[go: nahoru, domu]

Vés al contingut

Unitats de Planck

De la Viquipèdia, l'enciclopèdia lliure
Aquesta és una versió anterior d'aquesta pàgina, de data 03:32, 14 abr 2022 amb l'última edició de EVA3.0 (bot) (discussió | contribucions). Pot tenir inexactituds o contingut no apropiat no present en la versió actual.

Les unitats de Planck són un sistema d'unitats que va ser proposat pel físic alemany Max Planck el 1899. Es tracta d'un sistema d'unitats naturals, ja que es basa en unes poques constants físiques fonamentals normalitzades en 1.

La teoria estàndard, en ús, reconeguda per la majoria dels físics, admet quatre constants:

A les anteriors, s'hi pot afegir la permitivitat en el buit ε0.

Cadascuna d'aquestes constants pot ser associada almenys a una de les teories físiques fonamentals: c amb la relativitat especial, G amb la relativitat general i la gravitació newtoniana, amb la mecànica quàntica, ε0 amb l'electroestàtica i k amb la mecànica estadística i amb la termodinàmica. Les unitats de Planck tenen una rellevància especial per als físics teòrics, ja que simplifiquen les expressions algebraiques de les lleis físiques. Són especialment rellevants en la recerca de les teories unificadores com la de la gravetat quàntica.

Unitats de Planck bàsiques

Tots els sistemes d'unitats tenen unes unitats bàsiques, en el SI en són set i, per exemple, la unitat base de longitud és el metre. En el sistema d'unitats de Planck, hi ha cinc unitats de base que deriven de les cinc constants físiques esmentades. Com tots els sistemes d'unitats naturals, les unitats de Planck són una instància de l'anàlisi dimensional.

Admeses la constant gravitacional G, la constant de Planck ħ, la velocitat de la llum c, i la constant de Boltzmann kb, les unitats de longitud (longitud de Planck lp), de temps (temps de Planck tp), de massa (massa de Planck mp) i de temperatura (temperatura de Planck θp) poden ser expressades en termes de les constants universals com:


Nom Magnitud Expressió Equivalent al SI amb incertesa[1] Altres equivalències
Longitud de Planck Longitud (L) 1,616 252(81) × 10−35 m
Massa de Planck Massa (M) 2,176 44(11) × 10−8 kg 1,220 862(61)× 1019 GeV/c²
Temps de Planck Temps (T) 5,391 24(27) × 10−44 s
Càrrega de Planck Càrrega elèctrica (Q) 1,875 545 870(47) × 10−18 C 11,706 237 6398(40) e
Temperatura de Planck Temperatura (Θ) 1,416 785(71) × 1032 K

Com el mateix Planck establí: "aquestes quantitats mantenen el seu significat natural tal com les lleis de la gravitació, de la propagació de la llum en el buit i la primera i la segona lleis de la termodinàmica, resten vàlides. Conseqüentment, han de mantenir-se sempre iguals, encara que siguin amidades per les més diferents intel·ligències, fins i tot amb els més diferents mètodes".

Unitats de Planck derivades

En qualsevol sistema de mesura, les unitats de moltes magnituds físiques poden ser derivades a partir de les unitats de base. En la taula següent, hi ha alguns exemples d'unitats de Planck derivades, algunes rarament utilitzades. Igual que les unitats de base, la seva utilització se centra gairebé en exclusiva dins del camp de la física teòrica, ja que la majoria són o massa grans o massa petites per a una utilització pràctica o empírica, a més del fet que presenten grans incerteses en els seus valors.

Nom Dimensions Expressió Equivalent aproximat al SI
Àrea de Planck Àrea (L²) 2,61223 × 10–70
Volum de Planck Volum (L3) 4,22419 × 10–105
Moment de Planck Moment (LMT–1) 6,52485 kg m/s
Energia de Planck Energia (L²MT–2) 1,9561 × 109 J
Força de Planck Força (LMT–2) 1,21027 × 1044 N
Potència de Planck Potència (L²MT–3) 3,62831 × 1052 W
Densitat de Planck Densitat (L–3M) 5,15500 × 1096 kg/m³
Freqüència angular de Planck Freqüència (T–1) 1,85487 × 1043 s−1
Pressió de Planck Pressió (LM–1T–2) 4,63309 × 10113 Pa
Corrent de Planck Corrent elèctric (QT–1) 3,4789 × 1025 A
Voltatge de Planck Voltatge (L²MT–2Q–1) 1,04295 × 1027 V
Impedància de Planck Resistència (L²MT–1Q–2) 29,9792458 Ω

Simplificació de les equacions fonamentals de la física

Les diferents magnituds físiques tenen unes dimensions diferents que no poden ser igualades numèricament: un segon no és el mateix que un metre. Però, en física teòrica, aquests detalls poden ser deixats de banda per tal de simplificar els càlculs. El procés que aconsegueix això s'anomena adimensionalització; en la taula següent, es mostra la utilització de les constants fonamentals per tal d'adimensionalitzar algunes equacions físiques:

Forma habitual Forma adimensionalitzada
Llei de la gravitació universal de Newton
Equació de Schrödinger

Energia d'un fotó o d'una partícula de pulsació ω
L'equació massa-energia de la relativitat especial d'Einstein
L'equació de camp d'Einstein de la relativitat general
Definició de la temperatura per l'energia d'una partícula per grau de llibertat
Llei de Coulomb
Equacions de Maxwell





Vegeu també

Referències

Enllaços externs

  • Plana sobre les unitats de Planck (anglès).