[go: nahoru, domu]

blob: f1522ba3800060851fb23686f9010b99bfdbf98c [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <limits>
#include <type_traits>
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math.h"
#include "base/test/gtest_util.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(COMPILER_MSVC) && defined(ARCH_CPU_32_BITS)
#include <mmintrin.h>
#endif
using std::numeric_limits;
using base::CheckedNumeric;
using base::IsValidForType;
using base::ValueOrDieForType;
using base::ValueOrDefaultForType;
using base::CheckNum;
using base::CheckAdd;
using base::CheckSub;
using base::CheckMul;
using base::CheckDiv;
using base::CheckMod;
using base::CheckLsh;
using base::CheckRsh;
using base::checked_cast;
using base::IsValueInRangeForNumericType;
using base::IsValueNegative;
using base::SizeT;
using base::StrictNumeric;
using base::saturated_cast;
using base::strict_cast;
using base::StrictNumeric;
using base::internal::MaxExponent;
using base::internal::RANGE_VALID;
using base::internal::RANGE_INVALID;
using base::internal::RANGE_OVERFLOW;
using base::internal::RANGE_UNDERFLOW;
using base::internal::SignedIntegerForSize;
// These tests deliberately cause arithmetic boundary errors. If the compiler is
// aggressive enough, it can const detect these errors, so we disable warnings.
#if defined(OS_WIN)
#pragma warning(disable : 4756) // Arithmetic overflow.
#pragma warning(disable : 4293) // Invalid shift.
#endif
// This is a helper function for finding the maximum value in Src that can be
// wholy represented as the destination floating-point type.
template <typename Dst, typename Src>
Dst GetMaxConvertibleToFloat() {
typedef numeric_limits<Dst> DstLimits;
typedef numeric_limits<Src> SrcLimits;
static_assert(SrcLimits::is_specialized, "Source must be numeric.");
static_assert(DstLimits::is_specialized, "Destination must be numeric.");
CHECK(DstLimits::is_iec559);
if (SrcLimits::digits <= DstLimits::digits &&
MaxExponent<Src>::value <= MaxExponent<Dst>::value)
return SrcLimits::max();
Src max = SrcLimits::max() / 2 + (SrcLimits::is_integer ? 1 : 0);
while (max != static_cast<Src>(static_cast<Dst>(max))) {
max /= 2;
}
return static_cast<Dst>(max);
}
namespace base {
namespace internal {
template <typename U>
U GetNumericValueForTest(const CheckedNumeric<U>& src) {
return src.state_.value();
}
} // namespace internal.
} // namespace base.
using base::internal::GetNumericValueForTest;
// Logs the ValueOrDie() failure instead of crashing.
struct LogOnFailure {
template <typename T>
static T HandleFailure() {
LOG(WARNING) << "ValueOrDie() failed unexpectedly.";
return T();
}
};
// Helper macros to wrap displaying the conversion types and line numbers.
#define TEST_EXPECTED_VALIDITY(expected, actual) \
EXPECT_EQ(expected, (actual).template Cast<Dst>().IsValid()) \
<< "Result test: Value " << GetNumericValueForTest(actual) << " as " \
<< dst << " on line " << line
#define TEST_EXPECTED_SUCCESS(actual) TEST_EXPECTED_VALIDITY(true, actual)
#define TEST_EXPECTED_FAILURE(actual) TEST_EXPECTED_VALIDITY(false, actual)
#define TEST_EXPECTED_VALUE(expected, actual) \
EXPECT_EQ(static_cast<Dst>(expected), \
((actual) \
.template Cast<Dst>() \
.template ValueOrDie<Dst, LogOnFailure>())) \
<< "Result test: Value " << GetNumericValueForTest(actual) << " as " \
<< dst << " on line " << line
// Test the simple pointer arithmetic overrides.
template <typename Dst>
void TestStrictPointerMath() {
Dst dummy_value = 0;
Dst* dummy_ptr = &dummy_value;
static const Dst kDummyOffset = 2; // Don't want to go too far.
EXPECT_EQ(dummy_ptr + kDummyOffset,
dummy_ptr + StrictNumeric<Dst>(kDummyOffset));
EXPECT_EQ(dummy_ptr - kDummyOffset,
dummy_ptr - StrictNumeric<Dst>(kDummyOffset));
EXPECT_NE(dummy_ptr, dummy_ptr + StrictNumeric<Dst>(kDummyOffset));
EXPECT_NE(dummy_ptr, dummy_ptr - StrictNumeric<Dst>(kDummyOffset));
EXPECT_DEATH_IF_SUPPORTED(
dummy_ptr + StrictNumeric<size_t>(std::numeric_limits<size_t>::max()),
"");
}
// Signed integer arithmetic.
template <typename Dst>
static void TestSpecializedArithmetic(
const char* dst,
int line,
typename std::enable_if<numeric_limits<Dst>::is_integer &&
numeric_limits<Dst>::is_signed,
int>::type = 0) {
typedef numeric_limits<Dst> DstLimits;
TEST_EXPECTED_FAILURE(-CheckedNumeric<Dst>(DstLimits::min()));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()).Abs());
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(-1).Abs());
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::max()) + -1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) + -1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(-DstLimits::max()) +
-DstLimits::max());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) - 1);
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()) - -1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) -
-DstLimits::max());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(-DstLimits::max()) -
DstLimits::max());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) * 2);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) / -1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(-1) / 2);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) * -1);
// Modulus is legal only for integers.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>() % 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1);
TEST_EXPECTED_VALUE(-1, CheckedNumeric<Dst>(-1) % 2);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(-1) % -2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::min()) % 2);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(DstLimits::max()) % 2);
// Test all the different modulus combinations.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, 1 % CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1);
CheckedNumeric<Dst> checked_dst = 1;
TEST_EXPECTED_VALUE(0, checked_dst %= 1);
// Test that div by 0 is avoided but returns invalid result.
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) % 0);
// Test bit shifts.
volatile Dst negative_one = -1;
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) << negative_one);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) << (sizeof(Dst) * CHAR_BIT - 1));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(0) << (sizeof(Dst) * CHAR_BIT));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) << 1);
TEST_EXPECTED_VALUE(static_cast<Dst>(1) << (sizeof(Dst) * CHAR_BIT - 2),
CheckedNumeric<Dst>(1) << (sizeof(Dst) * CHAR_BIT - 2));
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0)
<< (sizeof(Dst) * CHAR_BIT - 1));
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) << 0);
TEST_EXPECTED_VALUE(2, CheckedNumeric<Dst>(1) << 1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) >> (sizeof(Dst) * CHAR_BIT));
TEST_EXPECTED_VALUE(0,
CheckedNumeric<Dst>(1) >> (sizeof(Dst) * CHAR_BIT - 1));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) >> negative_one);
TestStrictPointerMath<Dst>();
}
// Unsigned integer arithmetic.
template <typename Dst>
static void TestSpecializedArithmetic(
const char* dst,
int line,
typename std::enable_if<numeric_limits<Dst>::is_integer &&
!numeric_limits<Dst>::is_signed,
int>::type = 0) {
typedef numeric_limits<Dst> DstLimits;
TEST_EXPECTED_SUCCESS(-CheckedNumeric<Dst>(DstLimits::min()));
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()).Abs());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) + -1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) - 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::min()) * 2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) / 2);
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()).UnsignedAbs());
TEST_EXPECTED_SUCCESS(
CheckedNumeric<typename SignedIntegerForSize<Dst>::type>(
std::numeric_limits<typename SignedIntegerForSize<Dst>::type>::min())
.UnsignedAbs());
// Modulus is legal only for integers.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>() % 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) % 2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::min()) % 2);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(DstLimits::max()) % 2);
// Test all the different modulus combinations.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, 1 % CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1);
CheckedNumeric<Dst> checked_dst = 1;
TEST_EXPECTED_VALUE(0, checked_dst %= 1);
// Test that div by 0 is avoided but returns invalid result.
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) % 0);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) << (sizeof(Dst) * CHAR_BIT));
// Test bit shifts.
volatile int negative_one = -1;
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) << negative_one);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) << (sizeof(Dst) * CHAR_BIT));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(0) << (sizeof(Dst) * CHAR_BIT));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) << 1);
TEST_EXPECTED_VALUE(static_cast<Dst>(1) << (sizeof(Dst) * CHAR_BIT - 1),
CheckedNumeric<Dst>(1) << (sizeof(Dst) * CHAR_BIT - 1));
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) << 0);
TEST_EXPECTED_VALUE(2, CheckedNumeric<Dst>(1) << 1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) >> (sizeof(Dst) * CHAR_BIT));
TEST_EXPECTED_VALUE(0,
CheckedNumeric<Dst>(1) >> (sizeof(Dst) * CHAR_BIT - 1));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) >> negative_one);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) & 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) & 0);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0) & 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) & 0);
TEST_EXPECTED_VALUE(std::numeric_limits<Dst>::max(),
CheckNum(DstLimits::max()) & -1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) | 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) | 0);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(0) | 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0) | 0);
TEST_EXPECTED_VALUE(std::numeric_limits<Dst>::max(),
CheckedNumeric<Dst>(0) | static_cast<Dst>(-1));
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) ^ 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) ^ 0);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(0) ^ 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0) ^ 0);
TEST_EXPECTED_VALUE(std::numeric_limits<Dst>::max(),
CheckedNumeric<Dst>(0) ^ static_cast<Dst>(-1));
TEST_EXPECTED_VALUE(DstLimits::max(), ~CheckedNumeric<Dst>(0));
TestStrictPointerMath<Dst>();
}
// Floating point arithmetic.
template <typename Dst>
void TestSpecializedArithmetic(
const char* dst,
int line,
typename std::enable_if<numeric_limits<Dst>::is_iec559, int>::type = 0) {
typedef numeric_limits<Dst> DstLimits;
TEST_EXPECTED_SUCCESS(-CheckedNumeric<Dst>(DstLimits::min()));
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()).Abs());
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(-1).Abs());
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()) + -1);
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::max()) + 1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(-DstLimits::max()) +
-DstLimits::max());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) -
-DstLimits::max());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(-DstLimits::max()) -
DstLimits::max());
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()) * 2);
TEST_EXPECTED_VALUE(-0.5, CheckedNumeric<Dst>(-1.0) / 2);
}
// Generic arithmetic tests.
template <typename Dst>
static void TestArithmetic(const char* dst, int line) {
typedef numeric_limits<Dst> DstLimits;
EXPECT_EQ(true, CheckedNumeric<Dst>().IsValid());
EXPECT_EQ(false,
CheckedNumeric<Dst>(CheckedNumeric<Dst>(DstLimits::max()) *
DstLimits::max()).IsValid());
EXPECT_EQ(static_cast<Dst>(0), CheckedNumeric<Dst>().ValueOrDie());
EXPECT_EQ(static_cast<Dst>(0), CheckedNumeric<Dst>().ValueOrDefault(1));
EXPECT_EQ(static_cast<Dst>(1),
CheckedNumeric<Dst>(CheckedNumeric<Dst>(DstLimits::max()) *
DstLimits::max()).ValueOrDefault(1));
// Test the operator combinations.
TEST_EXPECTED_VALUE(2, CheckedNumeric<Dst>(1) + CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) - CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) * CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) / CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(2, 1 + CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, 1 - CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, 1 * CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, 1 / CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(2, CheckedNumeric<Dst>(1) + 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) - 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) * 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) / 1);
CheckedNumeric<Dst> checked_dst = 1;
TEST_EXPECTED_VALUE(2, checked_dst += 1);
checked_dst = 1;
TEST_EXPECTED_VALUE(0, checked_dst -= 1);
checked_dst = 1;
TEST_EXPECTED_VALUE(1, checked_dst *= 1);
checked_dst = 1;
TEST_EXPECTED_VALUE(1, checked_dst /= 1);
// Generic negation.
if (DstLimits::is_signed) {
TEST_EXPECTED_VALUE(0, -CheckedNumeric<Dst>());
TEST_EXPECTED_VALUE(-1, -CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, -CheckedNumeric<Dst>(-1));
TEST_EXPECTED_VALUE(static_cast<Dst>(DstLimits::max() * -1),
-CheckedNumeric<Dst>(DstLimits::max()));
}
// Generic absolute value.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>().Abs());
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1).Abs());
TEST_EXPECTED_VALUE(DstLimits::max(),
CheckedNumeric<Dst>(DstLimits::max()).Abs());
// Generic addition.
TEST_EXPECTED_VALUE(1, (CheckedNumeric<Dst>() + 1));
TEST_EXPECTED_VALUE(2, (CheckedNumeric<Dst>(1) + 1));
if (numeric_limits<Dst>::is_signed)
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(-1) + 1));
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()) + 1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) +
DstLimits::max());
// Generic subtraction.
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(1) - 1));
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::max()) - 1);
if (numeric_limits<Dst>::is_signed) {
TEST_EXPECTED_VALUE(-1, (CheckedNumeric<Dst>() - 1));
TEST_EXPECTED_VALUE(-2, (CheckedNumeric<Dst>(-1) - 1));
} else {
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) - -1);
}
// Generic multiplication.
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>() * 1));
TEST_EXPECTED_VALUE(1, (CheckedNumeric<Dst>(1) * 1));
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(0) * 0));
if (numeric_limits<Dst>::is_signed) {
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(-1) * 0));
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(0) * -1));
TEST_EXPECTED_VALUE(-2, (CheckedNumeric<Dst>(-1) * 2));
} else {
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) * -2);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) *
CheckedNumeric<uintmax_t>(-2));
}
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) *
DstLimits::max());
// Generic division.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>() / 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) / 1);
TEST_EXPECTED_VALUE(DstLimits::min() / 2,
CheckedNumeric<Dst>(DstLimits::min()) / 2);
TEST_EXPECTED_VALUE(DstLimits::max() / 2,
CheckedNumeric<Dst>(DstLimits::max()) / 2);
TestSpecializedArithmetic<Dst>(dst, line);
}
// Helper macro to wrap displaying the conversion types and line numbers.
#define TEST_ARITHMETIC(Dst) TestArithmetic<Dst>(#Dst, __LINE__)
TEST(SafeNumerics, SignedIntegerMath) {
TEST_ARITHMETIC(int8_t);
TEST_ARITHMETIC(int);
TEST_ARITHMETIC(intptr_t);
TEST_ARITHMETIC(intmax_t);
}
TEST(SafeNumerics, UnsignedIntegerMath) {
TEST_ARITHMETIC(uint8_t);
TEST_ARITHMETIC(unsigned int);
TEST_ARITHMETIC(uintptr_t);
TEST_ARITHMETIC(uintmax_t);
}
TEST(SafeNumerics, FloatingPointMath) {
TEST_ARITHMETIC(float);
TEST_ARITHMETIC(double);
}
// Enumerates the five different conversions types we need to test.
enum NumericConversionType {
SIGN_PRESERVING_VALUE_PRESERVING,
SIGN_PRESERVING_NARROW,
SIGN_TO_UNSIGN_WIDEN_OR_EQUAL,
SIGN_TO_UNSIGN_NARROW,
UNSIGN_TO_SIGN_NARROW_OR_EQUAL,
};
// Template covering the different conversion tests.
template <typename Dst, typename Src, NumericConversionType conversion>
struct TestNumericConversion {};
// EXPECT_EQ wrappers providing specific detail on test failures.
#define TEST_EXPECTED_RANGE(expected, actual) \
EXPECT_EQ(expected, base::internal::DstRangeRelationToSrcRange<Dst>(actual)) \
<< "Conversion test: " << src << " value " << actual << " to " << dst \
<< " on line " << line
template <typename Dst, typename Src>
void TestStrictComparison() {
typedef numeric_limits<Dst> DstLimits;
typedef numeric_limits<Src> SrcLimits;
static_assert(StrictNumeric<Src>(SrcLimits::min()) < DstLimits::max(), "");
static_assert(StrictNumeric<Src>(SrcLimits::min()) < SrcLimits::max(), "");
static_assert(!(StrictNumeric<Src>(SrcLimits::min()) >= DstLimits::max()),
"");
static_assert(!(StrictNumeric<Src>(SrcLimits::min()) >= SrcLimits::max()),
"");
static_assert(StrictNumeric<Src>(SrcLimits::min()) <= DstLimits::max(), "");
static_assert(StrictNumeric<Src>(SrcLimits::min()) <= SrcLimits::max(), "");
static_assert(!(StrictNumeric<Src>(SrcLimits::min()) > DstLimits::max()), "");
static_assert(!(StrictNumeric<Src>(SrcLimits::min()) > SrcLimits::max()), "");
static_assert(StrictNumeric<Src>(SrcLimits::max()) > DstLimits::min(), "");
static_assert(StrictNumeric<Src>(SrcLimits::max()) > SrcLimits::min(), "");
static_assert(!(StrictNumeric<Src>(SrcLimits::max()) <= DstLimits::min()),
"");
static_assert(!(StrictNumeric<Src>(SrcLimits::max()) <= SrcLimits::min()),
"");
static_assert(StrictNumeric<Src>(SrcLimits::max()) >= DstLimits::min(), "");
static_assert(StrictNumeric<Src>(SrcLimits::max()) >= SrcLimits::min(), "");
static_assert(!(StrictNumeric<Src>(SrcLimits::max()) < DstLimits::min()), "");
static_assert(!(StrictNumeric<Src>(SrcLimits::max()) < SrcLimits::min()), "");
static_assert(StrictNumeric<Src>(static_cast<Src>(1)) == static_cast<Dst>(1),
"");
static_assert(StrictNumeric<Src>(static_cast<Src>(1)) != static_cast<Dst>(0),
"");
static_assert(StrictNumeric<Src>(SrcLimits::max()) != static_cast<Dst>(0),
"");
static_assert(StrictNumeric<Src>(SrcLimits::max()) != DstLimits::min(), "");
static_assert(
!(StrictNumeric<Src>(static_cast<Src>(1)) != static_cast<Dst>(1)), "");
static_assert(
!(StrictNumeric<Src>(static_cast<Src>(1)) == static_cast<Dst>(0)), "");
}
template <typename Dst, typename Src>
struct TestNumericConversion<Dst, Src, SIGN_PRESERVING_VALUE_PRESERVING> {
static void Test(const char *dst, const char *src, int line) {
typedef numeric_limits<Src> SrcLimits;
typedef numeric_limits<Dst> DstLimits;
// Integral to floating.
static_assert((DstLimits::is_iec559 && SrcLimits::is_integer) ||
// Not floating to integral and...
(!(DstLimits::is_integer && SrcLimits::is_iec559) &&
// Same sign, same numeric, source is narrower or same.
((SrcLimits::is_signed == DstLimits::is_signed &&
sizeof(Dst) >= sizeof(Src)) ||
// Or signed destination and source is smaller
(DstLimits::is_signed && sizeof(Dst) > sizeof(Src)))),
"Comparison must be sign preserving and value preserving");
TestStrictComparison<Dst, Src>();
const CheckedNumeric<Dst> checked_dst = SrcLimits::max();
TEST_EXPECTED_SUCCESS(checked_dst);
if (MaxExponent<Dst>::value > MaxExponent<Src>::value) {
if (MaxExponent<Dst>::value >= MaxExponent<Src>::value * 2 - 1) {
// At least twice larger type.
TEST_EXPECTED_SUCCESS(SrcLimits::max() * checked_dst);
} else { // Larger, but not at least twice as large.
TEST_EXPECTED_FAILURE(SrcLimits::max() * checked_dst);
TEST_EXPECTED_SUCCESS(checked_dst + 1);
}
} else { // Same width type.
TEST_EXPECTED_FAILURE(checked_dst + 1);
}
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1));
if (SrcLimits::is_iec559) {
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::max() * static_cast<Src>(-1));
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::infinity());
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::infinity() * -1);
TEST_EXPECTED_RANGE(RANGE_INVALID, SrcLimits::quiet_NaN());
} else if (numeric_limits<Src>::is_signed) {
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(-1));
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::min());
}
}
};
template <typename Dst, typename Src>
struct TestNumericConversion<Dst, Src, SIGN_PRESERVING_NARROW> {
static void Test(const char *dst, const char *src, int line) {
typedef numeric_limits<Src> SrcLimits;
typedef numeric_limits<Dst> DstLimits;
static_assert(SrcLimits::is_signed == DstLimits::is_signed,
"Destination and source sign must be the same");
static_assert(sizeof(Dst) < sizeof(Src) ||
(DstLimits::is_integer && SrcLimits::is_iec559),
"Destination must be narrower than source");
TestStrictComparison<Dst, Src>();
const CheckedNumeric<Dst> checked_dst;
TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::max());
TEST_EXPECTED_VALUE(1, checked_dst + static_cast<Src>(1));
TEST_EXPECTED_FAILURE(checked_dst - SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1));
if (SrcLimits::is_iec559) {
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::max() * -1);
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(-1));
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::infinity());
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::infinity() * -1);
TEST_EXPECTED_RANGE(RANGE_INVALID, SrcLimits::quiet_NaN());
if (DstLimits::is_integer) {
if (SrcLimits::digits < DstLimits::digits) {
TEST_EXPECTED_RANGE(RANGE_OVERFLOW,
static_cast<Src>(DstLimits::max()));
} else {
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::max()));
}
TEST_EXPECTED_RANGE(
RANGE_VALID,
static_cast<Src>(GetMaxConvertibleToFloat<Src, Dst>()));
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::min()));
}
} else if (SrcLimits::is_signed) {
TEST_EXPECTED_VALUE(-1, checked_dst - static_cast<Src>(1));
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::min());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(-1));
} else {
TEST_EXPECTED_FAILURE(checked_dst - static_cast<Src>(1));
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::min());
}
}
};
template <typename Dst, typename Src>
struct TestNumericConversion<Dst, Src, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL> {
static void Test(const char *dst, const char *src, int line) {
typedef numeric_limits<Src> SrcLimits;
typedef numeric_limits<Dst> DstLimits;
static_assert(sizeof(Dst) >= sizeof(Src),
"Destination must be equal or wider than source.");
static_assert(SrcLimits::is_signed, "Source must be signed");
static_assert(!DstLimits::is_signed, "Destination must be unsigned");
TestStrictComparison<Dst, Src>();
const CheckedNumeric<Dst> checked_dst;
TEST_EXPECTED_VALUE(SrcLimits::max(), checked_dst + SrcLimits::max());
TEST_EXPECTED_FAILURE(checked_dst + static_cast<Src>(-1));
TEST_EXPECTED_FAILURE(checked_dst + -SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::min());
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1));
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, static_cast<Src>(-1));
}
};
template <typename Dst, typename Src>
struct TestNumericConversion<Dst, Src, SIGN_TO_UNSIGN_NARROW> {
static void Test(const char *dst, const char *src, int line) {
typedef numeric_limits<Src> SrcLimits;
typedef numeric_limits<Dst> DstLimits;
static_assert((DstLimits::is_integer && SrcLimits::is_iec559) ||
(sizeof(Dst) < sizeof(Src)),
"Destination must be narrower than source.");
static_assert(SrcLimits::is_signed, "Source must be signed.");
static_assert(!DstLimits::is_signed, "Destination must be unsigned.");
TestStrictComparison<Dst, Src>();
const CheckedNumeric<Dst> checked_dst;
TEST_EXPECTED_VALUE(1, checked_dst + static_cast<Src>(1));
TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::max());
TEST_EXPECTED_FAILURE(checked_dst + static_cast<Src>(-1));
TEST_EXPECTED_FAILURE(checked_dst + -SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1));
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, static_cast<Src>(-1));
if (SrcLimits::is_iec559) {
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::max() * -1);
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::infinity());
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::infinity() * -1);
TEST_EXPECTED_RANGE(RANGE_INVALID, SrcLimits::quiet_NaN());
if (DstLimits::is_integer) {
if (SrcLimits::digits < DstLimits::digits) {
TEST_EXPECTED_RANGE(RANGE_OVERFLOW,
static_cast<Src>(DstLimits::max()));
} else {
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::max()));
}
TEST_EXPECTED_RANGE(
RANGE_VALID,
static_cast<Src>(GetMaxConvertibleToFloat<Src, Dst>()));
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::min()));
}
} else {
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::min());
}
}
};
template <typename Dst, typename Src>
struct TestNumericConversion<Dst, Src, UNSIGN_TO_SIGN_NARROW_OR_EQUAL> {
static void Test(const char *dst, const char *src, int line) {
typedef numeric_limits<Src> SrcLimits;
typedef numeric_limits<Dst> DstLimits;
static_assert(sizeof(Dst) <= sizeof(Src),
"Destination must be narrower or equal to source.");
static_assert(!SrcLimits::is_signed, "Source must be unsigned.");
static_assert(DstLimits::is_signed, "Destination must be signed.");
TestStrictComparison<Dst, Src>();
const CheckedNumeric<Dst> checked_dst;
TEST_EXPECTED_VALUE(1, checked_dst + static_cast<Src>(1));
TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::max());
TEST_EXPECTED_VALUE(SrcLimits::min(), checked_dst + SrcLimits::min());
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::min());
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1));
}
};
// Helper macro to wrap displaying the conversion types and line numbers
#define TEST_NUMERIC_CONVERSION(d, s, t) \
TestNumericConversion<d, s, t>::Test(#d, #s, __LINE__)
TEST(SafeNumerics, IntMinOperations) {
TEST_NUMERIC_CONVERSION(int8_t, int8_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(uint8_t, uint8_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(int8_t, int, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(uint8_t, unsigned int, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(int8_t, float, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(uint8_t, int8_t, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(uint8_t, int, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(uint8_t, intmax_t, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(uint8_t, float, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(int8_t, unsigned int, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
TEST_NUMERIC_CONVERSION(int8_t, uintmax_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
}
TEST(SafeNumerics, IntOperations) {
TEST_NUMERIC_CONVERSION(int, int, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(unsigned int, unsigned int,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(int, int8_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(unsigned int, uint8_t,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(int, uint8_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(int, intmax_t, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(unsigned int, uintmax_t, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(int, float, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(int, double, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(unsigned int, int, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(unsigned int, int8_t, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(unsigned int, intmax_t, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(unsigned int, float, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(unsigned int, double, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(int, unsigned int, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
TEST_NUMERIC_CONVERSION(int, uintmax_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
}
TEST(SafeNumerics, IntMaxOperations) {
TEST_NUMERIC_CONVERSION(intmax_t, intmax_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(uintmax_t, uintmax_t,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(intmax_t, int, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(uintmax_t, unsigned int,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(intmax_t, unsigned int,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(intmax_t, uint8_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(intmax_t, float, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(intmax_t, double, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(uintmax_t, int, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(uintmax_t, int8_t, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(uintmax_t, float, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(uintmax_t, double, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(intmax_t, uintmax_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
}
TEST(SafeNumerics, FloatOperations) {
TEST_NUMERIC_CONVERSION(float, intmax_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(float, uintmax_t,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(float, int, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(float, unsigned int,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(float, double, SIGN_PRESERVING_NARROW);
}
TEST(SafeNumerics, DoubleOperations) {
TEST_NUMERIC_CONVERSION(double, intmax_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(double, uintmax_t,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(double, int, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(double, unsigned int,
SIGN_PRESERVING_VALUE_PRESERVING);
}
TEST(SafeNumerics, SizeTOperations) {
TEST_NUMERIC_CONVERSION(size_t, int, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(int, size_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
}
// A one-off test to ensure StrictNumeric won't resolve to an incorrect type.
// If this fails we'll just get a compiler error on an ambiguous overload.
int TestOverload(int) { // Overload fails.
return 0;
}
uint8_t TestOverload(uint8_t) { // Overload fails.
return 0;
}
size_t TestOverload(size_t) { // Overload succeeds.
return 0;
}
static_assert(
std::is_same<decltype(TestOverload(StrictNumeric<int>())), int>::value,
"");
static_assert(std::is_same<decltype(TestOverload(StrictNumeric<size_t>())),
size_t>::value,
"");
TEST(SafeNumerics, CastTests) {
// MSVC catches and warns that we're forcing saturation in these tests.
// Since that's intentional, we need to shut this warning off.
#if defined(COMPILER_MSVC)
#pragma warning(disable : 4756)
#endif
int small_positive = 1;
int small_negative = -1;
double double_small = 1.0;
double double_large = numeric_limits<double>::max();
double double_infinity = numeric_limits<float>::infinity();
double double_large_int = numeric_limits<int>::max();
double double_small_int = numeric_limits<int>::min();
// Just test that the casts compile, since the other tests cover logic.
EXPECT_EQ(0, checked_cast<int>(static_cast<size_t>(0)));
EXPECT_EQ(0, strict_cast<int>(static_cast<char>(0)));
EXPECT_EQ(0, strict_cast<int>(static_cast<unsigned char>(0)));
EXPECT_EQ(0U, strict_cast<unsigned>(static_cast<unsigned char>(0)));
EXPECT_EQ(1ULL, static_cast<uint64_t>(StrictNumeric<size_t>(1U)));
EXPECT_EQ(1ULL, static_cast<uint64_t>(SizeT(1U)));
EXPECT_EQ(1U, static_cast<size_t>(StrictNumeric<unsigned>(1U)));
EXPECT_TRUE(CheckedNumeric<uint64_t>(StrictNumeric<unsigned>(1U)).IsValid());
EXPECT_TRUE(CheckedNumeric<int>(StrictNumeric<unsigned>(1U)).IsValid());
EXPECT_FALSE(CheckedNumeric<unsigned>(StrictNumeric<int>(-1)).IsValid());
EXPECT_TRUE(IsValueNegative(-1));
EXPECT_TRUE(IsValueNegative(numeric_limits<int>::min()));
EXPECT_FALSE(IsValueNegative(numeric_limits<unsigned>::min()));
EXPECT_TRUE(IsValueNegative(-numeric_limits<double>::max()));
EXPECT_FALSE(IsValueNegative(0));
EXPECT_FALSE(IsValueNegative(1));
EXPECT_FALSE(IsValueNegative(0u));
EXPECT_FALSE(IsValueNegative(1u));
EXPECT_FALSE(IsValueNegative(numeric_limits<int>::max()));
EXPECT_FALSE(IsValueNegative(numeric_limits<unsigned>::max()));
EXPECT_FALSE(IsValueNegative(numeric_limits<double>::max()));
// These casts and coercions will fail to compile:
// EXPECT_EQ(0, strict_cast<int>(static_cast<size_t>(0)));
// EXPECT_EQ(0, strict_cast<size_t>(static_cast<int>(0)));
// EXPECT_EQ(1ULL, StrictNumeric<size_t>(1));
// EXPECT_EQ(1, StrictNumeric<size_t>(1U));
// Test various saturation corner cases.
EXPECT_EQ(saturated_cast<int>(small_negative),
static_cast<int>(small_negative));
EXPECT_EQ(saturated_cast<int>(small_positive),
static_cast<int>(small_positive));
EXPECT_EQ(saturated_cast<unsigned>(small_negative),
static_cast<unsigned>(0));
EXPECT_EQ(saturated_cast<int>(double_small),
static_cast<int>(double_small));
EXPECT_EQ(saturated_cast<int>(double_large), numeric_limits<int>::max());
EXPECT_EQ(saturated_cast<float>(double_large), double_infinity);
EXPECT_EQ(saturated_cast<float>(-double_large), -double_infinity);
EXPECT_EQ(numeric_limits<int>::min(), saturated_cast<int>(double_small_int));
EXPECT_EQ(numeric_limits<int>::max(), saturated_cast<int>(double_large_int));
float not_a_number = std::numeric_limits<float>::infinity() -
std::numeric_limits<float>::infinity();
EXPECT_TRUE(std::isnan(not_a_number));
EXPECT_EQ(0, saturated_cast<int>(not_a_number));
// Test the CheckedNumeric value extractions functions.
auto int8_min = CheckNum(numeric_limits<int8_t>::min());
auto int8_max = CheckNum(numeric_limits<int8_t>::max());
auto double_max = CheckNum(numeric_limits<double>::max());
static_assert(
std::is_same<int16_t,
decltype(int8_min.ValueOrDie<int16_t>())::type>::value,
"ValueOrDie returning incorrect type.");
static_assert(
std::is_same<int16_t,
decltype(int8_min.ValueOrDefault<int16_t>(0))::type>::value,
"ValueOrDefault returning incorrect type.");
EXPECT_FALSE(IsValidForType<uint8_t>(int8_min));
EXPECT_TRUE(IsValidForType<uint8_t>(int8_max));
EXPECT_EQ(static_cast<int>(numeric_limits<int8_t>::min()),
ValueOrDieForType<int>(int8_min));
EXPECT_TRUE(IsValidForType<uint32_t>(int8_max));
EXPECT_EQ(static_cast<int>(numeric_limits<int8_t>::max()),
ValueOrDieForType<int>(int8_max));
EXPECT_EQ(0, ValueOrDefaultForType<int>(double_max, 0));
uint8_t uint8_dest = 0;
int16_t int16_dest = 0;
double double_dest = 0;
EXPECT_TRUE(int8_max.AssignIfValid(&uint8_dest));
EXPECT_EQ(static_cast<uint8_t>(numeric_limits<int8_t>::max()), uint8_dest);
EXPECT_FALSE(int8_min.AssignIfValid(&uint8_dest));
EXPECT_TRUE(int8_max.AssignIfValid(&int16_dest));
EXPECT_EQ(static_cast<int16_t>(numeric_limits<int8_t>::max()), int16_dest);
EXPECT_TRUE(int8_min.AssignIfValid(&int16_dest));
EXPECT_EQ(static_cast<int16_t>(numeric_limits<int8_t>::min()), int16_dest);
EXPECT_FALSE(double_max.AssignIfValid(&uint8_dest));
EXPECT_FALSE(double_max.AssignIfValid(&int16_dest));
EXPECT_TRUE(double_max.AssignIfValid(&double_dest));
EXPECT_EQ(numeric_limits<double>::max(), double_dest);
EXPECT_EQ(1, checked_cast<int>(StrictNumeric<int>(1)));
EXPECT_EQ(1, saturated_cast<int>(StrictNumeric<int>(1)));
EXPECT_EQ(1, strict_cast<int>(StrictNumeric<int>(1)));
}
TEST(SafeNumerics, SaturatedCastChecks) {
float not_a_number = std::numeric_limits<float>::infinity() -
std::numeric_limits<float>::infinity();
EXPECT_TRUE(std::isnan(not_a_number));
EXPECT_DEATH_IF_SUPPORTED(
(saturated_cast<int, base::CheckOnFailure>(not_a_number)),
"");
}
TEST(SafeNumerics, IsValueInRangeForNumericType) {
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(0));
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(1));
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(2));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(-1));
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(0xffffffffu));
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(UINT64_C(0xffffffff)));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(UINT64_C(0x100000000)));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(UINT64_C(0x100000001)));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(
std::numeric_limits<int32_t>::min()));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(
std::numeric_limits<int64_t>::min()));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(0));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(1));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(2));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(-1));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(0x7fffffff));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(0x7fffffffu));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(0x80000000u));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(0xffffffffu));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(INT64_C(0x80000000)));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(INT64_C(0xffffffff)));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(INT64_C(0x100000000)));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(
std::numeric_limits<int32_t>::min()));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(
static_cast<int64_t>(std::numeric_limits<int32_t>::min())));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(
static_cast<int64_t>(std::numeric_limits<int32_t>::min()) - 1));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(
std::numeric_limits<int64_t>::min()));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(0));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(1));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(2));
EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(-1));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(0xffffffffu));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(UINT64_C(0xffffffff)));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(UINT64_C(0x100000000)));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(UINT64_C(0x100000001)));
EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(
std::numeric_limits<int32_t>::min()));
EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(INT64_C(-1)));
EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(
std::numeric_limits<int64_t>::min()));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(1));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(2));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(-1));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0x7fffffff));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0x7fffffffu));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0x80000000u));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0xffffffffu));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(INT64_C(0x80000000)));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(INT64_C(0xffffffff)));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(INT64_C(0x100000000)));
EXPECT_TRUE(
IsValueInRangeForNumericType<int64_t>(INT64_C(0x7fffffffffffffff)));
EXPECT_TRUE(
IsValueInRangeForNumericType<int64_t>(UINT64_C(0x7fffffffffffffff)));
EXPECT_FALSE(
IsValueInRangeForNumericType<int64_t>(UINT64_C(0x8000000000000000)));
EXPECT_FALSE(
IsValueInRangeForNumericType<int64_t>(UINT64_C(0xffffffffffffffff)));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(
std::numeric_limits<int32_t>::min()));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(
static_cast<int64_t>(std::numeric_limits<int32_t>::min())));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(
std::numeric_limits<int64_t>::min()));
}
TEST(SafeNumerics, CompoundNumericOperations) {
CheckedNumeric<int> a = 1;
CheckedNumeric<int> b = 2;
CheckedNumeric<int> c = 3;
CheckedNumeric<int> d = 4;
a += b;
EXPECT_EQ(3, a.ValueOrDie());
a -= c;
EXPECT_EQ(0, a.ValueOrDie());
d /= b;
EXPECT_EQ(2, d.ValueOrDie());
d *= d;
EXPECT_EQ(4, d.ValueOrDie());
CheckedNumeric<int> too_large = std::numeric_limits<int>::max();
EXPECT_TRUE(too_large.IsValid());
too_large += d;
EXPECT_FALSE(too_large.IsValid());
too_large -= d;
EXPECT_FALSE(too_large.IsValid());
too_large /= d;
EXPECT_FALSE(too_large.IsValid());
}
TEST(SafeNumerics, VariadicNumericOperations) {
auto a = CheckAdd(1, 2UL, CheckNum(3LL), 4).ValueOrDie();
EXPECT_EQ(static_cast<decltype(a)::type>(10), a);
auto b = CheckSub(CheckNum(20.0), 2UL, 4).ValueOrDie();
EXPECT_EQ(static_cast<decltype(b)::type>(14.0), b);
auto c = CheckMul(20.0, CheckNum(1), 5, 3UL).ValueOrDie();
EXPECT_EQ(static_cast<decltype(c)::type>(300.0), c);
auto d = CheckDiv(20.0, 2.0, CheckNum(5LL), -4).ValueOrDie();
EXPECT_EQ(static_cast<decltype(d)::type>(-.5), d);
auto e = CheckMod(CheckNum(20), 3).ValueOrDie();
EXPECT_EQ(static_cast<decltype(e)::type>(2), e);
auto f = CheckLsh(1, CheckNum(2)).ValueOrDie();
EXPECT_EQ(static_cast<decltype(f)::type>(4), f);
auto g = CheckRsh(4, CheckNum(2)).ValueOrDie();
EXPECT_EQ(static_cast<decltype(g)::type>(1), g);
auto h = CheckRsh(CheckAdd(1, 1, 1, 1), CheckSub(4, 2)).ValueOrDie();
EXPECT_EQ(static_cast<decltype(h)::type>(1), h);
}