D-petlja
U molekulskoj biologiji, petlja pomjeranja ili D-petlja je DNK struktura u kojoj su dva lanca dvolančane molekule DNK razdvojena za rastegnuti i razdvojeni trećim lancem DNK. R-petlja je slična D-petlji, ali u ovom slučaju treći lanac je RNK, a ne DNK. Treći lanac ima baznu sekvencu koja je komplementarna jednom od glavnih lanaca i parova s njim, čime se istiskuje drugi komplementarni glavni lanac u regionu. Unutar tog regiona struktura je stoga oblik trolančane DNK. Dijagram u radu koji uvodi pojam ilustrira D-petlju s oblikom koji liči na veliko "D", gdje je pomjerena niti formirala petlju "D".[1]
D-petlje se javljaju u brojnim određenim situacijama, uključujući popravku DNK, telomera i kao polustabilnu strukturu u mitohondrijskoj kružnoj DNK molekuli.
U mitohondrijama
[uredi | uredi izvor]Istraživači na Caltechu su 1971. otkrili da kružna mitohondrijska DNK iz rastućih ćelijaa uključuje kratak segment od tri lanca koji su nazvali petlja pomjeranja.[1] Otkrili su da je treći lanac repliciran segment teškog lanca (ili H-lanca) molekule, koji je istisnuo, i bio vodikovom vezom vezan za lahki lanac (ili L-lanac). Od tada se pokazalo da je treći lanac početni segment generiran replikacijom teškog lanca koji je zaustavljen ubrzo nakon inicijacije i često se održava u tom stanju neko vrijeme.[2] D-petlja se javlja u glavnom nekodirajućem području molekule mitohondrijske DNK, segmentu koji se naziva kontrolna regija ili region D-petlje.
Replikacija mitohondrijske DNK može se desiti na dva različita načina, oba počevši u regiji D-petlje.[3] Jedan način nastavlja replikaciju teškog lanca kroz značajan dio (npr. dvije trećine) kružne molekule, a zatim počinje replikacija lahkog lanca. Noviji način rada počinje na drugom porijeklu unutar regije D-petlje i koristi replikaciju spojenog lanca uz istovremenu sintezu oba lanca.[3][4]
Određene baze unutar regije D-petlje su konzervirane, ali veliki dijelovi su veoma varijabilni i region se pokazao korisnim za proučavanje evolucijske historije kičmenjaka.[5] Regija sadrži promotore za transkripciju RNK iz dva lanca mitohondrijske DNK neposredno uz strukturu D-petlje koja je povezana sa pokretanje replikacija DNK.[6] Sekvence D-petlje su takođe od interesa za proučavanje karcinoma.[7]
Funkcija D-petlje još nije jasna, ali nedavna istraživanja sugeriraju da ona učestvuje u organizaciji mitohondrijskog nukleoida.[8][9]
U telomerama
[uredi | uredi izvor]Godine 1999. objavljeno je da telomere, koje pokrivaju kraj hromosoma, završavaju strukturom nalik na proizvod koji se naziva T-petlja (telomerna petlja ).[10] Ovo je petlja oba hromosomska lanca koji su spojeni na raniju tačku u dvolančanoj DNK, pomoću kraja 3' lanca koji invaziju na parni lanac i formiraju D-petlju. Zglob je stabilizovan shelterinskim proteinom POT1.[11] T-petlja, koja je završena spajanjem D-petlje, štiti kraj hromosoma od oštećenja.[12]
U popravku DNK
[uredi | uredi izvor]Kada je dvolančana molekula DNK pretrpjela prekid u oba lanca, jedan mehanizam popravke koji je dostupan u diploidnim eukariotskim ćelijama je popravka homologne rekombinacije. Ovo koristi netaknuti hromosom koji je homologan slomljenom kao šablon za dovođenje dva dvolančana dijela u ispravno poravnanje za ponovno spajanje. Rano u ovom procesu, jedan lanac od jednog komada se poklapa sa lancem intaktnog hromosoma i taj lanac se koristi za formiranje D-petlje u toj tački, pomjerajući drugi lancu netaknutog hromosoma. Slijede različiti koraci ligacije i sinteze, kako bi se izvršilo ponovno spajanje.[13]
Kod ljudi, protein RAD51 je centralni za homolognu pretragu i formiranje D-petlje. U bakterije Escherichia coli, sličnu funkciju obavlja protein RecA.[14]
Mejotska rekombinacija
[uredi | uredi izvor]Tokom mejoza, popravak dvostrukih lanaca oštećenja, posebno dvolančanih prekida, događa se procesom rekombinacije prikazanim u pratećem dijagramu. Kao što je prikazano, D-petlja ima centralnu ulogu u mejotskom rekombinacijskom popravljanju takvih oštećenja. Tokom ovog procesa, Rad51 i Dmc1 rekombinaze vezuju 3' jednolančane DNK (ssDNK) repove da formiraju spiralne nukleoproteinske filamente koji traže intaktnu homolognu dvolančanu DNK (dsDNK).[15] Jednom kada se pronađe homologna sekvenca, rekombinaze olakšavaju invaziju kraja ssDNK u homolognu dsDNK, kako bi se formirala D-petlja. Nakon izmjene lanaca, intermedijari homologne rekombinacije se obrađuju na bilo koji od dva različita puta (vidi dijagram), kako bi se formirali konačni rekombinantni hromosomi.
Također pogledajte
[uredi | uredi izvor]Reference
[uredi | uredi izvor]- ^ a b Kasamatsu, H.; Robberson, D. L.; Vinograd, J. (1971). "A novel closed-circular mitochondrial DNA with properties of a replicating intermediate". Proceedings of the National Academy of Sciences of the United States of America. 68 (9): 2252–2257. Bibcode:1971PNAS...68.2252K. doi:10.1073/pnas.68.9.2252. PMC 389395. PMID 5289384.
- ^ Doda, J. N.; Wright, C. T.; Clayton, D. A. (1981). "Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences". Proceedings of the National Academy of Sciences of the United States of America. 78 (10): 6116–6120. Bibcode:1981PNAS...78.6116D. doi:10.1073/pnas.78.10.6116. PMC 348988. PMID 6273850.
- ^ a b Fish, J.; Raule, N.; Attardi, G. (2004). "Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis" (PDF). Science. 306 (5704): 2098–2101. Bibcode:2004Sci...306.2098F. doi:10.1126/science.1102077. PMID 15604407. S2CID 36033690.
- ^ Holt, I. J.; Lorimer, H. E.; Jacobs, H. T. (2000). "Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA". Cell. 100 (5): 515–524. doi:10.1016/s0092-8674(00)80688-1. PMID 10721989.
- ^ Larizza, A.; Pesole, G.; Reyes, A.; Sbisà, E.; Saccone, C. (2002). "Lineage specificity of the evolutionary dynamics of the mtDNA D-loop region in rodents". Journal of Molecular Evolution. 54 (2): 145–155. Bibcode:2002JMolE..54..145L. doi:10.1007/s00239-001-0063-4. PMID 11821908. S2CID 40529707.
- ^ Chang, D. D.; Clayton, D. A. (1985). "Priming of human mitochondrial DNA replication occurs at the light-strand promoter". Proceedings of the National Academy of Sciences of the United States of America. 82 (2): 351–355. Bibcode:1985PNAS...82..351C. doi:10.1073/pnas.82.2.351. PMC 397036. PMID 2982153.
- ^ Akouchekian, M.; Houshmand, M.; Hemati, S.; Ansaripour, M.; Shafa, M. (2009). "High Rate of Mutation in Mitochondrial DNA Displacement Loop Region in Human Colorectal Cancer". Diseases of the Colon & Rectum. 52 (3): 526–530. doi:10.1007/DCR.0b013e31819acb99. PMID 19333057. S2CID 28775491.
- ^ He, J.; Mao, C. -C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A. B.; Fearnley, I. M.; Harbour, M.; Robinson, A. J.; Reichelt, S.; Spelbrink, J. N.; Walker, J. E.; Holt, I. J. (2007). "The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization". The Journal of Cell Biology. 176 (2): 141–146. doi:10.1083/jcb.200609158. PMC 2063933. PMID 17210950.
- ^ Leslie, M. (2007). "Thrown for a D-loop". The Journal of Cell Biology. 176 (2): 129a. doi:10.1083/jcb.1762iti3. PMC 2063944.
- ^ Griffith, J. D.; Comeau, L.; Rosenfield, S.; Stansel, R. M.; Bianchi, A.; Moss, H.; De Lange, T. (1999). "Mammalian telomeres end in a large duplex loop". Cell. 97 (4): 503–514. doi:10.1016/S0092-8674(00)80760-6. PMID 10338214.
- ^ Maestroni L, Matmati S, Coulon S (2017). "Solving the Telomere Replication Problem". Genes. 8 (2): E55. doi:10.3390/genes8020055. PMC 5333044. PMID 28146113.
- ^ Greider, C. W. (1999). "Telomeres do D-loop-T-loop". Cell. 97 (4): 419–422. doi:10.1016/s0092-8674(00)80750-3. PMID 10338204.
- ^ Hartl, Daniel L.; Jones, Elizabeth W. (2005). "page 251". Genetics: Analysis of Genes and Genomes. Jones & Bartlett Publishers. ISBN 978-0763715113.
- ^ Shibata, T.; Nishinaka, T.; Mikawa, T.; Aihara, H.; Kurumizaka, H.; Yokoyama, S.; Ito, Y. (2001). "Homologous genetic recombination as an intrinsic dynamic property of a DNA structure induced by RecA/Rad51-family proteins: A possible advantage of DNA over RNA as genomic material". Proceedings of the National Academy of Sciences of the United States of America. 98 (15): 8425–8432. Bibcode:2001PNAS...98.8425S. doi:10.1073/pnas.111005198. PMC 37453. PMID 11459985.
- ^ Sansam CL, Pezza RJ (2015). "Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination". FEBS J. 282 (13): 2444–57. doi:10.1111/febs.13317. PMC 4573575. PMID 25953379.