[go: nahoru, domu]

blob: bcc90c51511afae85e76181799a6ef3cfe18c07d [file] [log] [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/power_metrics/energy_metrics_provider_win.h"
#include <windows.h>
#include <devioctl.h>
#include <initguid.h> // This has to be before emi.h
#include <emi.h>
#include <setupapi.h>
#include "base/logging.h"
#include "base/memory/free_deleter.h"
#include "base/memory/ptr_util.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/win/scoped_devinfo.h"
#include "base/win/scoped_handle.h"
namespace power_metrics {
namespace {
// Windows EMI interface provides energy data in units of picowatt-hour.
constexpr double kNanojoulesPerPicowattHour = 3.6;
// These metrics are hardware dependent. "RAPL" metrics are from Intel
// Running Average Power Limit (RAPL) interface, and the rest are from AMD.
// Here, we only consider single-socket system, where "Package0" means that the
// metered hardware are in the same package 0, "PP0" usually stands for cores,
// and "PP1" usually stands for integrated GPU. There should also be "Package1"
// or more packages for more than one socket system, which needs more tests to
// find out.
void SetEnergyMetric(const std::wstring& metric_type,
EnergyMetricsProvider::EnergyMetrics& energy_metrics,
uint64_t absolute_energy) {
if (metric_type == L"RAPL_Package0_PKG") {
energy_metrics.package_nanojoules = absolute_energy;
} else if (metric_type == L"RAPL_Package0_PP0") {
energy_metrics.cpu_nanojoules = absolute_energy;
} else if (metric_type == L"RAPL_Package0_PP1") {
energy_metrics.gpu_nanojoules = absolute_energy;
} else if (metric_type == L"RAPL_Package0_DRAM") {
energy_metrics.dram_nanojoules = absolute_energy;
} else if (metric_type == L"VDDCR_VDD Energy") {
energy_metrics.vdd_nanojoules = absolute_energy;
} else if (metric_type == L"VDDCR_SOC Energy") {
energy_metrics.soc_nanojoules = absolute_energy;
} else if (metric_type == L"Current Socket Energy") {
energy_metrics.socket_nanojoules = absolute_energy;
} else if (metric_type == L"Apu Energy") {
energy_metrics.apu_nanojoules = absolute_energy;
}
}
} // namespace
EnergyMetricsProviderWin::EnergyMetricsProviderWin() = default;
EnergyMetricsProviderWin::~EnergyMetricsProviderWin() = default;
// static
std::unique_ptr<EnergyMetricsProviderWin> EnergyMetricsProviderWin::Create() {
return base::WrapUnique(new EnergyMetricsProviderWin());
}
absl::optional<EnergyMetricsProvider::EnergyMetrics>
EnergyMetricsProviderWin::CaptureMetrics() {
if (!Initialize()) {
handle_.Close();
return absl::nullopt;
}
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
DWORD bytes_returned = 0;
std::vector<EMI_CHANNEL_MEASUREMENT_DATA> measurement_data(
metric_types_.size());
const size_t measurement_data_size_bytes =
sizeof(EMI_CHANNEL_MEASUREMENT_DATA) * metric_types_.size();
// Get the EMI measurement data.
if (!DeviceIoControl(handle_.get(), IOCTL_EMI_GET_MEASUREMENT, nullptr, 0,
measurement_data.data(), measurement_data_size_bytes,
&bytes_returned, nullptr)) {
PLOG(ERROR) << "IOCTL_EMI_GET_MEASUREMENT failed";
return absl::nullopt;
}
CHECK_EQ(bytes_returned, measurement_data_size_bytes);
EnergyMetrics energy_metrics = {0};
for (size_t i = 0; i < metric_types_.size(); ++i) {
EMI_CHANNEL_MEASUREMENT_DATA* channel_data = &measurement_data[i];
uint64_t absolute_energy = static_cast<uint64_t>(
kNanojoulesPerPicowattHour * channel_data->AbsoluteEnergy);
SetEnergyMetric(metric_types_[i], energy_metrics, absolute_energy);
}
return energy_metrics;
}
bool EnergyMetricsProviderWin::Initialize() {
if (is_initialized_) {
if (metric_types_.empty()) {
return false;
}
return true;
}
is_initialized_ = true;
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
// Energy Meter Interface
// {45BD8344-7ED6-49cf-A440-C276C933B053}
// https://learn.microsoft.com/en-us/windows-hardware/drivers/powermeter/energy-meter-interface
//
// Get device information set for the Energy Meter Interface.
base::win::ScopedDevInfo dev_info(
SetupDiGetClassDevs(&GUID_DEVICE_ENERGY_METER, nullptr, nullptr,
DIGCF_PRESENT | DIGCF_DEVICEINTERFACE));
if (!dev_info.is_valid()) {
PLOG(WARNING) << "SetupDiGetClassDevs";
return false;
}
// Pick the first device interface in the returned device information set.
//
// TODO(crbug.com/1385251): Determine if the first device interface is always
// the desired one.
SP_DEVICE_INTERFACE_DATA dev_data = {0};
dev_data.cbSize = sizeof(dev_data);
if (!SetupDiEnumDeviceInterfaces(dev_info.get(), nullptr,
&GUID_DEVICE_ENERGY_METER, 0, &dev_data)) {
PLOG(WARNING) << "SetupDiEnumDeviceInterfaces";
return false;
}
// Get the required size of device interface detail data.
DWORD required_size = 0;
if (SetupDiGetDeviceInterfaceDetail(dev_info.get(), &dev_data, nullptr, 0,
&required_size, nullptr) ||
::GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
return false;
}
// Get the pointer to an SP_DEVICE_INTERFACE_DETAIL_DATA structure to
// receive information.
std::unique_ptr<SP_DEVICE_INTERFACE_DETAIL_DATA, base::FreeDeleter>
dev_detail_data(
static_cast<SP_DEVICE_INTERFACE_DETAIL_DATA*>(malloc(required_size)));
dev_detail_data->cbSize = sizeof(*dev_detail_data);
if (!SetupDiGetDeviceInterfaceDetail(dev_info.get(), &dev_data,
dev_detail_data.get(), required_size,
nullptr, nullptr)) {
PLOG(WARNING) << "SetupDiGetDeviceInterfaceDetail";
return false;
}
// Get the handle to access Energy Meter Interface.
handle_.Set(::CreateFile(dev_detail_data->DevicePath, GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr));
if (!handle_.is_valid()) {
LOG(WARNING) << "Failed to set up handle";
return false;
}
DWORD bytes_returned = 0;
// Verify the EMI interface version.
EMI_VERSION emi_version = {0};
if (!DeviceIoControl(handle_.get(), IOCTL_EMI_GET_VERSION, nullptr, 0,
&emi_version, sizeof(emi_version), &bytes_returned,
nullptr)) {
PLOG(WARNING) << "EMI interface not available";
return false;
}
CHECK_EQ(bytes_returned, sizeof(emi_version));
if (emi_version.EmiVersion != EMI_VERSION_V2 &&
emi_version.EmiVersion != EMI_VERSION_V1) {
LOG(WARNING) << "EMI version not supported, EMI version = "
<< emi_version.EmiVersion;
return false;
}
// Get the size of the EMI metadata.
EMI_METADATA_SIZE metadata_size = {0};
if (!DeviceIoControl(handle_.get(), IOCTL_EMI_GET_METADATA_SIZE, nullptr, 0,
&metadata_size, sizeof(metadata_size), &bytes_returned,
nullptr)) {
PLOG(ERROR) << "IOCTL_EMI_GET_METADATA_SIZE";
return false;
}
CHECK_EQ(bytes_returned, sizeof(metadata_size));
if (!metadata_size.MetadataSize) {
LOG(ERROR) << "MetadataSize == 0";
return false;
}
// Get the EMI metadata.
std::vector<char> metadata_buf(metadata_size.MetadataSize);
if (!DeviceIoControl(handle_.get(), IOCTL_EMI_GET_METADATA, nullptr, 0,
metadata_buf.data(), metadata_size.MetadataSize,
&bytes_returned, nullptr)) {
PLOG(ERROR) << "IOCTL_EMI_GET_METADATA";
return false;
}
CHECK_EQ(static_cast<DWORD>(bytes_returned), metadata_buf.size());
// For different EMI versions, get the types of available metrics
// respectively.
if (emi_version.EmiVersion == EMI_VERSION_V1) {
EMI_METADATA_V1* metadata_v1 =
reinterpret_cast<EMI_METADATA_V1*>(metadata_buf.data());
metric_types_.push_back(metadata_v1->MeteredHardwareName);
} else if (emi_version.EmiVersion == EMI_VERSION_V2) {
EMI_METADATA_V2* metadata_v2 =
reinterpret_cast<EMI_METADATA_V2*>(metadata_buf.data());
EMI_CHANNEL_V2* channel = &metadata_v2->Channels[0];
// EMI v2 has a different channel for each metric.
for (int i = 0; i < metadata_v2->ChannelCount; ++i) {
metric_types_.push_back(channel->ChannelName);
channel = EMI_CHANNEL_V2_NEXT_CHANNEL(channel);
}
}
if (metric_types_.empty()) {
LOG(WARNING) << "No available energy metric";
return false;
}
return true;
}
} // namespace power_metrics