DSR,
150		.signal_pin_change = UART_MSR_DDSR,
151		.on  = UART_MCR_OUT2,
152		.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
153		.send_pulse  = send_pulse_irdeo,
154		.send_space  = send_space_irdeo,
155		.features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
156				LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
157	},
158
159	[LIRC_IRDEO_REMOTE] = {
160		.lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IRDEO_REMOTE].lock),
161		.signal_pin        = UART_MSR_DSR,
162		.signal_pin_change = UART_MSR_DDSR,
163		.on  = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
164		.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
165		.send_pulse  = send_pulse_irdeo,
166		.send_space  = send_space_irdeo,
167		.features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
168				LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
169	},
170
171	[LIRC_ANIMAX] = {
172		.lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_ANIMAX].lock),
173		.signal_pin        = UART_MSR_DCD,
174		.signal_pin_change = UART_MSR_DDCD,
175		.on  = 0,
176		.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
177		.send_pulse = NULL,
178		.send_space = NULL,
179		.features   = LIRC_CAN_REC_MODE2
180	},
181
182	[LIRC_IGOR] = {
183		.lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IGOR].lock),
184		.signal_pin        = UART_MSR_DSR,
185		.signal_pin_change = UART_MSR_DDSR,
186		.on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
187		.off = (UART_MCR_RTS | UART_MCR_OUT2),
188		.send_pulse = send_pulse_homebrew,
189		.send_space = send_space_homebrew,
190#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
191		.features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
192				LIRC_CAN_SET_SEND_CARRIER |
193				LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
194#else
195		.features    = LIRC_CAN_REC_MODE2
196#endif
197	},
198};
199
200#define RS_ISR_PASS_LIMIT 256
201
202/*
203 * A long pulse code from a remote might take up to 300 bytes.  The
204 * daemon should read the bytes as soon as they are generated, so take
205 * the number of keys you think you can push before the daemon runs
206 * and multiply by 300.  The driver will warn you if you overrun this
207 * buffer.  If you have a slow computer or non-busmastering IDE disks,
208 * maybe you will need to increase this.
209 */
210
211/* This MUST be a power of two!  It has to be larger than 1 as well. */
212
213#define RBUF_LEN 256
214
215static struct timeval lasttv = {0, 0};
216
217static struct lirc_buffer rbuf;
218
219static unsigned int freq = 38000;
220static unsigned int duty_cycle = 50;
221
222/* Initialized in init_timing_params() */
223static unsigned long period;
224static unsigned long pulse_width;
225static unsigned long space_width;
226
227#if defined(__i386__)
228/*
229 * From:
230 * Linux I/O port programming mini-HOWTO
231 * Author: Riku Saikkonen <Riku.Saikkonen@hut.fi>
232 * v, 28 December 1997
233 *
234 * [...]
235 * Actually, a port I/O instruction on most ports in the 0-0x3ff range
236 * takes almost exactly 1 microsecond, so if you're, for example, using
237 * the parallel port directly, just do additional inb()s from that port
238 * to delay.
239 * [...]
240 */
241/* transmitter latency 1.5625us 0x1.90 - this figure arrived at from
242 * comment above plus trimming to match actual measured frequency.
243 * This will be sensitive to cpu speed, though hopefully most of the 1.5us
244 * is spent in the uart access.  Still - for reference test machine was a
245 * 1.13GHz Athlon system - Steve
246 */
247
248/*
249 * changed from 400 to 450 as this works better on slower machines;
250 * faster machines will use the rdtsc code anyway
251 */
252#define LIRC_SERIAL_TRANSMITTER_LATENCY 450
253
254#else
255
256/* does anybody have information on other platforms ? */
257/* 256 = 1<<8 */
258#define LIRC_SERIAL_TRANSMITTER_LATENCY 256
259
260#endif  /* __i386__ */
261/*
262 * FIXME: should we be using hrtimers instead of this
263 * LIRC_SERIAL_TRANSMITTER_LATENCY nonsense?
264 */
265
266/* fetch serial input packet (1 byte) from register offset */
267static u8 sinp(int offset)
268{
269	if (iommap != 0)
270		/* the register is memory-mapped */
271		offset <<= ioshift;
272
273	return inb(io + offset);
274}
275
276/* write serial output packet (1 byte) of value to register offset */
277static void soutp(int offset, u8 value)
278{
279	if (iommap != 0)
280		/* the register is memory-mapped */
281		offset <<= ioshift;
282
283	outb(value, io + offset);
284}
285
286static void on(void)
287{
288	if (txsense)
289		soutp(UART_MCR, hardware[type].off);
290	else
291		soutp(UART_MCR, hardware[type].on);
292}
293
294static void off(void)
295{
296	if (txsense)
297		soutp(UART_MCR, hardware[type].on);
298	else
299		soutp(UART_MCR, hardware[type].off);
300}
301
302#ifndef MAX_UDELAY_MS
303#define MAX_UDELAY_US 5000
304#else
305#define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
306#endif
307
308static void safe_udelay(unsigned long usecs)
309{
310	while (usecs > MAX_UDELAY_US) {
311		udelay(MAX_UDELAY_US);
312		usecs -= MAX_UDELAY_US;
313	}
314	udelay(usecs);
315}
316
317#ifdef USE_RDTSC
318/*
319 * This is an overflow/precision juggle, complicated in that we can't
320 * do long long divide in the kernel
321 */
322
323/*
324 * When we use the rdtsc instruction to measure clocks, we keep the
325 * pulse and space widths as clock cycles.  As this is CPU speed
326 * dependent, the widths must be calculated in init_port and ioctl
327 * time
328 */
329
330/* So send_pulse can quickly convert microseconds to clocks */
331static unsigned long conv_us_to_clocks;
332
333static int init_timing_params(unsigned int new_duty_cycle,
334		unsigned int new_freq)
335{
336	__u64 loops_per_sec, work;
337
338	duty_cycle = new_duty_cycle;
339	freq = new_freq;
340
341	loops_per_sec = __this_cpu_read(cpu.info.loops_per_jiffy);
342	loops_per_sec *= HZ;
343
344	/* How many clocks in a microsecond?, avoiding long long divide */
345	work = loops_per_sec;
346	work *= 4295;  /* 4295 = 2^32 / 1e6 */
347	conv_us_to_clocks = (work >> 32);
348
349	/*
350	 * Carrier period in clocks, approach good up to 32GHz clock,
351	 * gets carrier frequency within 8Hz
352	 */
353	period = loops_per_sec >> 3;
354	period /= (freq >> 3);
355
356	/* Derive pulse and space from the period */
357	pulse_width = period * duty_cycle / 100;
358	space_width = period - pulse_width;
359	dprintk("in init_timing_params, freq=%d, duty_cycle=%d, "
360		"clk/jiffy=%ld, pulse=%ld, space=%ld, "
361		"conv_us_to_clocks=%ld\n",
362		freq, duty_cycle, __this_cpu_read(cpu_info.loops_per_jiffy),
363		pulse_width, space_width, conv_us_to_clocks);
364	return 0;
365}
366#else /* ! USE_RDTSC */
367static int init_timing_params(unsigned int new_duty_cycle,
368		unsigned int new_freq)
369{
370/*
371 * period, pulse/space width are kept with 8 binary places -
372 * IE multiplied by 256.
373 */
374	if (256 * 1000000L / new_freq * new_duty_cycle / 100 <=
375	    LIRC_SERIAL_TRANSMITTER_LATENCY)
376		return -EINVAL;
377	if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <=
378	    LIRC_SERIAL_TRANSMITTER_LATENCY)
379		return -EINVAL;
380	duty_cycle = new_duty_cycle;
381	freq = new_freq;
382	period = 256 * 1000000L / freq;
383	pulse_width = period * duty_cycle / 100;
384	space_width = period - pulse_width;
385	dprintk("in init_timing_params, freq=%d pulse=%ld, space=%ld\n",
386		freq, pulse_width, space_width);
387	return 0;
388}
389#endif /* USE_RDTSC */
390
391
392/* return value: space length delta */
393
394static long send_pulse_irdeo(unsigned long length)
395{
396	long rawbits, ret;
397	int i;
398	unsigned char output;
399	unsigned char chunk, shifted;
400
401	/* how many bits have to be sent ? */
402	rawbits = length * 1152 / 10000;
403	if (duty_cycle > 50)
404		chunk = 3;
405	else
406		chunk = 1;
407	for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) {
408		shifted = chunk << (i * 3);
409		shifted >>= 1;
410		output &= (~shifted);
411		i++;
412		if (i == 3) {
413			soutp(UART_TX, output);
414			while (!(sinp(UART_LSR) & UART_LSR_THRE))
415				;
416			output = 0x7f;
417			i = 0;
418		}
419	}
420	if (i != 0) {
421		soutp(UART_TX, output);
422		while (!(sinp(UART_LSR) & UART_LSR_TEMT))
423			;
424	}
425
426	if (i == 0)
427		ret = (-rawbits) * 10000 / 1152;
428	else
429		ret = (3 - i) * 3 * 10000 / 1152 + (-rawbits) * 10000 / 1152;
430
431	return ret;
432}
433
434#ifdef USE_RDTSC
435/* Version that uses Pentium rdtsc instruction to measure clocks */
436
437/*
438 * This version does sub-microsecond timing using rdtsc instruction,
439 * and does away with the fudged LIRC_SERIAL_TRANSMITTER_LATENCY
440 * Implicitly i586 architecture...  - Steve
441 */
442
443static long send_pulse_homebrew_softcarrier(unsigned long length)
444{
445	int flag;
446	unsigned long target, start, now;
447
448	/* Get going quick as we can */
449	rdtscl(start);
450	on();
451	/* Convert length from microseconds to clocks */
452	length *= conv_us_to_clocks;
453	/* And loop till time is up - flipping at right intervals */
454	now = start;
455	target = pulse_width;
456	flag = 1;
457	/*
458	 * FIXME: This looks like a hard busy wait, without even an occasional,
459	 * polite, cpu_relax() call.  There's got to be a better way?
460	 *
461	 * The i2c code has the result of a lot of bit-banging work, I wonder if
462	 * there's something there which could be helpful here.
463	 */
464	while ((now - start) < length) {
465		/* Delay till flip time */
466		do {
467			rdtscl(now);
468		} while ((now - start) < target);
469
470		/* flip */
471		if (flag) {
472			rdtscl(now);
473			off();
474			target += space_width;
475		} else {
476			rdtscl(now); on();
477			target += pulse_width;
478		}
479		flag = !flag;
480	}
481	rdtscl(now);
482	return ((now - start) - length) / conv_us_to_clocks;
483}
484#else /* ! USE_RDTSC */
485/* Version using udelay() */
486
487/*
488 * here we use fixed point arithmetic, with 8
489 * fractional bits.  that gets us within 0.1% or so of the right average
490 * frequency, albeit with some jitter in pulse length - Steve
491 */
492
493/* To match 8 fractional bits used for pulse/space length */
494
495static long send_pulse_homebrew_softcarrier(unsigned long length)
496{
497	int flag;
498	unsigned long actual, target, d;
499
500	length <<= 8;
501
502	actual = 0; target = 0; flag = 0;
503	while (actual < length) {
504		if (flag) {
505			off();
506			target += space_width;
507		} else {
508			on();
509			target += pulse_width;
510		}
511		d = (target - actual -
512		     LIRC_SERIAL_TRANSMITTER_LATENCY + 128) >> 8;
513		/*
514		 * Note - we've checked in ioctl that the pulse/space
515		 * widths are big enough so that d is > 0
516		 */
517		udelay(d);
518		actual += (d << 8) + LIRC_SERIAL_TRANSMITTER_LATENCY;
519		flag = !flag;
520	}
521	return (actual-length) >> 8;
522}
523#endif /* USE_RDTSC */
524
525static long send_pulse_homebrew(unsigned long length)
526{
527	if (length <= 0)
528		return 0;
529
530	if (softcarrier)
531		return send_pulse_homebrew_softcarrier(length);
532
533	on();
534	safe_udelay(length);
535	return 0;
536}
537
538static void send_space_irdeo(long length)
539{
540	if (length <= 0)
541		return;
542
543	safe_udelay(length);
544}
545
546static void send_space_homebrew(long length)
547{
548	off();
549	if (length <= 0)
550		return;
551	safe_udelay(length);
552}
553
554static void rbwrite(int l)
555{
556	if (lirc_buffer_full(&rbuf)) {
557		/* no new signals will be accepted */
558		dprintk("Buffer overrun\n");
559		return;
560	}
561	lirc_buffer_write(&rbuf, (void *)&l);
562}
563
564static void frbwrite(int l)
565{
566	/* simple noise filter */
567	static int pulse, space;
568	static unsigned int ptr;
569
570	if (ptr > 0 && (l & PULSE_BIT)) {
571		pulse += l & PULSE_MASK;
572		if (pulse > 250) {
573			rbwrite(space);
574			rbwrite(pulse | PULSE_BIT);
575			ptr = 0;
576			pulse = 0;
577		}
578		return;
579	}
580	if (!(l & PULSE_BIT)) {
581		if (ptr == 0) {
582			if (l > 20000) {
583				space = l;
584				ptr++;
585				return;
586			}
587		} else {
588			if (l > 20000) {
589				space += pulse;
590				if (space > PULSE_MASK)
591					space = PULSE_MASK;
592				space += l;
593				if (space > PULSE_MASK)
594					space = PULSE_MASK;
595				pulse = 0;
596				return;
597			}
598			rbwrite(space);
599			rbwrite(pulse | PULSE_BIT);
600			ptr = 0;
601			pulse = 0;
602		}
603	}
604	rbwrite(l);
605}
606
607static irqreturn_t lirc_irq_handler(int i, void *blah)
608{
609	struct timeval tv;
610	int counter, dcd;
611	u8 status;
612	long deltv;
613	int data;
614	static int last_dcd = -1;
615
616	if ((sinp(UART_IIR) & UART_IIR_NO_INT)) {
617		/* not our interrupt */
618		return IRQ_NONE;
619	}
620
621	counter = 0;
622	do {
623		counter++;
624		status = sinp(UART_MSR);
625		if (counter > RS_ISR_PASS_LIMIT) {
626			pr_warn("AIEEEE: We're caught!\n");
627			break;
628		}
629		if ((status & hardware[type].signal_pin_change)
630		    && sense != -1) {
631			/* get current time */
632			do_gettimeofday(&tv);
633
634			/* New mode, written by Trent Piepho
635			   <xyzzy@u.washington.edu>. */
636
637			/*
638			 * The old format was not very portable.
639			 * We now use an int to pass pulses
640			 * and spaces to user space.
641			 *
642			 * If PULSE_BIT is set a pulse has been
643			 * received, otherwise a space has been
644			 * received.  The driver needs to know if your
645			 * receiver is active high or active low, or
646			 * the space/pulse sense could be
647			 * inverted. The bits denoted by PULSE_MASK are
648			 * the length in microseconds. Lengths greater
649			 * than or equal to 16 seconds are clamped to
650			 * PULSE_MASK.  All other bits are unused.
651			 * This is a much simpler interface for user
652			 * programs, as well as eliminating "out of
653			 * phase" errors with space/pulse
654			 * autodetection.
655			 */
656
657			/* calc time since last interrupt in microseconds */
658			dcd = (status & hardware[type].signal_pin) ? 1 : 0;
659
660			if (dcd == last_dcd) {
661				pr_warn("ignoring spike: %d %d %lx %lx %lx %lx\n",
662					dcd, sense,
663					tv.tv_sec, lasttv.tv_sec,
664					(unsigned long)tv.tv_usec,
665					(unsigned long)lasttv.tv_usec);
666				continue;
667			}
668
669			deltv = tv.tv_sec-lasttv.tv_sec;
670			if (tv.tv_sec < lasttv.tv_sec ||
671			    (tv.tv_sec == lasttv.tv_sec &&
672			     tv.tv_usec < lasttv.tv_usec)) {
673				pr_warn("AIEEEE: your clock just jumped backwards\n");
674				pr_warn("%d %d %lx %lx %lx %lx\n",
675					dcd, sense,
676					tv.tv_sec, lasttv.tv_sec,
677					(unsigned long)tv.tv_usec,
678					(unsigned long)lasttv.tv_usec);
679				data = PULSE_MASK;
680			} else if (deltv > 15) {
681				data = PULSE_MASK; /* really long time */
682				if (!(dcd^sense)) {
683					/* sanity check */
684					pr_warn("AIEEEE: %d %d %lx %lx %lx %lx\n",
685						dcd, sense,
686						tv.tv_sec, lasttv.tv_sec,
687						(unsigned long)tv.tv_usec,
688						(unsigned long)lasttv.tv_usec);
689					/*
690					 * detecting pulse while this
691					 * MUST be a space!
692					 */
693					sense = sense ? 0 : 1;
694				}
695			} else
696				data = (int) (deltv*1000000 +
697					       tv.tv_usec -
698					       lasttv.tv_usec);
699			frbwrite(dcd^sense ? data : (data|PULSE_BIT));
700			lasttv = tv;
701			last_dcd = dcd;
702			wake_up_interruptible(&rbuf.wait_poll);
703		}
704	} while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */
705	return IRQ_HANDLED;
706}
707
708
709static int hardware_init_port(void)
710{
711	u8 scratch, scratch2, scratch3;
712
713	/*
714	 * This is a simple port existence test, borrowed from the autoconfig
715	 * function in drivers/serial/8250.c
716	 */
717	scratch = sinp(UART_IER);
718	soutp(UART_IER, 0);
719#ifdef __i386__
720	outb(0xff, 0x080);
721#endif
722	scratch2 = sinp(UART_IER) & 0x0f;
723	soutp(UART_IER, 0x0f);
724#ifdef __i386__
725	outb(0x00, 0x080);
726#endif
727	scratch3 = sinp(UART_IER) & 0x0f;
728	soutp(UART_IER, scratch);
729	if (scratch2 != 0 || scratch3 != 0x0f) {
730		/* we fail, there's nothing here */
731		pr_err("port existence test failed, cannot continue\n");
732		return -ENODEV;
733	}
734
735
736
737	/* Set DLAB 0. */
738	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
739
740	/* First of all, disable all interrupts */
741	soutp(UART_IER, sinp(UART_IER) &
742	      (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
743
744	/* Clear registers. */
745	sinp(UART_LSR);
746	sinp(UART_RX);
747	sinp(UART_IIR);
748	sinp(UART_MSR);
749
750	/* Set line for power source */
751	off();
752
753	/* Clear registers again to be sure. */
754	sinp(UART_LSR);
755	sinp(UART_RX);
756	sinp(UART_IIR);
757	sinp(UART_MSR);
758
759	switch (type) {
760	case LIRC_IRDEO:
761	case LIRC_IRDEO_REMOTE:
762		/* setup port to 7N1 @ 115200 Baud */
763		/* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */
764
765		/* Set DLAB 1. */
766		soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
767		/* Set divisor to 1 => 115200 Baud */
768		soutp(UART_DLM, 0);
769		soutp(UART_DLL, 1);
770		/* Set DLAB 0 +  7N1 */
771		soutp(UART_LCR, UART_LCR_WLEN7);
772		/* THR interrupt already disabled at this point */
773		break;
774	default:
775		break;
776	}
777
778	return 0;
779}
780
781static int lirc_serial_probe(struct platform_device *dev)
782{
783	int i, nlow, nhigh, result;
784
785	result = devm_request_irq(&dev->dev, irq, lirc_irq_handler,
786			     (share_irq ? IRQF_SHARED : 0),
787			     LIRC_DRIVER_NAME, (void *)&hardware);
788	if (result < 0) {
789		if (result == -EBUSY)
790			dev_err(&dev->dev, "IRQ %d busy\n", irq);
791		else if (result == -EINVAL)
792			dev_err(&dev->dev, "Bad irq number or handler\n");
793		return result;
794	}
795
796	/* Reserve io region. */
797	/*
798	 * Future MMAP-Developers: Attention!
799	 * For memory mapped I/O you *might* need to use ioremap() first,
800	 * for the NSLU2 it's done in boot code.
801	 */
802	if (((iommap != 0)
803	     && (devm_request_mem_region(&dev->dev, iommap, 8 << ioshift,
804					 LIRC_DRIVER_NAME) == NULL))
805	   || ((iommap == 0)
806	       && (devm_request_region(&dev->dev, io, 8,
807				       LIRC_DRIVER_NAME) == NULL))) {
808		dev_err(&dev->dev, "port %04x already in use\n", io);
809		dev_warn(&dev->dev, "use 'setserial /dev/ttySX uart none'\n");
810		dev_warn(&dev->dev,
811			 "or compile the serial port driver as module and\n");
812		dev_warn(&dev->dev, "make sure this module is loaded first\n");
813		return -EBUSY;
814	}
815
816	result = hardware_init_port();
817	if (result < 0)
818		return result;
819
820	/* Initialize pulse/space widths */
821	init_timing_params(duty_cycle, freq);
822
823	/* If pin is high, then this must be an active low receiver. */
824	if (sense == -1) {
825		/* wait 1/2 sec for the power supply */
826		msleep(500);
827
828		/*
829		 * probe 9 times every 0.04s, collect "votes" for
830		 * active high/low
831		 */
832		nlow = 0;
833		nhigh = 0;
834		for (i = 0; i < 9; i++) {
835			if (sinp(UART_MSR) & hardware[type].signal_pin)
836				nlow++;
837			else
838				nhigh++;
839			msleep(40);
840		}
841		sense = (nlow >= nhigh ? 1 : 0);
842		dev_info(&dev->dev, "auto-detected active %s receiver\n",
843			 sense ? "low" : "high");
844	} else
845		dev_info(&dev->dev, "Manually using active %s receiver\n",
846			 sense ? "low" : "high");
847
848	dprintk("Interrupt %d, port %04x obtained\n", irq, io);
849	return 0;
850}
851
852static int set_use_inc(void *data)
853{
854	unsigned long flags;
855
856	/* initialize timestamp */
857	do_gettimeofday(&lasttv);
858
859	spin_lock_irqsave(&hardware[type].lock, flags);
860
861	/* Set DLAB 0. */
862	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
863
864	soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
865
866	spin_unlock_irqrestore(&hardware[type].lock, flags);
867
868	return 0;
869}
870
871static void set_use_dec(void *data)
872{	unsigned long flags;
873
874	spin_lock_irqsave(&hardware[type].lock, flags);
875
876	/* Set DLAB 0. */
877	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
878
879	/* First of all, disable all interrupts */
880	soutp(UART_IER, sinp(UART_IER) &
881	      (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
882	spin_unlock_irqrestore(&hardware[type].lock, flags);
883}
884
885static ssize_t lirc_write(struct file *file, const char __user *buf,
886			 size_t n, loff_t *ppos)
887{
888	int i, count;
889	unsigned long flags;
890	long delta = 0;
891	int *wbuf;
892
893	if (!(hardware[type].features & LIRC_CAN_SEND_PULSE))
894		return -EPERM;
895
896	count = n / sizeof(int);
897	if (n % sizeof(int) || count % 2 == 0)
898		return -EINVAL;
899	wbuf = memdup_user(buf, n);
900	if (IS_ERR(wbuf))
901		return PTR_ERR(wbuf);
902	spin_lock_irqsave(&hardware[type].lock, flags);
903	if (type == LIRC_IRDEO) {
904		/* DTR, RTS down */
905		on();
906	}
907	for (i = 0; i < count; i++) {
908		if (i%2)
909			hardware[type].send_space(wbuf[i] - delta);
910		else
911			delta = hardware[type].send_pulse(wbuf[i]);
912	}
913	off();
914	spin_unlock_irqrestore(&hardware[type].lock, flags);
915	kfree(wbuf);
916	return n;
917}
918
919static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
920{
921	int result;
922	u32 __user *uptr = (u32 __user *)arg;
923	u32 value;
924
925	switch (cmd) {
926	case LIRC_GET_SEND_MODE:
927		if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
928			return -ENOIOCTLCMD;
929
930		result = put_user(LIRC_SEND2MODE
931				  (hardware[type].features&LIRC_CAN_SEND_MASK),
932				  uptr);
933		if (result)
934			return result;
935		break;
936
937	case LIRC_SET_SEND_MODE:
938		if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
939			return -ENOIOCTLCMD;
940
941		result = get_user(value, uptr);
942		if (result)
943			return result;
944		/* only LIRC_MODE_PULSE supported */
945		if (value != LIRC_MODE_PULSE)
946			return -EINVAL;
947		break;
948
949	case LIRC_GET_LENGTH:
950		return -ENOIOCTLCMD;
951
952	case LIRC_SET_SEND_DUTY_CYCLE:
953		dprintk("SET_SEND_DUTY_CYCLE\n");
954		if (!(hardware[type].features&LIRC_CAN_SET_SEND_DUTY_CYCLE))
955			return -ENOIOCTLCMD;
956
957		result = get_user(value, uptr);
958		if (result)
959			return result;
960		if (value <= 0 || value > 100)
961			return -EINVAL;
962		return init_timing_params(value, freq);
963
964	case LIRC_SET_SEND_CARRIER:
965		dprintk("SET_SEND_CARRIER\n");
966		if (!(hardware[type].features&LIRC_CAN_SET_SEND_CARRIER))
967			return -ENOIOCTLCMD;
968
969		result = get_user(value, uptr);
970		if (result)
971			return result;
972		if (value > 500000 || value < 20000)
973			return -EINVAL;
974		return init_timing_params(duty_cycle, value);
975
976	default:
977		return lirc_dev_fop_ioctl(filep, cmd, arg);
978	}
979	return 0;
980}
981
982static const struct file_operations lirc_fops = {
983	.owner		= THIS_MODULE,
984	.write		= lirc_write,
985	.unlocked_ioctl	= lirc_ioctl,
986#ifdef CONFIG_COMPAT
987	.compat_ioctl	= lirc_ioctl,
988#endif
989	.read		= lirc_dev_fop_read,
990	.poll		= lirc_dev_fop_poll,
991	.open		= lirc_dev_fop_open,
992	.release	= lirc_dev_fop_close,
993	.llseek		= no_llseek,
994};
995
996static struct lirc_driver driver = {
997	.name		= LIRC_DRIVER_NAME,
998	.minor		= -1,
999	.code_length	= 1,
1000	.sample_rate	= 0,
1001	.data		= NULL,
1002	.add_to_buf	= NULL,
1003	.rbuf		= &rbuf,
1004	.set_use_inc	= set_use_inc,
1005	.set_use_dec	= set_use_dec,
1006	.fops		= &lirc_fops,
1007	.dev		= NULL,
1008	.owner		= THIS_MODULE,
1009};
1010
1011static struct platform_device *lirc_serial_dev;
1012
1013static int lirc_serial_suspend(struct platform_device *dev,
1014			       pm_message_t state)
1015{
1016	/* Set DLAB 0. */
1017	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1018
1019	/* Disable all interrupts */
1020	soutp(UART_IER, sinp(UART_IER) &
1021	      (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
1022
1023	/* Clear registers. */
1024	sinp(UART_LSR);
1025	sinp(UART_RX);
1026	sinp(UART_IIR);
1027	sinp(UART_MSR);
1028
1029	return 0;
1030}
1031
1032/* twisty maze... need a forward-declaration here... */
1033static void lirc_serial_exit(void);
1034
1035static int lirc_serial_resume(struct platform_device *dev)
1036{
1037	unsigned long flags;
1038	int result;
1039
1040	result = hardware_init_port();
1041	if (result < 0)
1042		return result;
1043
1044	spin_lock_irqsave(&hardware[type].lock, flags);
1045	/* Enable Interrupt */
1046	do_gettimeofday(&lasttv);
1047	soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
1048	off();
1049
1050	lirc_buffer_clear(&rbuf);
1051
1052	spin_unlock_irqrestore(&hardware[type].lock, flags);
1053
1054	return 0;
1055}
1056
1057static struct platform_driver lirc_serial_driver = {
1058	.probe		= lirc_serial_probe,
1059	.suspend	= lirc_serial_suspend,
1060	.resume		= lirc_serial_resume,
1061	.driver		= {
1062		.name	= "lirc_serial",
1063		.owner	= THIS_MODULE,
1064	},
1065};
1066
1067static int __init lirc_serial_init(void)
1068{
1069	int result;
1070
1071	/* Init read buffer. */
1072	result = lirc_buffer_init(&rbuf, sizeof(int), RBUF_LEN);
1073	if (result < 0)
1074		return result;
1075
1076	result = platform_driver_register(&lirc_serial_driver);
1077	if (result) {
1078		printk("lirc register returned %d\n", result);
1079		goto exit_buffer_free;
1080	}
1081
1082	lirc_serial_dev = platform_device_alloc("lirc_serial", 0);
1083	if (!lirc_serial_dev) {
1084		result = -ENOMEM;
1085		goto exit_driver_unregister;
1086	}
1087
1088	result = platform_device_add(lirc_serial_dev);
1089	if (result)
1090		goto exit_device_put;
1091
1092	return 0;
1093
1094exit_device_put:
1095	platform_device_put(lirc_serial_dev);
1096exit_driver_unregister:
1097	platform_driver_unregister(&lirc_serial_driver);
1098exit_buffer_free:
1099	lirc_buffer_free(&rbuf);
1100	return result;
1101}
1102
1103static void lirc_serial_exit(void)
1104{
1105	platform_device_unregister(lirc_serial_dev);
1106	platform_driver_unregister(&lirc_serial_driver);
1107	lirc_buffer_free(&rbuf);
1108}
1109
1110static int __init lirc_serial_init_module(void)
1111{
1112	int result;
1113
1114	switch (type) {
1115	case LIRC_HOMEBREW:
1116	case LIRC_IRDEO:
1117	case LIRC_IRDEO_REMOTE:
1118	case LIRC_ANIMAX:
1119	case LIRC_IGOR:
1120		/* if nothing specified, use ttyS0/com1 and irq 4 */
1121		io = io ? io : 0x3f8;
1122		irq = irq ? irq : 4;
1123		break;
1124	default:
1125		return -EINVAL;
1126	}
1127	if (!softcarrier) {
1128		switch (type) {
1129		case LIRC_HOMEBREW:
1130		case LIRC_IGOR:
1131			hardware[type].features &=
1132				~(LIRC_CAN_SET_SEND_DUTY_CYCLE|
1133				  LIRC_CAN_SET_SEND_CARRIER);
1134			break;
1135		}
1136	}
1137
1138	/* make sure sense is either -1, 0, or 1 */
1139	if (sense != -1)
1140		sense = !!sense;
1141
1142	result = lirc_serial_init();
1143	if (result)
1144		return result;
1145
1146	driver.features = hardware[type].features;
1147	driver.dev = &lirc_serial_dev->dev;
1148	driver.minor = lirc_register_driver(&driver);
1149	if (driver.minor < 0) {
1150		pr_err("register_chrdev failed!\n");
1151		lirc_serial_exit();
1152		return driver.minor;
1153	}
1154	return 0;
1155}
1156
1157static void __exit lirc_serial_exit_module(void)
1158{
1159	lirc_unregister_driver(driver.minor);
1160	lirc_serial_exit();
1161	dprintk("cleaned up module\n");
1162}
1163
1164
1165module_init(lirc_serial_init_module);
1166module_exit(lirc_serial_exit_module);
1167
1168MODULE_DESCRIPTION("Infra-red receiver driver for serial ports.");
1169MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, "
1170	      "Christoph Bartelmus, Andrei Tanas");
1171MODULE_LICENSE("GPL");
1172
1173module_param(type, int, S_IRUGO);
1174MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo,"
1175		 " 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug,"
1176		 " 5 = NSLU2 RX:CTS2/TX:GreenLED)");
1177
1178module_param(io, int, S_IRUGO);
1179MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1180
1181/* some architectures (e.g. intel xscale) have memory mapped registers */
1182module_param(iommap, bool, S_IRUGO);
1183MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O"
1184		" (0 = no memory mapped io)");
1185
1186/*
1187 * some architectures (e.g. intel xscale) align the 8bit serial registers
1188 * on 32bit word boundaries.
1189 * See linux-kernel/drivers/tty/serial/8250/8250.c serial_in()/out()
1190 */
1191module_param(ioshift, int, S_IRUGO);
1192MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)");
1193
1194module_param(irq, int, S_IRUGO);
1195MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1196
1197module_param(share_irq, bool, S_IRUGO);
1198MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)");
1199
1200module_param(sense, int, S_IRUGO);
1201MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit"
1202		 " (0 = active high, 1 = active low )");
1203
1204#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
1205module_param(txsense, bool, S_IRUGO);
1206MODULE_PARM_DESC(txsense, "Sense of transmitter circuit"
1207		 " (0 = active high, 1 = active low )");
1208#endif
1209
1210module_param(softcarrier, bool, S_IRUGO);
1211MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");
1212
1213module_param(debug, bool, S_IRUGO | S_IWUSR);
1214MODULE_PARM_DESC(debug, "Enable debugging messages");
1215