[go: nahoru, domu]

blob: 9949fac154281b7d88a9a55dff3d69d1063adb9a [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
29#define V8_ARM_MACRO_ASSEMBLER_ARM_H_
30
31#include "assembler.h"
32
33namespace v8 {
34namespace internal {
35
Andrei Popescu31002712010-02-23 13:46:05 +000036// ----------------------------------------------------------------------------
37// Static helper functions
38
39// Generate a MemOperand for loading a field from an object.
40static inline MemOperand FieldMemOperand(Register object, int offset) {
41 return MemOperand(object, offset - kHeapObjectTag);
42}
43
Steve Blocka7e24c12009-10-30 11:49:00 +000044
45// Give alias names to registers
46const Register cp = { 8 }; // JavaScript context pointer
Andrei Popescu31002712010-02-23 13:46:05 +000047const Register roots = { 10 }; // Roots array pointer.
Steve Blocka7e24c12009-10-30 11:49:00 +000048
49enum InvokeJSFlags {
50 CALL_JS,
51 JUMP_JS
52};
53
54
Kristian Monsen25f61362010-05-21 11:50:48 +010055// Flags used for the AllocateInNewSpace functions.
56enum AllocationFlags {
57 // No special flags.
58 NO_ALLOCATION_FLAGS = 0,
59 // Return the pointer to the allocated already tagged as a heap object.
60 TAG_OBJECT = 1 << 0,
61 // The content of the result register already contains the allocation top in
62 // new space.
63 RESULT_CONTAINS_TOP = 1 << 1,
64 // Specify that the requested size of the space to allocate is specified in
65 // words instead of bytes.
66 SIZE_IN_WORDS = 1 << 2
67};
68
69
Steve Block8defd9f2010-07-08 12:39:36 +010070// Flags used for the ObjectToDoubleVFPRegister function.
71enum ObjectToDoubleFlags {
72 // No special flags.
73 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
74 // Object is known to be a non smi.
75 OBJECT_NOT_SMI = 1 << 0,
76 // Don't load NaNs or infinities, branch to the non number case instead.
77 AVOID_NANS_AND_INFINITIES = 1 << 1
78};
79
80
Steve Blocka7e24c12009-10-30 11:49:00 +000081// MacroAssembler implements a collection of frequently used macros.
82class MacroAssembler: public Assembler {
83 public:
84 MacroAssembler(void* buffer, int size);
85
Andrei Popescu31002712010-02-23 13:46:05 +000086 // Jump, Call, and Ret pseudo instructions implementing inter-working.
Steve Blocka7e24c12009-10-30 11:49:00 +000087 void Jump(Register target, Condition cond = al);
88 void Jump(byte* target, RelocInfo::Mode rmode, Condition cond = al);
89 void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
90 void Call(Register target, Condition cond = al);
91 void Call(byte* target, RelocInfo::Mode rmode, Condition cond = al);
92 void Call(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
93 void Ret(Condition cond = al);
Leon Clarkee46be812010-01-19 14:06:41 +000094
95 // Emit code to discard a non-negative number of pointer-sized elements
96 // from the stack, clobbering only the sp register.
97 void Drop(int count, Condition cond = al);
98
Steve Block6ded16b2010-05-10 14:33:55 +010099
100 // Swap two registers. If the scratch register is omitted then a slightly
101 // less efficient form using xor instead of mov is emitted.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100102 void Swap(Register reg1,
103 Register reg2,
104 Register scratch = no_reg,
105 Condition cond = al);
Steve Block6ded16b2010-05-10 14:33:55 +0100106
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100107
108 void And(Register dst, Register src1, const Operand& src2,
109 Condition cond = al);
110 void Ubfx(Register dst, Register src, int lsb, int width,
111 Condition cond = al);
112 void Sbfx(Register dst, Register src, int lsb, int width,
113 Condition cond = al);
114 void Bfc(Register dst, int lsb, int width, Condition cond = al);
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100115 void Usat(Register dst, int satpos, const Operand& src,
116 Condition cond = al);
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100117
Leon Clarkee46be812010-01-19 14:06:41 +0000118 void Call(Label* target);
119 void Move(Register dst, Handle<Object> value);
Steve Block6ded16b2010-05-10 14:33:55 +0100120 // May do nothing if the registers are identical.
121 void Move(Register dst, Register src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000122 // Jumps to the label at the index given by the Smi in "index".
123 void SmiJumpTable(Register index, Vector<Label*> targets);
124 // Load an object from the root table.
125 void LoadRoot(Register destination,
126 Heap::RootListIndex index,
127 Condition cond = al);
Kristian Monsen25f61362010-05-21 11:50:48 +0100128 // Store an object to the root table.
129 void StoreRoot(Register source,
130 Heap::RootListIndex index,
131 Condition cond = al);
Steve Blocka7e24c12009-10-30 11:49:00 +0000132
Steve Block6ded16b2010-05-10 14:33:55 +0100133
134 // Check if object is in new space.
135 // scratch can be object itself, but it will be clobbered.
136 void InNewSpace(Register object,
137 Register scratch,
138 Condition cc, // eq for new space, ne otherwise
139 Label* branch);
140
141
Steve Block8defd9f2010-07-08 12:39:36 +0100142 // For the page containing |object| mark the region covering [address]
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100143 // dirty. The object address must be in the first 8K of an allocated page.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100144 void RecordWriteHelper(Register object,
Steve Block8defd9f2010-07-08 12:39:36 +0100145 Register address,
146 Register scratch);
Steve Block6ded16b2010-05-10 14:33:55 +0100147
Steve Block8defd9f2010-07-08 12:39:36 +0100148 // For the page containing |object| mark the region covering
149 // [object+offset] dirty. The object address must be in the first 8K
150 // of an allocated page. The 'scratch' registers are used in the
151 // implementation and all 3 registers are clobbered by the
152 // operation, as well as the ip register. RecordWrite updates the
153 // write barrier even when storing smis.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100154 void RecordWrite(Register object,
155 Operand offset,
156 Register scratch0,
157 Register scratch1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000158
Steve Block8defd9f2010-07-08 12:39:36 +0100159 // For the page containing |object| mark the region covering
160 // [address] dirty. The object address must be in the first 8K of an
161 // allocated page. All 3 registers are clobbered by the operation,
162 // as well as the ip register. RecordWrite updates the write barrier
163 // even when storing smis.
164 void RecordWrite(Register object,
165 Register address,
166 Register scratch);
167
Steve Block6ded16b2010-05-10 14:33:55 +0100168 // Push two registers. Pushes leftmost register first (to highest address).
169 void Push(Register src1, Register src2, Condition cond = al) {
170 ASSERT(!src1.is(src2));
171 if (src1.code() > src2.code()) {
172 stm(db_w, sp, src1.bit() | src2.bit(), cond);
173 } else {
174 str(src1, MemOperand(sp, 4, NegPreIndex), cond);
175 str(src2, MemOperand(sp, 4, NegPreIndex), cond);
176 }
177 }
178
179 // Push three registers. Pushes leftmost register first (to highest address).
180 void Push(Register src1, Register src2, Register src3, Condition cond = al) {
181 ASSERT(!src1.is(src2));
182 ASSERT(!src2.is(src3));
183 ASSERT(!src1.is(src3));
184 if (src1.code() > src2.code()) {
185 if (src2.code() > src3.code()) {
186 stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
187 } else {
188 stm(db_w, sp, src1.bit() | src2.bit(), cond);
189 str(src3, MemOperand(sp, 4, NegPreIndex), cond);
190 }
191 } else {
192 str(src1, MemOperand(sp, 4, NegPreIndex), cond);
193 Push(src2, src3, cond);
194 }
195 }
196
197 // Push four registers. Pushes leftmost register first (to highest address).
198 void Push(Register src1, Register src2,
199 Register src3, Register src4, Condition cond = al) {
200 ASSERT(!src1.is(src2));
201 ASSERT(!src2.is(src3));
202 ASSERT(!src1.is(src3));
203 ASSERT(!src1.is(src4));
204 ASSERT(!src2.is(src4));
205 ASSERT(!src3.is(src4));
206 if (src1.code() > src2.code()) {
207 if (src2.code() > src3.code()) {
208 if (src3.code() > src4.code()) {
209 stm(db_w,
210 sp,
211 src1.bit() | src2.bit() | src3.bit() | src4.bit(),
212 cond);
213 } else {
214 stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
215 str(src4, MemOperand(sp, 4, NegPreIndex), cond);
216 }
217 } else {
218 stm(db_w, sp, src1.bit() | src2.bit(), cond);
219 Push(src3, src4, cond);
220 }
221 } else {
222 str(src1, MemOperand(sp, 4, NegPreIndex), cond);
223 Push(src2, src3, src4, cond);
224 }
225 }
226
Leon Clarkef7060e22010-06-03 12:02:55 +0100227 // Load two consecutive registers with two consecutive memory locations.
228 void Ldrd(Register dst1,
229 Register dst2,
230 const MemOperand& src,
231 Condition cond = al);
232
233 // Store two consecutive registers to two consecutive memory locations.
234 void Strd(Register src1,
235 Register src2,
236 const MemOperand& dst,
237 Condition cond = al);
238
Steve Blocka7e24c12009-10-30 11:49:00 +0000239 // ---------------------------------------------------------------------------
Steve Blockd0582a62009-12-15 09:54:21 +0000240 // Stack limit support
241
242 void StackLimitCheck(Label* on_stack_limit_hit);
243
244 // ---------------------------------------------------------------------------
Steve Blocka7e24c12009-10-30 11:49:00 +0000245 // Activation frames
246
247 void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
248 void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
249
250 void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
251 void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
252
Steve Blockd0582a62009-12-15 09:54:21 +0000253 // Enter specific kind of exit frame; either normal or debug mode.
254 // Expects the number of arguments in register r0 and
Steve Blocka7e24c12009-10-30 11:49:00 +0000255 // the builtin function to call in register r1. Exits with argc in
256 // r4, argv in r6, and and the builtin function to call in r5.
Steve Blockd0582a62009-12-15 09:54:21 +0000257 void EnterExitFrame(ExitFrame::Mode mode);
Steve Blocka7e24c12009-10-30 11:49:00 +0000258
259 // Leave the current exit frame. Expects the return value in r0.
Steve Blockd0582a62009-12-15 09:54:21 +0000260 void LeaveExitFrame(ExitFrame::Mode mode);
Steve Blocka7e24c12009-10-30 11:49:00 +0000261
Steve Block6ded16b2010-05-10 14:33:55 +0100262 // Get the actual activation frame alignment for target environment.
263 static int ActivationFrameAlignment();
Steve Blocka7e24c12009-10-30 11:49:00 +0000264
Steve Blockd0582a62009-12-15 09:54:21 +0000265 void LoadContext(Register dst, int context_chain_length);
266
Steve Blocka7e24c12009-10-30 11:49:00 +0000267 // ---------------------------------------------------------------------------
268 // JavaScript invokes
269
270 // Invoke the JavaScript function code by either calling or jumping.
271 void InvokeCode(Register code,
272 const ParameterCount& expected,
273 const ParameterCount& actual,
274 InvokeFlag flag);
275
276 void InvokeCode(Handle<Code> code,
277 const ParameterCount& expected,
278 const ParameterCount& actual,
279 RelocInfo::Mode rmode,
280 InvokeFlag flag);
281
282 // Invoke the JavaScript function in the given register. Changes the
283 // current context to the context in the function before invoking.
284 void InvokeFunction(Register function,
285 const ParameterCount& actual,
286 InvokeFlag flag);
287
Andrei Popescu402d9372010-02-26 13:31:12 +0000288 void InvokeFunction(JSFunction* function,
289 const ParameterCount& actual,
290 InvokeFlag flag);
291
Steve Blocka7e24c12009-10-30 11:49:00 +0000292
293#ifdef ENABLE_DEBUGGER_SUPPORT
294 // ---------------------------------------------------------------------------
295 // Debugger Support
296
297 void SaveRegistersToMemory(RegList regs);
298 void RestoreRegistersFromMemory(RegList regs);
299 void CopyRegistersFromMemoryToStack(Register base, RegList regs);
300 void CopyRegistersFromStackToMemory(Register base,
301 Register scratch,
302 RegList regs);
Andrei Popescu402d9372010-02-26 13:31:12 +0000303 void DebugBreak();
Steve Blocka7e24c12009-10-30 11:49:00 +0000304#endif
305
306 // ---------------------------------------------------------------------------
307 // Exception handling
308
309 // Push a new try handler and link into try handler chain.
310 // The return address must be passed in register lr.
311 // On exit, r0 contains TOS (code slot).
312 void PushTryHandler(CodeLocation try_location, HandlerType type);
313
Leon Clarkee46be812010-01-19 14:06:41 +0000314 // Unlink the stack handler on top of the stack from the try handler chain.
315 // Must preserve the result register.
316 void PopTryHandler();
Steve Blocka7e24c12009-10-30 11:49:00 +0000317
318 // ---------------------------------------------------------------------------
319 // Inline caching support
320
Steve Blocka7e24c12009-10-30 11:49:00 +0000321 // Generate code for checking access rights - used for security checks
322 // on access to global objects across environments. The holder register
323 // is left untouched, whereas both scratch registers are clobbered.
324 void CheckAccessGlobalProxy(Register holder_reg,
325 Register scratch,
326 Label* miss);
327
328
329 // ---------------------------------------------------------------------------
330 // Allocation support
331
332 // Allocate an object in new space. The object_size is specified in words (not
333 // bytes). If the new space is exhausted control continues at the gc_required
334 // label. The allocated object is returned in result. If the flag
Kristian Monsen25f61362010-05-21 11:50:48 +0100335 // tag_allocated_object is true the result is tagged as as a heap object. All
336 // registers are clobbered also when control continues at the gc_required
337 // label.
Steve Blocka7e24c12009-10-30 11:49:00 +0000338 void AllocateInNewSpace(int object_size,
339 Register result,
340 Register scratch1,
341 Register scratch2,
342 Label* gc_required,
343 AllocationFlags flags);
344 void AllocateInNewSpace(Register object_size,
345 Register result,
346 Register scratch1,
347 Register scratch2,
348 Label* gc_required,
349 AllocationFlags flags);
350
351 // Undo allocation in new space. The object passed and objects allocated after
352 // it will no longer be allocated. The caller must make sure that no pointers
353 // are left to the object(s) no longer allocated as they would be invalid when
354 // allocation is undone.
355 void UndoAllocationInNewSpace(Register object, Register scratch);
356
Andrei Popescu31002712010-02-23 13:46:05 +0000357
358 void AllocateTwoByteString(Register result,
359 Register length,
360 Register scratch1,
361 Register scratch2,
362 Register scratch3,
363 Label* gc_required);
364 void AllocateAsciiString(Register result,
365 Register length,
366 Register scratch1,
367 Register scratch2,
368 Register scratch3,
369 Label* gc_required);
370 void AllocateTwoByteConsString(Register result,
371 Register length,
372 Register scratch1,
373 Register scratch2,
374 Label* gc_required);
375 void AllocateAsciiConsString(Register result,
376 Register length,
377 Register scratch1,
378 Register scratch2,
379 Label* gc_required);
380
Kristian Monsen25f61362010-05-21 11:50:48 +0100381 // Allocates a heap number or jumps to the gc_required label if the young
382 // space is full and a scavenge is needed. All registers are clobbered also
383 // when control continues at the gc_required label.
Steve Block6ded16b2010-05-10 14:33:55 +0100384 void AllocateHeapNumber(Register result,
385 Register scratch1,
386 Register scratch2,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100387 Register heap_number_map,
Steve Block6ded16b2010-05-10 14:33:55 +0100388 Label* gc_required);
Steve Block8defd9f2010-07-08 12:39:36 +0100389 void AllocateHeapNumberWithValue(Register result,
390 DwVfpRegister value,
391 Register scratch1,
392 Register scratch2,
393 Register heap_number_map,
394 Label* gc_required);
395
Andrei Popescu31002712010-02-23 13:46:05 +0000396
Steve Blocka7e24c12009-10-30 11:49:00 +0000397 // ---------------------------------------------------------------------------
398 // Support functions.
399
400 // Try to get function prototype of a function and puts the value in
401 // the result register. Checks that the function really is a
402 // function and jumps to the miss label if the fast checks fail. The
403 // function register will be untouched; the other registers may be
404 // clobbered.
405 void TryGetFunctionPrototype(Register function,
406 Register result,
407 Register scratch,
408 Label* miss);
409
410 // Compare object type for heap object. heap_object contains a non-Smi
411 // whose object type should be compared with the given type. This both
412 // sets the flags and leaves the object type in the type_reg register.
413 // It leaves the map in the map register (unless the type_reg and map register
414 // are the same register). It leaves the heap object in the heap_object
415 // register unless the heap_object register is the same register as one of the
416 // other registers.
417 void CompareObjectType(Register heap_object,
418 Register map,
419 Register type_reg,
420 InstanceType type);
421
422 // Compare instance type in a map. map contains a valid map object whose
423 // object type should be compared with the given type. This both
424 // sets the flags and leaves the object type in the type_reg register. It
425 // leaves the heap object in the heap_object register unless the heap_object
426 // register is the same register as type_reg.
427 void CompareInstanceType(Register map,
428 Register type_reg,
429 InstanceType type);
430
Andrei Popescu31002712010-02-23 13:46:05 +0000431
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100432 // Check if the map of an object is equal to a specified map (either
433 // given directly or as an index into the root list) and branch to
434 // label if not. Skip the smi check if not required (object is known
435 // to be a heap object)
Andrei Popescu31002712010-02-23 13:46:05 +0000436 void CheckMap(Register obj,
437 Register scratch,
438 Handle<Map> map,
439 Label* fail,
440 bool is_heap_object);
441
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100442 void CheckMap(Register obj,
443 Register scratch,
444 Heap::RootListIndex index,
445 Label* fail,
446 bool is_heap_object);
447
448
Andrei Popescu31002712010-02-23 13:46:05 +0000449 // Load and check the instance type of an object for being a string.
450 // Loads the type into the second argument register.
451 // Returns a condition that will be enabled if the object was a string.
452 Condition IsObjectStringType(Register obj,
453 Register type) {
454 ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset));
455 ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
456 tst(type, Operand(kIsNotStringMask));
457 ASSERT_EQ(0, kStringTag);
458 return eq;
459 }
460
461
Steve Blocka7e24c12009-10-30 11:49:00 +0000462 inline void BranchOnSmi(Register value, Label* smi_label) {
463 tst(value, Operand(kSmiTagMask));
464 b(eq, smi_label);
465 }
466
467 inline void BranchOnNotSmi(Register value, Label* not_smi_label) {
468 tst(value, Operand(kSmiTagMask));
469 b(ne, not_smi_label);
470 }
471
472 // Generates code for reporting that an illegal operation has
473 // occurred.
474 void IllegalOperation(int num_arguments);
475
Andrei Popescu31002712010-02-23 13:46:05 +0000476 // Get the number of least significant bits from a register
477 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
478
Steve Blockd0582a62009-12-15 09:54:21 +0000479 // Uses VFP instructions to Convert a Smi to a double.
480 void IntegerToDoubleConversionWithVFP3(Register inReg,
481 Register outHighReg,
482 Register outLowReg);
483
Steve Block8defd9f2010-07-08 12:39:36 +0100484 // Load the value of a number object into a VFP double register. If the object
485 // is not a number a jump to the label not_number is performed and the VFP
486 // double register is unchanged.
487 void ObjectToDoubleVFPRegister(
488 Register object,
489 DwVfpRegister value,
490 Register scratch1,
491 Register scratch2,
492 Register heap_number_map,
493 SwVfpRegister scratch3,
494 Label* not_number,
495 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
496
497 // Load the value of a smi object into a VFP double register. The register
498 // scratch1 can be the same register as smi in which case smi will hold the
499 // untagged value afterwards.
500 void SmiToDoubleVFPRegister(Register smi,
501 DwVfpRegister value,
502 Register scratch1,
503 SwVfpRegister scratch2);
504
Steve Block6ded16b2010-05-10 14:33:55 +0100505 // Count leading zeros in a 32 bit word. On ARM5 and later it uses the clz
506 // instruction. On pre-ARM5 hardware this routine gives the wrong answer
Steve Block8defd9f2010-07-08 12:39:36 +0100507 // for 0 (31 instead of 32). Source and scratch can be the same in which case
508 // the source is clobbered. Source and zeros can also be the same in which
509 // case scratch should be a different register.
510 void CountLeadingZeros(Register zeros,
511 Register source,
512 Register scratch);
Steve Blocka7e24c12009-10-30 11:49:00 +0000513
514 // ---------------------------------------------------------------------------
515 // Runtime calls
516
517 // Call a code stub.
518 void CallStub(CodeStub* stub, Condition cond = al);
Steve Blocka7e24c12009-10-30 11:49:00 +0000519
Andrei Popescu31002712010-02-23 13:46:05 +0000520 // Call a code stub.
521 void TailCallStub(CodeStub* stub, Condition cond = al);
522
Steve Blocka7e24c12009-10-30 11:49:00 +0000523 // Return from a code stub after popping its arguments.
Leon Clarkeac952652010-07-15 11:15:24 +0100524 void StubReturn(int argc, Condition cond = al);
Steve Blocka7e24c12009-10-30 11:49:00 +0000525
526 // Call a runtime routine.
Steve Blocka7e24c12009-10-30 11:49:00 +0000527 void CallRuntime(Runtime::Function* f, int num_arguments);
528
529 // Convenience function: Same as above, but takes the fid instead.
530 void CallRuntime(Runtime::FunctionId fid, int num_arguments);
531
Andrei Popescu402d9372010-02-26 13:31:12 +0000532 // Convenience function: call an external reference.
533 void CallExternalReference(const ExternalReference& ext,
534 int num_arguments);
535
Steve Blocka7e24c12009-10-30 11:49:00 +0000536 // Tail call of a runtime routine (jump).
Steve Block6ded16b2010-05-10 14:33:55 +0100537 // Like JumpToExternalReference, but also takes care of passing the number
Steve Blocka7e24c12009-10-30 11:49:00 +0000538 // of parameters.
Steve Block6ded16b2010-05-10 14:33:55 +0100539 void TailCallExternalReference(const ExternalReference& ext,
540 int num_arguments,
541 int result_size);
542
543 // Convenience function: tail call a runtime routine (jump).
544 void TailCallRuntime(Runtime::FunctionId fid,
Steve Blocka7e24c12009-10-30 11:49:00 +0000545 int num_arguments,
546 int result_size);
547
Steve Block6ded16b2010-05-10 14:33:55 +0100548 // Before calling a C-function from generated code, align arguments on stack.
549 // After aligning the frame, non-register arguments must be stored in
550 // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
551 // are word sized.
552 // Some compilers/platforms require the stack to be aligned when calling
553 // C++ code.
554 // Needs a scratch register to do some arithmetic. This register will be
555 // trashed.
556 void PrepareCallCFunction(int num_arguments, Register scratch);
557
558 // Calls a C function and cleans up the space for arguments allocated
559 // by PrepareCallCFunction. The called function is not allowed to trigger a
560 // garbage collection, since that might move the code and invalidate the
561 // return address (unless this is somehow accounted for by the called
562 // function).
563 void CallCFunction(ExternalReference function, int num_arguments);
564 void CallCFunction(Register function, int num_arguments);
565
Steve Blocka7e24c12009-10-30 11:49:00 +0000566 // Jump to a runtime routine.
Steve Block6ded16b2010-05-10 14:33:55 +0100567 void JumpToExternalReference(const ExternalReference& builtin);
Steve Blocka7e24c12009-10-30 11:49:00 +0000568
569 // Invoke specified builtin JavaScript function. Adds an entry to
570 // the unresolved list if the name does not resolve.
571 void InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flags);
572
573 // Store the code object for the given builtin in the target register and
574 // setup the function in r1.
575 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
576
Steve Blocka7e24c12009-10-30 11:49:00 +0000577 Handle<Object> CodeObject() { return code_object_; }
578
579
580 // ---------------------------------------------------------------------------
581 // StatsCounter support
582
583 void SetCounter(StatsCounter* counter, int value,
584 Register scratch1, Register scratch2);
585 void IncrementCounter(StatsCounter* counter, int value,
586 Register scratch1, Register scratch2);
587 void DecrementCounter(StatsCounter* counter, int value,
588 Register scratch1, Register scratch2);
589
590
591 // ---------------------------------------------------------------------------
592 // Debugging
593
594 // Calls Abort(msg) if the condition cc is not satisfied.
595 // Use --debug_code to enable.
596 void Assert(Condition cc, const char* msg);
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100597 void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index);
Steve Blocka7e24c12009-10-30 11:49:00 +0000598
599 // Like Assert(), but always enabled.
600 void Check(Condition cc, const char* msg);
601
602 // Print a message to stdout and abort execution.
603 void Abort(const char* msg);
604
605 // Verify restrictions about code generated in stubs.
606 void set_generating_stub(bool value) { generating_stub_ = value; }
607 bool generating_stub() { return generating_stub_; }
608 void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
609 bool allow_stub_calls() { return allow_stub_calls_; }
610
Leon Clarked91b9f72010-01-27 17:25:45 +0000611 // ---------------------------------------------------------------------------
Andrei Popescu31002712010-02-23 13:46:05 +0000612 // Smi utilities
613
614 // Jump if either of the registers contain a non-smi.
615 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
616 // Jump if either of the registers contain a smi.
617 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
618
619 // ---------------------------------------------------------------------------
Leon Clarked91b9f72010-01-27 17:25:45 +0000620 // String utilities
621
622 // Checks if both objects are sequential ASCII strings and jumps to label
623 // if either is not. Assumes that neither object is a smi.
624 void JumpIfNonSmisNotBothSequentialAsciiStrings(Register object1,
625 Register object2,
626 Register scratch1,
627 Register scratch2,
Steve Block6ded16b2010-05-10 14:33:55 +0100628 Label* failure);
Leon Clarked91b9f72010-01-27 17:25:45 +0000629
630 // Checks if both objects are sequential ASCII strings and jumps to label
631 // if either is not.
632 void JumpIfNotBothSequentialAsciiStrings(Register first,
633 Register second,
634 Register scratch1,
635 Register scratch2,
636 Label* not_flat_ascii_strings);
637
Steve Block6ded16b2010-05-10 14:33:55 +0100638 // Checks if both instance types are sequential ASCII strings and jumps to
639 // label if either is not.
640 void JumpIfBothInstanceTypesAreNotSequentialAscii(
641 Register first_object_instance_type,
642 Register second_object_instance_type,
643 Register scratch1,
644 Register scratch2,
645 Label* failure);
646
647 // Check if instance type is sequential ASCII string and jump to label if
648 // it is not.
649 void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
650 Register scratch,
651 Label* failure);
652
653
Steve Blocka7e24c12009-10-30 11:49:00 +0000654 private:
Andrei Popescu31002712010-02-23 13:46:05 +0000655 void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
656 void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
Steve Blocka7e24c12009-10-30 11:49:00 +0000657
658 // Helper functions for generating invokes.
659 void InvokePrologue(const ParameterCount& expected,
660 const ParameterCount& actual,
661 Handle<Code> code_constant,
662 Register code_reg,
663 Label* done,
664 InvokeFlag flag);
665
Steve Blocka7e24c12009-10-30 11:49:00 +0000666 // Activation support.
667 void EnterFrame(StackFrame::Type type);
668 void LeaveFrame(StackFrame::Type type);
Andrei Popescu31002712010-02-23 13:46:05 +0000669
Steve Block6ded16b2010-05-10 14:33:55 +0100670 void InitializeNewString(Register string,
671 Register length,
672 Heap::RootListIndex map_index,
673 Register scratch1,
674 Register scratch2);
675
Andrei Popescu31002712010-02-23 13:46:05 +0000676 bool generating_stub_;
677 bool allow_stub_calls_;
678 // This handle will be patched with the code object on installation.
679 Handle<Object> code_object_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000680};
681
682
683#ifdef ENABLE_DEBUGGER_SUPPORT
684// The code patcher is used to patch (typically) small parts of code e.g. for
685// debugging and other types of instrumentation. When using the code patcher
686// the exact number of bytes specified must be emitted. It is not legal to emit
687// relocation information. If any of these constraints are violated it causes
688// an assertion to fail.
689class CodePatcher {
690 public:
691 CodePatcher(byte* address, int instructions);
692 virtual ~CodePatcher();
693
694 // Macro assembler to emit code.
695 MacroAssembler* masm() { return &masm_; }
696
697 // Emit an instruction directly.
698 void Emit(Instr x);
699
700 // Emit an address directly.
701 void Emit(Address addr);
702
703 private:
704 byte* address_; // The address of the code being patched.
705 int instructions_; // Number of instructions of the expected patch size.
706 int size_; // Number of bytes of the expected patch size.
707 MacroAssembler masm_; // Macro assembler used to generate the code.
708};
709#endif // ENABLE_DEBUGGER_SUPPORT
710
711
712// -----------------------------------------------------------------------------
713// Static helper functions.
714
Steve Blocka7e24c12009-10-30 11:49:00 +0000715#ifdef GENERATED_CODE_COVERAGE
716#define CODE_COVERAGE_STRINGIFY(x) #x
717#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
718#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
719#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
720#else
721#define ACCESS_MASM(masm) masm->
722#endif
723
724
725} } // namespace v8::internal
726
727#endif // V8_ARM_MACRO_ASSEMBLER_ARM_H_