[go: nahoru, domu]

blob: 1260761fea02188e9f8389db5a7abaff258f7f70 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef IPC_IPC_CHANNEL_PROXY_H_
#define IPC_IPC_CHANNEL_PROXY_H_
#include <stdint.h>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "base/bind.h"
#include "base/callback.h"
#include "base/component_export.h"
#include "base/memory/ref_counted.h"
#include "base/sequence_checker.h"
#include "base/synchronization/lock.h"
#include "build/build_config.h"
#include "ipc/ipc.mojom.h"
#include "ipc/ipc_channel.h"
#include "ipc/ipc_channel_handle.h"
#include "ipc/ipc_listener.h"
#include "ipc/ipc_sender.h"
#include "mojo/public/cpp/bindings/associated_interface_ptr.h"
#include "mojo/public/cpp/bindings/associated_interface_request.h"
#include "mojo/public/cpp/bindings/associated_remote.h"
#include "mojo/public/cpp/bindings/scoped_interface_endpoint_handle.h"
#include "mojo/public/cpp/bindings/thread_safe_interface_ptr.h"
namespace base {
class SingleThreadTaskRunner;
}
namespace IPC {
class ChannelFactory;
class MessageFilter;
class MessageFilterRouter;
//-----------------------------------------------------------------------------
// IPC::ChannelProxy
//
// This class is a helper class that is useful when you wish to run an IPC
// channel on a background thread. It provides you with the option of either
// handling IPC messages on that background thread or having them dispatched to
// your main thread (the thread on which the IPC::ChannelProxy is created).
//
// The API for an IPC::ChannelProxy is very similar to that of an IPC::Channel.
// When you send a message to an IPC::ChannelProxy, the message is routed to
// the background thread, where it is then passed to the IPC::Channel's Send
// method. This means that you can send a message from your thread and your
// message will be sent over the IPC channel when possible instead of being
// delayed until your thread returns to its message loop. (Often IPC messages
// will queue up on the IPC::Channel when there is a lot of traffic, and the
// channel will not get cycles to flush its message queue until the thread, on
// which it is running, returns to its message loop.)
//
// An IPC::ChannelProxy can have a MessageFilter associated with it, which will
// be notified of incoming messages on the IPC::Channel's thread. This gives
// the consumer of IPC::ChannelProxy the ability to respond to incoming
// messages on this background thread instead of on their own thread, which may
// be bogged down with other processing. The result can be greatly improved
// latency for messages that can be handled on a background thread.
//
// The consumer of IPC::ChannelProxy is responsible for allocating the Thread
// instance where the IPC::Channel will be created and operated.
//
// Thread-safe send
//
// If a particular |Channel| implementation has a thread-safe |Send()| operation
// then ChannelProxy skips the inter-thread hop and calls |Send()| directly. In
// this case the |channel_| variable is touched by multiple threads so
// |channel_lifetime_lock_| is used to protect it. The locking overhead is only
// paid if the underlying channel supports thread-safe |Send|.
//
class COMPONENT_EXPORT(IPC) ChannelProxy : public Sender {
public:
#if defined(ENABLE_IPC_FUZZER)
// Interface for a filter to be imposed on outgoing messages which can
// re-write the message. Used for testing.
class OutgoingMessageFilter {
public:
virtual Message* Rewrite(Message* message) = 0;
};
#endif
// Initializes a channel proxy. The channel_handle and mode parameters are
// passed directly to the underlying IPC::Channel. The listener is called on
// the thread that creates the ChannelProxy. The filter's OnMessageReceived
// method is called on the thread where the IPC::Channel is running. The
// filter may be null if the consumer is not interested in handling messages
// on the background thread. Any message not handled by the filter will be
// dispatched to the listener. The given task runner correspond to a thread
// on which IPC::Channel is created and used (e.g. IO thread).
static std::unique_ptr<ChannelProxy> Create(
const IPC::ChannelHandle& channel_handle,
Channel::Mode mode,
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner);
static std::unique_ptr<ChannelProxy> Create(
std::unique_ptr<ChannelFactory> factory,
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner);
// Constructs a ChannelProxy without initializing it.
ChannelProxy(
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner);
~ChannelProxy() override;
// Initializes the channel proxy. Only call this once to initialize a channel
// proxy that was not initialized in its constructor. If |create_pipe_now| is
// true, the pipe is created synchronously. Otherwise it's created on the IO
// thread.
void Init(const IPC::ChannelHandle& channel_handle,
Channel::Mode mode,
bool create_pipe_now);
void Init(std::unique_ptr<ChannelFactory> factory,
bool create_pipe_now);
// Pause the channel. Subsequent calls to Send() will be internally queued
// until Unpause() is called. Queued messages will not be sent until the
// channel is flushed.
void Pause();
// Unpause the channel. If |flush| is true the channel will be flushed as soon
// as it's unpaused (see Flush() below.) Otherwise you must explicitly call
// Flush() to flush messages which were queued while the channel was paused.
void Unpause(bool flush);
// Flush the channel. This sends any messages which were queued before calling
// Connect. Only useful if Unpause(false) was called previously.
void Flush();
// Close the IPC::Channel. This operation completes asynchronously, once the
// background thread processes the command to close the channel. It is ok to
// call this method multiple times. Redundant calls are ignored.
//
// WARNING: MessageFilter objects held by the ChannelProxy is also
// released asynchronously, and it may in fact have its final reference
// released on the background thread. The caller should be careful to deal
// with / allow for this possibility.
void Close();
// Send a message asynchronously. The message is routed to the background
// thread where it is passed to the IPC::Channel's Send method.
bool Send(Message* message) override;
// Used to intercept messages as they are received on the background thread.
//
// Ordinarily, messages sent to the ChannelProxy are routed to the matching
// listener on the worker thread. This API allows code to intercept messages
// before they are sent to the worker thread.
// If you call this before the target process is launched, then you're
// guaranteed to not miss any messages. But if you call this anytime after,
// then some messages might be missed since the filter is added internally on
// the IO thread.
void AddFilter(MessageFilter* filter);
void RemoveFilter(MessageFilter* filter);
using GenericAssociatedInterfaceFactory =
base::Callback<void(mojo::ScopedInterfaceEndpointHandle)>;
// Adds a generic associated interface factory to bind incoming interface
// requests directly on the IO thread. MUST be called either before Init() or
// before the remote end of the Channel is able to send messages (e.g. before
// its process is launched.)
void AddGenericAssociatedInterfaceForIOThread(
const std::string& name,
const GenericAssociatedInterfaceFactory& factory);
template <typename Interface>
using AssociatedInterfaceFactory =
base::Callback<void(mojo::AssociatedInterfaceRequest<Interface>)>;
// Helper to bind an IO-thread associated interface factory, inferring the
// interface name from the callback argument's type. MUST be called before
// Init().
template <typename Interface>
void AddAssociatedInterfaceForIOThread(
const AssociatedInterfaceFactory<Interface>& factory) {
AddGenericAssociatedInterfaceForIOThread(
Interface::Name_,
base::Bind(&ChannelProxy::BindAssociatedInterfaceRequest<Interface>,
factory));
}
// Requests an associated interface from the remote endpoint.
void GetGenericRemoteAssociatedInterface(
const std::string& name,
mojo::ScopedInterfaceEndpointHandle handle);
// Template helper to request associated interfaces from the remote endpoint.
template <typename Interface>
void GetRemoteAssociatedInterface(
mojo::AssociatedInterfacePtr<Interface>* proxy) {
auto request = mojo::MakeRequest(proxy);
GetGenericRemoteAssociatedInterface(Interface::Name_, request.PassHandle());
}
// Template helper to receive associated interfaces from the remote endpoint.
template <typename Interface>
void GetRemoteAssociatedInterface(mojo::AssociatedRemote<Interface>* proxy) {
GetGenericRemoteAssociatedInterface(
Interface::Name_, proxy->BindNewEndpointAndPassReceiver().PassHandle());
}
#if defined(ENABLE_IPC_FUZZER)
void set_outgoing_message_filter(OutgoingMessageFilter* filter) {
outgoing_message_filter_ = filter;
}
#endif
// Creates a ThreadSafeAssociatedInterfacePtr for |Interface|. This object
// may be used to send messages on the interface from any thread and those
// messages will remain ordered with respect to other messages sent on the
// same thread over other ThreadSafeAssociatedInterfacePtrs associated with
// the same Channel.
template <typename Interface>
void GetThreadSafeRemoteAssociatedInterface(
scoped_refptr<mojo::ThreadSafeAssociatedInterfacePtr<Interface>>*
out_ptr) {
mojo::AssociatedInterfacePtrInfo<Interface> ptr_info;
auto request = mojo::MakeRequest(&ptr_info);
GetGenericRemoteAssociatedInterface(Interface::Name_, request.PassHandle());
*out_ptr = mojo::ThreadSafeAssociatedInterfacePtr<Interface>::Create(
std::move(ptr_info), ipc_task_runner());
}
base::SingleThreadTaskRunner* ipc_task_runner() const {
return context_->ipc_task_runner();
}
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner_refptr()
const {
return context_->ipc_task_runner_refptr();
}
// Called to clear the pointer to the IPC task runner when it's going away.
void ClearIPCTaskRunner();
protected:
class Context;
// A subclass uses this constructor if it needs to add more information
// to the internal state.
explicit ChannelProxy(Context* context);
// Used internally to hold state that is referenced on the IPC thread.
class Context : public base::RefCountedThreadSafe<Context>,
public Listener {
public:
Context(Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>&
listener_task_runner);
void ClearIPCTaskRunner();
base::SingleThreadTaskRunner* ipc_task_runner() const {
return ipc_task_runner_.get();
}
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner_refptr()
const {
return ipc_task_runner_;
}
scoped_refptr<base::SingleThreadTaskRunner> listener_task_runner() {
return default_listener_task_runner_;
}
// Dispatches a message on the listener thread.
void OnDispatchMessage(const Message& message);
// Sends |message| from appropriate thread.
void Send(Message* message);
// Adds |task_runner| for the task to be executed later.
void AddListenerTaskRunner(
int32_t routing_id,
scoped_refptr<base::SingleThreadTaskRunner> task_runner);
// Removes task runner for |routing_id|.
void RemoveListenerTaskRunner(int32_t routing_id);
// Called on the IPC::Channel thread.
// Returns the task runner associated with |routing_id|.
scoped_refptr<base::SingleThreadTaskRunner> GetTaskRunner(
int32_t routing_id);
protected:
friend class base::RefCountedThreadSafe<Context>;
~Context() override;
// IPC::Listener methods:
bool OnMessageReceived(const Message& message) override;
void OnChannelConnected(int32_t peer_pid) override;
void OnChannelError() override;
void OnAssociatedInterfaceRequest(
const std::string& interface_name,
mojo::ScopedInterfaceEndpointHandle handle) override;
// Like OnMessageReceived but doesn't try the filters.
bool OnMessageReceivedNoFilter(const Message& message);
// Gives the filters a chance at processing |message|.
// Returns true if the message was processed, false otherwise.
bool TryFilters(const Message& message);
void PauseChannel();
void UnpauseChannel(bool flush);
void FlushChannel();
// Like Open and Close, but called on the IPC thread.
virtual void OnChannelOpened();
virtual void OnChannelClosed();
// Called on the consumers thread when the ChannelProxy is closed. At that
// point the consumer is telling us that they don't want to receive any
// more messages, so we honor that wish by forgetting them!
virtual void Clear();
private:
friend class ChannelProxy;
friend class IpcSecurityTestUtil;
// Create the Channel
void CreateChannel(std::unique_ptr<ChannelFactory> factory);
// Methods called on the IO thread.
void OnSendMessage(std::unique_ptr<Message> message_ptr);
void OnAddFilter();
void OnRemoveFilter(MessageFilter* filter);
// Methods called on the listener thread.
void AddFilter(MessageFilter* filter);
void OnDispatchConnected();
void OnDispatchError();
void OnDispatchBadMessage(const Message& message);
void OnDispatchAssociatedInterfaceRequest(
const std::string& interface_name,
mojo::ScopedInterfaceEndpointHandle handle);
void ClearChannel();
mojom::Channel& thread_safe_channel() {
return thread_safe_channel_->proxy();
}
void AddGenericAssociatedInterfaceForIOThread(
const std::string& name,
const GenericAssociatedInterfaceFactory& factory);
base::Lock listener_thread_task_runners_lock_;
// Map of routing_id and listener's thread task runner.
std::map<int32_t, scoped_refptr<base::SingleThreadTaskRunner>>
listener_thread_task_runners_
GUARDED_BY(listener_thread_task_runners_lock_);
scoped_refptr<base::SingleThreadTaskRunner> default_listener_task_runner_;
Listener* listener_;
// List of filters. This is only accessed on the IPC thread.
std::vector<scoped_refptr<MessageFilter> > filters_;
scoped_refptr<base::SingleThreadTaskRunner> ipc_task_runner_;
// Note, channel_ may be set on the Listener thread or the IPC thread.
// But once it has been set, it must only be read or cleared on the IPC
// thread.
// One exception is the thread-safe send. See the class comment.
std::unique_ptr<Channel> channel_;
bool channel_connected_called_;
// Lock for |channel_| value. This is only relevant in the context of
// thread-safe send.
base::Lock channel_lifetime_lock_;
// Routes a given message to a proper subset of |filters_|, depending
// on which message classes a filter might support.
std::unique_ptr<MessageFilterRouter> message_filter_router_;
// Holds filters between the AddFilter call on the listerner thread and the
// IPC thread when they're added to filters_.
std::vector<scoped_refptr<MessageFilter> > pending_filters_;
// Lock for pending_filters_.
base::Lock pending_filters_lock_;
// Cached copy of the peer process ID. Set on IPC but read on both IPC and
// listener threads.
base::ProcessId peer_pid_;
base::Lock peer_pid_lock_;
// A thread-safe mojom::Channel interface we use to make remote interface
// requests from the proxy thread.
std::unique_ptr<mojo::ThreadSafeForwarder<mojom::Channel>>
thread_safe_channel_;
// Holds associated interface binders added by
// AddGenericAssociatedInterfaceForIOThread until the underlying channel has
// been initialized.
base::Lock pending_io_thread_interfaces_lock_;
std::vector<std::pair<std::string, GenericAssociatedInterfaceFactory>>
pending_io_thread_interfaces_;
};
Context* context() { return context_.get(); }
#if defined(ENABLE_IPC_FUZZER)
OutgoingMessageFilter* outgoing_message_filter() const {
return outgoing_message_filter_;
}
#endif
bool did_init() const { return did_init_; }
// A Send() which doesn't DCHECK if the message is synchronous.
void SendInternal(Message* message);
private:
friend class IpcSecurityTestUtil;
template <typename Interface>
static void BindAssociatedInterfaceRequest(
const AssociatedInterfaceFactory<Interface>& factory,
mojo::ScopedInterfaceEndpointHandle handle) {
factory.Run(mojo::AssociatedInterfaceRequest<Interface>(std::move(handle)));
}
// Always called once immediately after Init.
virtual void OnChannelInit();
// By maintaining this indirection (ref-counted) to our internal state, we
// can safely be destroyed while the background thread continues to do stuff
// that involves this data.
scoped_refptr<Context> context_;
// Whether the channel has been initialized.
bool did_init_;
#if defined(ENABLE_IPC_FUZZER)
OutgoingMessageFilter* outgoing_message_filter_;
#endif
SEQUENCE_CHECKER(sequence_checker_);
};
} // namespace IPC
#endif // IPC_IPC_CHANNEL_PROXY_H_