[go: nahoru, domu]

blob: b2a7149e0a45b6dc39b145aa4c2c7a95f0f24e1a [file] [log] [blame]
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process/process_metrics.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "base/command_line.h"
#include "base/files/file.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/files/scoped_temp_dir.h"
#include "base/functional/bind.h"
#include "base/memory/shared_memory_mapping.h"
#include "base/memory/writable_shared_memory_region.h"
#include "base/process/launch.h"
#include "base/process/process.h"
#include "base/process/process_handle.h"
#include "base/ranges/algorithm.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/system/sys_info.h"
#include "base/test/gtest_util.h"
#include "base/test/multiprocess_test.h"
#include "base/test/test_timeouts.h"
#include "base/threading/thread.h"
#include "build/blink_buildflags.h"
#include "build/build_config.h"
#include "build/chromeos_buildflags.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/multiprocess_func_list.h"
#if BUILDFLAG(IS_APPLE)
#include <sys/mman.h>
#endif
#if BUILDFLAG(IS_MAC) || (BUILDFLAG(IS_IOS) && BUILDFLAG(USE_BLINK))
#include <mach/mach.h>
#include "base/apple/mach_logging.h"
#include "base/apple/scoped_mach_port.h"
#include "base/mac/mach_port_rendezvous.h"
#include "base/process/port_provider_mac.h"
#endif
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || \
BUILDFLAG(IS_CHROMEOS_LACROS) || BUILDFLAG(IS_WIN) || \
BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_APPLE)
#define ENABLE_CPU_TESTS 1
#else
#define ENABLE_CPU_TESTS 0
#endif
namespace base::debug {
namespace {
#if ENABLE_CPU_TESTS
void BusyWork(std::vector<std::string>* vec) {
int64_t test_value = 0;
for (int i = 0; i < 100000; ++i) {
++test_value;
vec->push_back(NumberToString(test_value));
}
}
TimeDelta TestCumulativeCPU(ProcessMetrics* metrics, TimeDelta prev_cpu_usage) {
const TimeDelta current_cpu_usage = metrics->GetCumulativeCPUUsage();
EXPECT_GE(current_cpu_usage, prev_cpu_usage);
EXPECT_GE(metrics->GetPlatformIndependentCPUUsage(), 0.0);
return current_cpu_usage;
}
TimeDelta TestPreciseCumulativeCPU(ProcessMetrics* metrics,
TimeDelta prev_cpu_usage) {
#if BUILDFLAG(IS_WIN)
const TimeDelta current_cpu_usage = metrics->GetPreciseCumulativeCPUUsage();
EXPECT_GE(current_cpu_usage, prev_cpu_usage);
EXPECT_GE(metrics->GetPreciseCPUUsage(), 0.0);
return current_cpu_usage;
#else
// Do nothing. Not supported on this platform.
return base::TimeDelta();
#endif
}
#endif // ENABLE_CPU_TESTS
using ::testing::AssertionFailure;
using ::testing::AssertionResult;
using ::testing::AssertionSuccess;
// Helper to deal with Mac process launching complexity. On other platforms this
// is just a thin wrapper around SpawnMultiProcessTestChild.
class TestChildLauncher {
public:
TestChildLauncher() = default;
~TestChildLauncher() = default;
TestChildLauncher(const TestChildLauncher&) = delete;
TestChildLauncher& operator=(const TestChildLauncher&) = delete;
// Returns a reference to the command line for the child process. This can be
// used to add extra parameters before calling SpawnChildProcess().
CommandLine& command_line() { return command_line_; }
// Returns a reference to the child process object, which will be invalid
// until SpawnChildProcess() is called.
Process& child_process() { return child_process_; }
// Spawns a multiprocess test child to execute the function `procname`.
AssertionResult SpawnChildProcess(const std::string& procname);
// Returns a ProcessMetrics object for the child process created by
// SpawnChildProcess().
std::unique_ptr<ProcessMetrics> CreateChildProcessMetrics();
// Terminates the child process created by SpawnChildProcess(). Returns true
// if the process successfully terminates within the allowed time.
bool TerminateChildProcess();
// Called from the child process to send data back to the parent if needed.
static void NotifyParent();
private:
CommandLine command_line_ = GetMultiProcessTestChildBaseCommandLine();
Process child_process_;
#if BUILDFLAG(IS_MAC) || (BUILDFLAG(IS_IOS) && BUILDFLAG(USE_BLINK))
class TestChildPortProvider;
std::unique_ptr<TestChildPortProvider> port_provider_;
#endif
};
#if BUILDFLAG(IS_MAC) || (BUILDFLAG(IS_IOS) && BUILDFLAG(USE_BLINK))
// Adapted from base/mac/mach_port_rendezvous_unittest.cc and
// https://mw.foldr.org/posts/computers/macosx/task-info-fun-with-mach/
constexpr MachPortsForRendezvous::key_type kTestChildRendezvousKey = 'test';
// A PortProvider that tracks child processes spawned by TestChildLauncher.
class TestChildLauncher::TestChildPortProvider final : public PortProvider {
public:
TestChildPortProvider(ProcessHandle handle, apple::ScopedMachSendRight port)
: handle_(handle), port_(std::move(port)) {}
~TestChildPortProvider() final = default;
TestChildPortProvider(const TestChildPortProvider&) = delete;
TestChildPortProvider& operator=(const TestChildPortProvider&) = delete;
mach_port_t TaskForHandle(ProcessHandle process_handle) const final {
return process_handle == handle_ ? port_.get() : MACH_PORT_NULL;
}
private:
ProcessHandle handle_;
apple::ScopedMachSendRight port_;
};
AssertionResult TestChildLauncher::SpawnChildProcess(
const std::string& procname) {
// Allocate a port for the parent to receive details from the child process.
apple::ScopedMachReceiveRight receive_port;
if (!apple::CreateMachPort(&receive_port, nullptr)) {
return AssertionFailure() << "Failed to allocate receive port";
}
// Pass the sending end of the port to the child.
LaunchOptions options = LaunchOptionsForTest();
options.mach_ports_for_rendezvous.emplace(
kTestChildRendezvousKey,
MachRendezvousPort(receive_port.get(), MACH_MSG_TYPE_MAKE_SEND));
child_process_ =
SpawnMultiProcessTestChild(procname, command_line_, std::move(options));
if (!child_process_.IsValid()) {
return AssertionFailure() << "Failed to launch child process.";
}
// Wait for the child to send back its mach_task_self().
struct : mach_msg_base_t {
mach_msg_port_descriptor_t task_port;
mach_msg_trailer_t trailer;
} msg{};
kern_return_t kr =
mach_msg(&msg.header, MACH_RCV_MSG | MACH_RCV_TIMEOUT, 0, sizeof(msg),
receive_port.get(),
TestTimeouts::action_timeout().InMilliseconds(), MACH_PORT_NULL);
if (kr != KERN_SUCCESS) {
return AssertionFailure()
<< "Failed to read mach_task_self from child process: "
<< mach_error_string(kr);
}
port_provider_ = std::make_unique<TestChildPortProvider>(
child_process_.Handle(), apple::ScopedMachSendRight(msg.task_port.name));
return AssertionSuccess();
}
std::unique_ptr<ProcessMetrics> TestChildLauncher::CreateChildProcessMetrics() {
#if BUILDFLAG(IS_MAC)
return ProcessMetrics::CreateProcessMetrics(child_process_.Handle(),
port_provider_.get());
#else
return ProcessMetrics::CreateProcessMetrics(child_process_.Handle());
#endif
}
bool TestChildLauncher::TerminateChildProcess() {
return TerminateMultiProcessTestChild(child_process_, /*exit_code=*/0,
/*wait=*/true);
}
// static
void TestChildLauncher::NotifyParent() {
auto* client = MachPortRendezvousClient::GetInstance();
ASSERT_TRUE(client);
apple::ScopedMachSendRight send_port =
client->TakeSendRight(kTestChildRendezvousKey);
ASSERT_TRUE(send_port.is_valid());
// Send mach_task_self to the parent process so that it can use the port to
// create ProcessMetrics.
struct : mach_msg_base_t {
mach_msg_port_descriptor_t task_port;
} msg{};
msg.header.msgh_bits =
MACH_MSGH_BITS_REMOTE(MACH_MSG_TYPE_COPY_SEND) | MACH_MSGH_BITS_COMPLEX;
msg.header.msgh_remote_port = send_port.get();
msg.header.msgh_size = sizeof(msg);
msg.body.msgh_descriptor_count = 1;
msg.task_port.name = mach_task_self();
msg.task_port.disposition = MACH_MSG_TYPE_COPY_SEND;
msg.task_port.type = MACH_MSG_PORT_DESCRIPTOR;
kern_return_t kr =
mach_msg(&msg.header, MACH_SEND_MSG, msg.header.msgh_size, 0,
MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);
MACH_CHECK(kr == KERN_SUCCESS, kr);
}
#else
AssertionResult TestChildLauncher::SpawnChildProcess(
const std::string& procname) {
child_process_ = SpawnMultiProcessTestChild(procname, command_line_,
LaunchOptionsForTest());
return child_process_.IsValid()
? AssertionSuccess()
: AssertionFailure() << "Failed to launch child process.";
}
std::unique_ptr<ProcessMetrics> TestChildLauncher::CreateChildProcessMetrics() {
return ProcessMetrics::CreateProcessMetrics(child_process_.Handle());
}
bool TestChildLauncher::TerminateChildProcess() {
[[maybe_unused]] const ProcessHandle child_handle = child_process_.Handle();
if (!TerminateMultiProcessTestChild(child_process_, /*exit_code=*/0,
/*wait=*/true)) {
return false;
}
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID)
// After the process exits, ProcessMetrics races to read /proc/<pid>/stat
// before it's deleted. Wait until it's definitely gone.
const auto stat_path = FilePath(FILE_PATH_LITERAL("/proc"))
.AppendASCII(NumberToString(child_handle))
.Append(FILE_PATH_LITERAL("stat"));
while (PathExists(stat_path)) {
PlatformThread::Sleep(TestTimeouts::tiny_timeout());
}
#endif
return true;
}
// static
void TestChildLauncher::NotifyParent() {
// Do nothing.
}
#endif // BUILDFLAG(IS_MAC)
} // namespace
// Tests for SystemMetrics.
// Exists as a class so it can be a friend of SystemMetrics.
class SystemMetricsTest : public testing::Test {
public:
SystemMetricsTest() = default;
SystemMetricsTest(const SystemMetricsTest&) = delete;
SystemMetricsTest& operator=(const SystemMetricsTest&) = delete;
};
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID)
TEST_F(SystemMetricsTest, IsValidDiskName) {
const char invalid_input1[] = "";
const char invalid_input2[] = "s";
const char invalid_input3[] = "sdz+";
const char invalid_input4[] = "hda0";
const char invalid_input5[] = "mmcbl";
const char invalid_input6[] = "mmcblka";
const char invalid_input7[] = "mmcblkb";
const char invalid_input8[] = "mmmblk0";
EXPECT_FALSE(IsValidDiskName(invalid_input1));
EXPECT_FALSE(IsValidDiskName(invalid_input2));
EXPECT_FALSE(IsValidDiskName(invalid_input3));
EXPECT_FALSE(IsValidDiskName(invalid_input4));
EXPECT_FALSE(IsValidDiskName(invalid_input5));
EXPECT_FALSE(IsValidDiskName(invalid_input6));
EXPECT_FALSE(IsValidDiskName(invalid_input7));
EXPECT_FALSE(IsValidDiskName(invalid_input8));
const char valid_input1[] = "sda";
const char valid_input2[] = "sdaaaa";
const char valid_input3[] = "hdz";
const char valid_input4[] = "mmcblk0";
const char valid_input5[] = "mmcblk999";
EXPECT_TRUE(IsValidDiskName(valid_input1));
EXPECT_TRUE(IsValidDiskName(valid_input2));
EXPECT_TRUE(IsValidDiskName(valid_input3));
EXPECT_TRUE(IsValidDiskName(valid_input4));
EXPECT_TRUE(IsValidDiskName(valid_input5));
}
TEST_F(SystemMetricsTest, ParseMeminfo) {
SystemMemoryInfoKB meminfo;
const char invalid_input1[] = "abc";
const char invalid_input2[] = "MemTotal:";
// Partial file with no MemTotal
const char invalid_input3[] =
"MemFree: 3913968 kB\n"
"Buffers: 2348340 kB\n"
"Cached: 49071596 kB\n"
"SwapCached: 12 kB\n"
"Active: 36393900 kB\n"
"Inactive: 21221496 kB\n"
"Active(anon): 5674352 kB\n"
"Inactive(anon): 633992 kB\n";
EXPECT_FALSE(ParseProcMeminfo(invalid_input1, &meminfo));
EXPECT_FALSE(ParseProcMeminfo(invalid_input2, &meminfo));
EXPECT_FALSE(ParseProcMeminfo(invalid_input3, &meminfo));
const char valid_input1[] =
"MemTotal: 3981504 kB\n"
"MemFree: 140764 kB\n"
"MemAvailable: 535413 kB\n"
"Buffers: 116480 kB\n"
"Cached: 406160 kB\n"
"SwapCached: 21304 kB\n"
"Active: 3152040 kB\n"
"Inactive: 472856 kB\n"
"Active(anon): 2972352 kB\n"
"Inactive(anon): 270108 kB\n"
"Active(file): 179688 kB\n"
"Inactive(file): 202748 kB\n"
"Unevictable: 0 kB\n"
"Mlocked: 0 kB\n"
"SwapTotal: 5832280 kB\n"
"SwapFree: 3672368 kB\n"
"Dirty: 184 kB\n"
"Writeback: 0 kB\n"
"AnonPages: 3101224 kB\n"
"Mapped: 142296 kB\n"
"Shmem: 140204 kB\n"
"Slab: 54212 kB\n"
"SReclaimable: 30936 kB\n"
"SUnreclaim: 23276 kB\n"
"KernelStack: 2464 kB\n"
"PageTables: 24812 kB\n"
"NFS_Unstable: 0 kB\n"
"Bounce: 0 kB\n"
"WritebackTmp: 0 kB\n"
"CommitLimit: 7823032 kB\n"
"Committed_AS: 7973536 kB\n"
"VmallocTotal: 34359738367 kB\n"
"VmallocUsed: 375940 kB\n"
"VmallocChunk: 34359361127 kB\n"
"DirectMap4k: 72448 kB\n"
"DirectMap2M: 4061184 kB\n";
// output from a much older kernel where the Active and Inactive aren't
// broken down into anon and file and Huge Pages are enabled
const char valid_input2[] =
"MemTotal: 255908 kB\n"
"MemFree: 69936 kB\n"
"Buffers: 15812 kB\n"
"Cached: 115124 kB\n"
"SwapCached: 0 kB\n"
"Active: 92700 kB\n"
"Inactive: 63792 kB\n"
"HighTotal: 0 kB\n"
"HighFree: 0 kB\n"
"LowTotal: 255908 kB\n"
"LowFree: 69936 kB\n"
"SwapTotal: 524280 kB\n"
"SwapFree: 524200 kB\n"
"Dirty: 4 kB\n"
"Writeback: 0 kB\n"
"Mapped: 42236 kB\n"
"Slab: 25912 kB\n"
"Committed_AS: 118680 kB\n"
"PageTables: 1236 kB\n"
"VmallocTotal: 3874808 kB\n"
"VmallocUsed: 1416 kB\n"
"VmallocChunk: 3872908 kB\n"
"HugePages_Total: 0\n"
"HugePages_Free: 0\n"
"Hugepagesize: 4096 kB\n";
EXPECT_TRUE(ParseProcMeminfo(valid_input1, &meminfo));
EXPECT_EQ(meminfo.total, 3981504);
EXPECT_EQ(meminfo.free, 140764);
EXPECT_EQ(meminfo.available, 535413);
EXPECT_EQ(meminfo.buffers, 116480);
EXPECT_EQ(meminfo.cached, 406160);
EXPECT_EQ(meminfo.active_anon, 2972352);
EXPECT_EQ(meminfo.active_file, 179688);
EXPECT_EQ(meminfo.inactive_anon, 270108);
EXPECT_EQ(meminfo.inactive_file, 202748);
EXPECT_EQ(meminfo.swap_total, 5832280);
EXPECT_EQ(meminfo.swap_free, 3672368);
EXPECT_EQ(meminfo.dirty, 184);
EXPECT_EQ(meminfo.reclaimable, 30936);
#if BUILDFLAG(IS_CHROMEOS)
EXPECT_EQ(meminfo.shmem, 140204);
EXPECT_EQ(meminfo.slab, 54212);
#endif
EXPECT_EQ(355725u,
base::SysInfo::AmountOfAvailablePhysicalMemory(meminfo) / 1024);
// Simulate as if there is no MemAvailable.
meminfo.available = 0;
EXPECT_EQ(374448u,
base::SysInfo::AmountOfAvailablePhysicalMemory(meminfo) / 1024);
meminfo = {};
EXPECT_TRUE(ParseProcMeminfo(valid_input2, &meminfo));
EXPECT_EQ(meminfo.total, 255908);
EXPECT_EQ(meminfo.free, 69936);
EXPECT_EQ(meminfo.available, 0);
EXPECT_EQ(meminfo.buffers, 15812);
EXPECT_EQ(meminfo.cached, 115124);
EXPECT_EQ(meminfo.swap_total, 524280);
EXPECT_EQ(meminfo.swap_free, 524200);
EXPECT_EQ(meminfo.dirty, 4);
EXPECT_EQ(69936u,
base::SysInfo::AmountOfAvailablePhysicalMemory(meminfo) / 1024);
// output from a system with a large page cache, to catch arithmetic errors
// that incorrectly assume free + buffers + cached <= total. (Copied from
// ash/components/arc/test/data/mem_profile/16G.)
const char large_cache_input[] =
"MemTotal: 18025572 kB\n"
"MemFree: 13150176 kB\n"
"MemAvailable: 15447672 kB\n"
"Buffers: 1524852 kB\n"
"Cached: 12645260 kB\n"
"SwapCached: 0 kB\n"
"Active: 2572904 kB\n"
"Inactive: 1064976 kB\n"
"Active(anon): 1047836 kB\n"
"Inactive(anon): 11736 kB\n"
"Active(file): 1525068 kB\n"
"Inactive(file): 1053240 kB\n"
"Unevictable: 611904 kB\n"
"Mlocked: 32884 kB\n"
"SwapTotal: 11756208 kB\n"
"SwapFree: 11756208 kB\n"
"Dirty: 4152 kB\n"
"Writeback: 0 kB\n"
"AnonPages: 1079660 kB\n"
"Mapped: 782152 kB\n"
"Shmem: 591820 kB\n"
"Slab: 366104 kB\n"
"SReclaimable: 254356 kB\n"
"SUnreclaim: 111748 kB\n"
"KernelStack: 22652 kB\n"
"PageTables: 41540 kB\n"
"NFS_Unstable: 0 kB\n"
"Bounce: 0 kB\n"
"WritebackTmp: 0 kB\n"
"CommitLimit: 15768992 kB\n"
"Committed_AS: 36120244 kB\n"
"VmallocTotal: 34359738367 kB\n"
"VmallocUsed: 0 kB\n"
"VmallocChunk: 0 kB\n"
"Percpu: 3328 kB\n"
"AnonHugePages: 32768 kB\n"
"ShmemHugePages: 0 kB\n"
"ShmemPmdMapped: 0 kB\n"
"DirectMap4k: 293036 kB\n"
"DirectMap2M: 6918144 kB\n"
"DirectMap1G: 2097152 kB\n";
meminfo = {};
EXPECT_TRUE(ParseProcMeminfo(large_cache_input, &meminfo));
EXPECT_EQ(meminfo.total, 18025572);
EXPECT_EQ(meminfo.free, 13150176);
EXPECT_EQ(meminfo.buffers, 1524852);
EXPECT_EQ(meminfo.cached, 12645260);
EXPECT_EQ(GetSystemCommitChargeFromMeminfo(meminfo), 0u);
}
TEST_F(SystemMetricsTest, ParseVmstat) {
VmStatInfo vmstat;
// Part of vmstat from a 4.19 kernel.
const char valid_input1[] =
"pgpgin 2358216\n"
"pgpgout 296072\n"
"pswpin 345219\n"
"pswpout 2605828\n"
"pgalloc_dma32 8380235\n"
"pgalloc_normal 3384525\n"
"pgalloc_movable 0\n"
"allocstall_dma32 0\n"
"allocstall_normal 2028\n"
"allocstall_movable 32559\n"
"pgskip_dma32 0\n"
"pgskip_normal 0\n"
"pgskip_movable 0\n"
"pgfree 11802722\n"
"pgactivate 894917\n"
"pgdeactivate 3255711\n"
"pglazyfree 48\n"
"pgfault 10043657\n"
"pgmajfault 358901\n"
"pgmajfault_s 2100\n"
"pgmajfault_a 343211\n"
"pgmajfault_f 13590\n"
"pglazyfreed 0\n"
"pgrefill 3429488\n"
"pgsteal_kswapd 1466893\n"
"pgsteal_direct 1771759\n"
"pgscan_kswapd 1907332\n"
"pgscan_direct 2118930\n"
"pgscan_direct_throttle 154\n"
"pginodesteal 3176\n"
"slabs_scanned 293804\n"
"kswapd_inodesteal 16753\n"
"kswapd_low_wmark_hit_quickly 10\n"
"kswapd_high_wmark_hit_quickly 423\n"
"pageoutrun 441\n"
"pgrotated 1636\n"
"drop_pagecache 0\n"
"drop_slab 0\n"
"oom_kill 18\n";
const char valid_input2[] =
"pgpgin 2606135\n"
"pgpgout 1359128\n"
"pswpin 899959\n"
"pswpout 19761244\n"
"pgalloc_dma 31\n"
"pgalloc_dma32 18139339\n"
"pgalloc_normal 44085950\n"
"pgalloc_movable 0\n"
"allocstall_dma 0\n"
"allocstall_dma32 0\n"
"allocstall_normal 18881\n"
"allocstall_movable 169527\n"
"pgskip_dma 0\n"
"pgskip_dma32 0\n"
"pgskip_normal 0\n"
"pgskip_movable 0\n"
"pgfree 63060999\n"
"pgactivate 1703494\n"
"pgdeactivate 20537803\n"
"pglazyfree 163\n"
"pgfault 45201169\n"
"pgmajfault 609626\n"
"pgmajfault_s 7488\n"
"pgmajfault_a 591793\n"
"pgmajfault_f 10345\n"
"pglazyfreed 0\n"
"pgrefill 20673453\n"
"pgsteal_kswapd 11802772\n"
"pgsteal_direct 8618160\n"
"pgscan_kswapd 12640517\n"
"pgscan_direct 9092230\n"
"pgscan_direct_throttle 638\n"
"pginodesteal 1716\n"
"slabs_scanned 2594642\n"
"kswapd_inodesteal 67358\n"
"kswapd_low_wmark_hit_quickly 52\n"
"kswapd_high_wmark_hit_quickly 11\n"
"pageoutrun 83\n"
"pgrotated 977\n"
"drop_pagecache 1\n"
"drop_slab 1\n"
"oom_kill 1\n"
"pgmigrate_success 3202\n"
"pgmigrate_fail 795\n";
const char valid_input3[] =
"pswpin 12\n"
"pswpout 901\n"
"pgmajfault 18881\n";
EXPECT_TRUE(ParseProcVmstat(valid_input1, &vmstat));
EXPECT_EQ(345219LU, vmstat.pswpin);
EXPECT_EQ(2605828LU, vmstat.pswpout);
EXPECT_EQ(358901LU, vmstat.pgmajfault);
EXPECT_EQ(18LU, vmstat.oom_kill);
EXPECT_TRUE(ParseProcVmstat(valid_input2, &vmstat));
EXPECT_EQ(899959LU, vmstat.pswpin);
EXPECT_EQ(19761244LU, vmstat.pswpout);
EXPECT_EQ(609626LU, vmstat.pgmajfault);
EXPECT_EQ(1LU, vmstat.oom_kill);
EXPECT_TRUE(ParseProcVmstat(valid_input3, &vmstat));
EXPECT_EQ(12LU, vmstat.pswpin);
EXPECT_EQ(901LU, vmstat.pswpout);
EXPECT_EQ(18881LU, vmstat.pgmajfault);
EXPECT_EQ(0LU, vmstat.oom_kill);
const char missing_pgmajfault_input[] =
"pswpin 12\n"
"pswpout 901\n";
EXPECT_FALSE(ParseProcVmstat(missing_pgmajfault_input, &vmstat));
const char empty_input[] = "";
EXPECT_FALSE(ParseProcVmstat(empty_input, &vmstat));
}
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) ||
// BUILDFLAG(IS_ANDROID)
#if ENABLE_CPU_TESTS
// Test that ProcessMetrics::GetPlatformIndependentCPUUsage() doesn't return
// negative values when the number of threads running on the process decreases
// between two successive calls to it.
TEST_F(SystemMetricsTest, TestNoNegativeCpuUsage) {
std::unique_ptr<ProcessMetrics> metrics =
ProcessMetrics::CreateCurrentProcessMetrics();
EXPECT_GE(metrics->GetPlatformIndependentCPUUsage(), 0.0);
#if BUILDFLAG(IS_WIN)
EXPECT_GE(metrics->GetPreciseCPUUsage(), 0.0);
#endif
Thread thread1("thread1");
Thread thread2("thread2");
Thread thread3("thread3");
thread1.StartAndWaitForTesting();
thread2.StartAndWaitForTesting();
thread3.StartAndWaitForTesting();
ASSERT_TRUE(thread1.IsRunning());
ASSERT_TRUE(thread2.IsRunning());
ASSERT_TRUE(thread3.IsRunning());
std::vector<std::string> vec1;
std::vector<std::string> vec2;
std::vector<std::string> vec3;
thread1.task_runner()->PostTask(FROM_HERE, BindOnce(&BusyWork, &vec1));
thread2.task_runner()->PostTask(FROM_HERE, BindOnce(&BusyWork, &vec2));
thread3.task_runner()->PostTask(FROM_HERE, BindOnce(&BusyWork, &vec3));
TimeDelta prev_cpu_usage = TestCumulativeCPU(metrics.get(), TimeDelta());
TimeDelta prev_precise_cpu_usage =
TestPreciseCumulativeCPU(metrics.get(), TimeDelta());
thread1.Stop();
prev_cpu_usage = TestCumulativeCPU(metrics.get(), prev_cpu_usage);
prev_precise_cpu_usage =
TestPreciseCumulativeCPU(metrics.get(), prev_precise_cpu_usage);
thread2.Stop();
prev_cpu_usage = TestCumulativeCPU(metrics.get(), prev_cpu_usage);
prev_precise_cpu_usage =
TestPreciseCumulativeCPU(metrics.get(), prev_precise_cpu_usage);
thread3.Stop();
prev_cpu_usage = TestCumulativeCPU(metrics.get(), prev_cpu_usage);
prev_precise_cpu_usage =
TestPreciseCumulativeCPU(metrics.get(), prev_precise_cpu_usage);
}
#if !BUILDFLAG(IS_APPLE) || BUILDFLAG(USE_BLINK)
// Subprocess to test the child CPU usage.
MULTIPROCESS_TEST_MAIN(CPUUsageChildMain) {
TestChildLauncher::NotifyParent();
// Busy wait until terminated.
while (true) {
std::vector<std::string> vec;
BusyWork(&vec);
}
}
TEST_F(SystemMetricsTest, MeasureChildCpuUsage) {
TestChildLauncher child_launcher;
ASSERT_TRUE(child_launcher.SpawnChildProcess("CPUUsageChildMain"));
std::unique_ptr<ProcessMetrics> metrics =
child_launcher.CreateChildProcessMetrics();
const TimeDelta cpu_usage1 = TestCumulativeCPU(metrics.get(), TimeDelta());
PlatformThread::Sleep(TestTimeouts::tiny_timeout());
const TimeDelta cpu_usage2 = TestCumulativeCPU(metrics.get(), cpu_usage1);
EXPECT_TRUE(cpu_usage2.is_positive());
ASSERT_TRUE(child_launcher.TerminateChildProcess());
#if BUILDFLAG(IS_WIN) || BUILDFLAG(IS_FUCHSIA)
// Windows and Fuchsia return final measurements of a process after it exits.
TestCumulativeCPU(metrics.get(), cpu_usage2);
#elif BUILDFLAG(IS_APPLE)
// Mac and iOS return 0 on error. GetPlatformIndependentCPUUsage subtracts
// from this to get a negative.
EXPECT_EQ(metrics->GetCumulativeCPUUsage(), TimeDelta());
EXPECT_LT(metrics->GetPlatformIndependentCPUUsage(), 0.0);
#else
// All other platforms return a negative time value to indicate an error.
EXPECT_LT(metrics->GetCumulativeCPUUsage(), TimeDelta());
EXPECT_LT(metrics->GetPlatformIndependentCPUUsage(), 0.0);
#endif
}
#endif // !BUILDFLAG(IS_APPLE) || BUILDFLAG(USE_BLINK)
#if BUILDFLAG(IS_FUCHSIA)
// Fuchsia CHECK's when measuring an invalid procses.
using SystemMetricsDeathTest = SystemMetricsTest;
TEST_F(SystemMetricsDeathTest, InvalidProcessCpuUsage) {
std::unique_ptr<ProcessMetrics> metrics =
ProcessMetrics::CreateProcessMetrics(kNullProcessHandle);
EXPECT_CHECK_DEATH(
{ [[maybe_unused]] TimeDelta usage = metrics->GetCumulativeCPUUsage(); });
EXPECT_CHECK_DEATH({
[[maybe_unused]] double usage = metrics->GetPlatformIndependentCPUUsage();
});
}
#else // !BUILDFLAG(IS_FUCHSIA)
// Windows, Mac and iOS also return 0 on error. All other platforms return a
// negative value to indicate an error.
TEST_F(SystemMetricsTest, InvalidProcessCpuUsage) {
#if BUILDFLAG(IS_MAC)
std::unique_ptr<ProcessMetrics> metrics =
ProcessMetrics::CreateProcessMetrics(kNullProcessHandle, nullptr);
#else
std::unique_ptr<ProcessMetrics> metrics =
ProcessMetrics::CreateProcessMetrics(kNullProcessHandle);
#endif
#if BUILDFLAG(IS_WIN) || BUILDFLAG(IS_APPLE)
EXPECT_EQ(metrics->GetCumulativeCPUUsage(), TimeDelta());
#else
EXPECT_LT(metrics->GetCumulativeCPUUsage(), TimeDelta());
#endif
// The first call always caches the result of GetCumulativeCPUUsage() and
// returns 0, even if it's an error value. The second call returns the delta
// with the cached result, which is 0 when the second GetCumulativeCPUUsage()
// call returns the same error value.
EXPECT_EQ(metrics->GetPlatformIndependentCPUUsage(), 0.0);
EXPECT_EQ(metrics->GetPlatformIndependentCPUUsage(), 0.0);
}
#endif // !BUILDFLAG(IS_FUCHSIA)
#endif // ENABLE_CPU_TESTS
#if BUILDFLAG(IS_CHROMEOS)
TEST_F(SystemMetricsTest, ParseZramMmStat) {
SwapInfo swapinfo;
const char invalid_input1[] = "aaa";
const char invalid_input2[] = "1 2 3 4 5 6";
const char invalid_input3[] = "a 2 3 4 5 6 7";
EXPECT_FALSE(ParseZramMmStat(invalid_input1, &swapinfo));
EXPECT_FALSE(ParseZramMmStat(invalid_input2, &swapinfo));
EXPECT_FALSE(ParseZramMmStat(invalid_input3, &swapinfo));
const char valid_input1[] =
"17715200 5008166 566062 0 1225715712 127 183842";
EXPECT_TRUE(ParseZramMmStat(valid_input1, &swapinfo));
EXPECT_EQ(17715200ULL, swapinfo.orig_data_size);
EXPECT_EQ(5008166ULL, swapinfo.compr_data_size);
EXPECT_EQ(566062ULL, swapinfo.mem_used_total);
}
TEST_F(SystemMetricsTest, ParseZramStat) {
SwapInfo swapinfo;
const char invalid_input1[] = "aaa";
const char invalid_input2[] = "1 2 3 4 5 6 7 8 9 10";
const char invalid_input3[] = "a 2 3 4 5 6 7 8 9 10 11";
EXPECT_FALSE(ParseZramStat(invalid_input1, &swapinfo));
EXPECT_FALSE(ParseZramStat(invalid_input2, &swapinfo));
EXPECT_FALSE(ParseZramStat(invalid_input3, &swapinfo));
const char valid_input1[] =
"299 0 2392 0 1 0 8 0 0 0 0";
EXPECT_TRUE(ParseZramStat(valid_input1, &swapinfo));
EXPECT_EQ(299ULL, swapinfo.num_reads);
EXPECT_EQ(1ULL, swapinfo.num_writes);
}
#endif // BUILDFLAG(IS_CHROMEOS)
#if BUILDFLAG(IS_WIN) || BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_LINUX) || \
BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID)
TEST(SystemMetrics2Test, GetSystemMemoryInfo) {
SystemMemoryInfoKB info;
EXPECT_TRUE(GetSystemMemoryInfo(&info));
// Ensure each field received a value.
EXPECT_GT(info.total, 0);
#if BUILDFLAG(IS_WIN)
EXPECT_GT(info.avail_phys, 0);
#else
EXPECT_GT(info.free, 0);
#endif
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID)
EXPECT_GT(info.buffers, 0);
EXPECT_GT(info.cached, 0);
EXPECT_GT(info.active_anon + info.inactive_anon, 0);
EXPECT_GT(info.active_file + info.inactive_file, 0);
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) ||
// BUILDFLAG(IS_ANDROID)
// All the values should be less than the total amount of memory.
#if !BUILDFLAG(IS_WIN) && !BUILDFLAG(IS_IOS)
// TODO(crbug.com/711450): re-enable the following assertion on iOS.
EXPECT_LT(info.free, info.total);
#endif
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID)
EXPECT_LT(info.buffers, info.total);
EXPECT_LT(info.cached, info.total);
EXPECT_LT(info.active_anon, info.total);
EXPECT_LT(info.inactive_anon, info.total);
EXPECT_LT(info.active_file, info.total);
EXPECT_LT(info.inactive_file, info.total);
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) ||
// BUILDFLAG(IS_ANDROID)
#if BUILDFLAG(IS_APPLE)
EXPECT_GT(info.file_backed, 0);
#endif
#if BUILDFLAG(IS_CHROMEOS)
// Chrome OS exposes shmem.
EXPECT_GT(info.shmem, 0);
EXPECT_LT(info.shmem, info.total);
#endif
}
#endif // BUILDFLAG(IS_WIN) || BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_LINUX) ||
// BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID)
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID)
TEST(ProcessMetricsTest, ParseProcStatCPU) {
// /proc/self/stat for a process running "top".
const char kTopStat[] =
"960 (top) S 16230 960 16230 34818 960 "
"4202496 471 0 0 0 "
"12 16 0 0 " // <- These are the goods.
"20 0 1 0 121946157 15077376 314 18446744073709551615 4194304 "
"4246868 140733983044336 18446744073709551615 140244213071219 "
"0 0 0 138047495 0 0 0 17 1 0 0 0 0 0";
EXPECT_EQ(12 + 16, ParseProcStatCPU(kTopStat));
// cat /proc/self/stat on a random other machine I have.
const char kSelfStat[] =
"5364 (cat) R 5354 5364 5354 34819 5364 "
"0 142 0 0 0 "
"0 0 0 0 " // <- No CPU, apparently.
"16 0 1 0 1676099790 2957312 114 4294967295 134512640 134528148 "
"3221224832 3221224344 3086339742 0 0 0 0 0 0 0 17 0 0 0";
EXPECT_EQ(0, ParseProcStatCPU(kSelfStat));
// Some weird long-running process with a weird name that I created for the
// purposes of this test.
const char kWeirdNameStat[] =
"26115 (Hello) You ())) ) R 24614 26115 24614"
" 34839 26115 4218880 227 0 0 0 "
"5186 11 0 0 "
"20 0 1 0 36933953 4296704 90 18446744073709551615 4194304 4196116 "
"140735857761568 140735857761160 4195644 0 0 0 0 0 0 0 17 14 0 0 0 0 0 "
"6295056 6295616 16519168 140735857770710 140735857770737 "
"140735857770737 140735857774557 0";
EXPECT_EQ(5186 + 11, ParseProcStatCPU(kWeirdNameStat));
}
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) ||
// BUILDFLAG(IS_ANDROID)
// Disable on Android because base_unittests runs inside a Dalvik VM that
// starts and stop threads (crbug.com/175563).
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
// http://crbug.com/396455
TEST(ProcessMetricsTest, DISABLED_GetNumberOfThreads) {
const ProcessHandle current = GetCurrentProcessHandle();
const int64_t initial_threads = GetNumberOfThreads(current);
ASSERT_GT(initial_threads, 0);
const int kNumAdditionalThreads = 10;
{
std::unique_ptr<Thread> my_threads[kNumAdditionalThreads];
for (int i = 0; i < kNumAdditionalThreads; ++i) {
my_threads[i] = std::make_unique<Thread>("GetNumberOfThreadsTest");
my_threads[i]->Start();
ASSERT_EQ(GetNumberOfThreads(current), initial_threads + 1 + i);
}
}
// The Thread destructor will stop them.
ASSERT_EQ(initial_threads, GetNumberOfThreads(current));
}
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || \
(BUILDFLAG(IS_APPLE) && BUILDFLAG(USE_BLINK))
namespace {
// Keep these in sync so the GetChildOpenFdCount test can refer to correct test
// main.
#define ChildMain ChildFdCount
#define ChildMainString "ChildFdCount"
// Command line flag name and file name used for synchronization.
const char kTempDirFlag[] = "temp-dir";
const char kSignalReady[] = "ready";
const char kSignalReadyAck[] = "ready-ack";
const char kSignalOpened[] = "opened";
const char kSignalOpenedAck[] = "opened-ack";
const char kSignalClosed[] = "closed";
const int kChildNumFilesToOpen = 100;
bool SignalEvent(const FilePath& signal_dir, const char* signal_file) {
File file(signal_dir.AppendASCII(signal_file),
File::FLAG_CREATE | File::FLAG_WRITE);
return file.IsValid();
}
// Check whether an event was signaled.
bool CheckEvent(const FilePath& signal_dir, const char* signal_file) {
File file(signal_dir.AppendASCII(signal_file),
File::FLAG_OPEN | File::FLAG_READ);
return file.IsValid();
}
// Busy-wait for an event to be signaled.
void WaitForEvent(const FilePath& signal_dir, const char* signal_file) {
while (!CheckEvent(signal_dir, signal_file)) {
PlatformThread::Sleep(Milliseconds(10));
}
}
// Subprocess to test the number of open file descriptors.
MULTIPROCESS_TEST_MAIN(ChildMain) {
TestChildLauncher::NotifyParent();
CommandLine* command_line = CommandLine::ForCurrentProcess();
const FilePath temp_path = command_line->GetSwitchValuePath(kTempDirFlag);
CHECK(DirectoryExists(temp_path));
CHECK(SignalEvent(temp_path, kSignalReady));
WaitForEvent(temp_path, kSignalReadyAck);
std::vector<File> files;
for (int i = 0; i < kChildNumFilesToOpen; ++i) {
files.emplace_back(temp_path.AppendASCII(StringPrintf("file.%d", i)),
File::FLAG_CREATE | File::FLAG_WRITE);
}
CHECK(SignalEvent(temp_path, kSignalOpened));
WaitForEvent(temp_path, kSignalOpenedAck);
files.clear();
CHECK(SignalEvent(temp_path, kSignalClosed));
// Wait to be terminated.
while (true) {
PlatformThread::Sleep(Seconds(1));
}
}
} // namespace
TEST(ProcessMetricsTest, GetChildOpenFdCount) {
ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
const FilePath temp_path = temp_dir.GetPath();
TestChildLauncher child_launcher;
child_launcher.command_line().AppendSwitchPath(kTempDirFlag, temp_path);
ASSERT_TRUE(child_launcher.SpawnChildProcess(ChildMainString));
WaitForEvent(temp_path, kSignalReady);
std::unique_ptr<ProcessMetrics> metrics =
child_launcher.CreateChildProcessMetrics();
const int fd_count = metrics->GetOpenFdCount();
EXPECT_GE(fd_count, 0);
ASSERT_TRUE(SignalEvent(temp_path, kSignalReadyAck));
WaitForEvent(temp_path, kSignalOpened);
EXPECT_EQ(fd_count + kChildNumFilesToOpen, metrics->GetOpenFdCount());
ASSERT_TRUE(SignalEvent(temp_path, kSignalOpenedAck));
WaitForEvent(temp_path, kSignalClosed);
EXPECT_EQ(fd_count, metrics->GetOpenFdCount());
ASSERT_TRUE(child_launcher.TerminateChildProcess());
}
TEST(ProcessMetricsTest, GetOpenFdCount) {
std::unique_ptr<ProcessMetrics> metrics =
ProcessMetrics::CreateCurrentProcessMetrics();
ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
int fd_count = metrics->GetOpenFdCount();
EXPECT_GT(fd_count, 0);
File file(temp_dir.GetPath().AppendASCII("file"),
File::FLAG_CREATE | File::FLAG_WRITE);
int new_fd_count = metrics->GetOpenFdCount();
EXPECT_GT(new_fd_count, 0);
EXPECT_EQ(new_fd_count, fd_count + 1);
}
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_APPLE)
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
TEST(ProcessMetricsTestLinux, GetPageFaultCounts) {
std::unique_ptr<ProcessMetrics> process_metrics =
ProcessMetrics::CreateCurrentProcessMetrics();
PageFaultCounts counts;
ASSERT_TRUE(process_metrics->GetPageFaultCounts(&counts));
ASSERT_GT(counts.minor, 0);
ASSERT_GE(counts.major, 0);
// Allocate and touch memory. Touching it is required to make sure that the
// page fault count goes up, as memory is typically mapped lazily.
{
const size_t kMappedSize = 4 << 20; // 4 MiB.
WritableSharedMemoryRegion region =
WritableSharedMemoryRegion::Create(kMappedSize);
ASSERT_TRUE(region.IsValid());
WritableSharedMemoryMapping mapping = region.Map();
ASSERT_TRUE(mapping.IsValid());
memset(mapping.memory(), 42, kMappedSize);
}
PageFaultCounts counts_after;
ASSERT_TRUE(process_metrics->GetPageFaultCounts(&counts_after));
ASSERT_GT(counts_after.minor, counts.minor);
ASSERT_GE(counts_after.major, counts.major);
}
TEST(ProcessMetricsTestLinux, GetCumulativeCPUUsagePerThread) {
std::unique_ptr<ProcessMetrics> metrics =
ProcessMetrics::CreateCurrentProcessMetrics();
Thread thread1("thread1");
thread1.StartAndWaitForTesting();
ASSERT_TRUE(thread1.IsRunning());
std::vector<std::string> vec1;
thread1.task_runner()->PostTask(FROM_HERE, BindOnce(&BusyWork, &vec1));
ProcessMetrics::CPUUsagePerThread prev_thread_times;
EXPECT_TRUE(metrics->GetCumulativeCPUUsagePerThread(prev_thread_times));
// Should have at least the test runner thread and the thread spawned above.
EXPECT_GE(prev_thread_times.size(), 2u);
EXPECT_TRUE(ranges::any_of(
prev_thread_times,
[&thread1](const std::pair<PlatformThreadId, base::TimeDelta>& entry) {
return entry.first == thread1.GetThreadId();
}));
EXPECT_TRUE(ranges::any_of(
prev_thread_times,
[](const std::pair<PlatformThreadId, base::TimeDelta>& entry) {
return entry.first == base::PlatformThread::CurrentId();
}));
for (const auto& entry : prev_thread_times) {
EXPECT_GE(entry.second, base::TimeDelta());
}
thread1.Stop();
ProcessMetrics::CPUUsagePerThread current_thread_times;
EXPECT_TRUE(metrics->GetCumulativeCPUUsagePerThread(current_thread_times));
// The stopped thread may still be reported until the kernel cleans it up.
EXPECT_GE(prev_thread_times.size(), 1u);
EXPECT_TRUE(ranges::any_of(
current_thread_times,
[](const std::pair<PlatformThreadId, base::TimeDelta>& entry) {
return entry.first == base::PlatformThread::CurrentId();
}));
// Reported times should not decrease.
for (const auto& entry : current_thread_times) {
auto prev_it = ranges::find_if(
prev_thread_times,
[&entry](
const std::pair<PlatformThreadId, base::TimeDelta>& prev_entry) {
return entry.first == prev_entry.first;
});
if (prev_it != prev_thread_times.end()) {
EXPECT_GE(entry.second, prev_it->second);
}
}
}
#endif // BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) ||
// BUILDFLAG(IS_CHROMEOS)
} // namespace base::debug