[go: nahoru, domu]

blob: a708012af925fd5d6afd5c58ffdc5703d42a0d23 [file] [log] [blame]
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Tests on exact results from cryptographic operations are based on test data
// provided in [MS-NLMP] Version 28.0 [1] Section 4.2.
//
// Additional sanity checks on the low level hashing operations test for
// properties of the outputs, such as whether the hashes change, whether they
// should be zeroed out, or whether they should be the same or different.
//
// [1] https://msdn.microsoft.com/en-us/library/cc236621.aspx
#include "net/ntlm/ntlm.h"
#include <string>
#include "base/md5.h"
#include "base/strings/string16.h"
#include "base/strings/utf_string_conversions.h"
#include "net/ntlm/ntlm_test_data.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace ntlm {
namespace {
AvPair MakeDomainAvPair() {
return AvPair(TargetInfoAvId::kDomainName,
Buffer(test::kNtlmDomainRaw, arraysize(test::kNtlmDomainRaw)));
}
AvPair MakeServerAvPair() {
return AvPair(TargetInfoAvId::kServerName,
Buffer(test::kServerRaw, arraysize(test::kServerRaw)));
}
// Clear the least significant bit in each byte.
void ClearLsb(uint8_t* data, size_t len) {
for (size_t i = 0; i < len; i++) {
data[i] &= ~1;
}
}
} // namespace
TEST(NtlmTest, MapHashToDesKeysAllOnes) {
// Test mapping an NTLM hash with all 1 bits.
const uint8_t hash[16] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
const uint8_t expected[24] = {0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe,
0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe,
0xfe, 0xfe, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t result[24];
Create3DesKeysFromNtlmHash(hash, result);
// The least significant bit in result from |Create3DesKeysFromNtlmHash|
// is undefined, so clear it to do memcmp.
ClearLsb(result, arraysize(result));
ASSERT_EQ(0, memcmp(expected, result, arraysize(expected)));
}
TEST(NtlmTest, MapHashToDesKeysAllZeros) {
// Test mapping an NTLM hash with all 0 bits.
const uint8_t hash[16] = {0x00};
const uint8_t expected[24] = {0x00};
uint8_t result[24];
Create3DesKeysFromNtlmHash(hash, result);
// The least significant bit in result from |Create3DesKeysFromNtlmHash|
// is undefined, so clear it to do memcmp.
ClearLsb(result, arraysize(result));
ASSERT_EQ(0, memcmp(expected, result, arraysize(expected)));
}
TEST(NtlmTest, MapHashToDesKeysAlternatingBits) {
// Test mapping an NTLM hash with alternating 0 and 1 bits.
const uint8_t hash[16] = {0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa};
const uint8_t expected[24] = {0xaa, 0x54, 0xaa, 0x54, 0xaa, 0x54, 0xaa, 0x54,
0xaa, 0x54, 0xaa, 0x54, 0xaa, 0x54, 0xaa, 0x54,
0xaa, 0x54, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t result[24];
Create3DesKeysFromNtlmHash(hash, result);
// The least significant bit in result from |Create3DesKeysFromNtlmHash|
// is undefined, so clear it to do memcmp.
ClearLsb(result, arraysize(result));
ASSERT_EQ(0, memcmp(expected, result, arraysize(expected)));
}
TEST(NtlmTest, GenerateNtlmHashV1PasswordSpecTests) {
uint8_t hash[kNtlmHashLen];
GenerateNtlmHashV1(test::kPassword, hash);
ASSERT_EQ(0, memcmp(hash, test::kExpectedNtlmHashV1, kNtlmHashLen));
}
TEST(NtlmTest, GenerateNtlmHashV1PasswordChangesHash) {
base::string16 password1 = base::UTF8ToUTF16("pwd01");
base::string16 password2 = base::UTF8ToUTF16("pwd02");
uint8_t hash1[kNtlmHashLen];
uint8_t hash2[kNtlmHashLen];
GenerateNtlmHashV1(password1, hash1);
GenerateNtlmHashV1(password2, hash2);
// Verify that the hash is different with a different password.
ASSERT_NE(0, memcmp(hash1, hash2, kNtlmHashLen));
}
TEST(NtlmTest, GenerateResponsesV1SpecTests) {
uint8_t lm_response[kResponseLenV1];
uint8_t ntlm_response[kResponseLenV1];
GenerateResponsesV1(test::kPassword, test::kServerChallenge, lm_response,
ntlm_response);
ASSERT_EQ(
0, memcmp(test::kExpectedNtlmResponseV1, ntlm_response, kResponseLenV1));
// This implementation never sends an LMv1 response (spec equivalent of the
// client variable NoLMResponseNTLMv1 being false) so the LM response is
// equal to the NTLM response when
// NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY is not negotiated. See
// [MS-NLMP] Section 3.3.1.
ASSERT_EQ(0,
memcmp(test::kExpectedNtlmResponseV1, lm_response, kResponseLenV1));
}
TEST(NtlmTest, GenerateResponsesV1WithSessionSecuritySpecTests) {
uint8_t lm_response[kResponseLenV1];
uint8_t ntlm_response[kResponseLenV1];
GenerateResponsesV1WithSessionSecurity(
test::kPassword, test::kServerChallenge, test::kClientChallenge,
lm_response, ntlm_response);
ASSERT_EQ(0, memcmp(test::kExpectedLmResponseWithV1SS, lm_response,
kResponseLenV1));
ASSERT_EQ(0, memcmp(test::kExpectedNtlmResponseWithV1SS, ntlm_response,
kResponseLenV1));
}
TEST(NtlmTest, GenerateResponsesV1WithSessionSecurityClientChallengeUsed) {
uint8_t lm_response1[kResponseLenV1];
uint8_t lm_response2[kResponseLenV1];
uint8_t ntlm_response1[kResponseLenV1];
uint8_t ntlm_response2[kResponseLenV1];
uint8_t client_challenge1[kChallengeLen];
uint8_t client_challenge2[kChallengeLen];
memset(client_challenge1, 0x01, kChallengeLen);
memset(client_challenge2, 0x02, kChallengeLen);
GenerateResponsesV1WithSessionSecurity(
test::kPassword, test::kServerChallenge, client_challenge1, lm_response1,
ntlm_response1);
GenerateResponsesV1WithSessionSecurity(
test::kPassword, test::kServerChallenge, client_challenge2, lm_response2,
ntlm_response2);
// The point of session security is that the client can introduce some
// randomness, so verify different client_challenge gives a different result.
ASSERT_NE(0, memcmp(lm_response1, lm_response2, kResponseLenV1));
ASSERT_NE(0, memcmp(ntlm_response1, ntlm_response2, kResponseLenV1));
// With session security the lm and ntlm hash should be different.
ASSERT_NE(0, memcmp(lm_response1, ntlm_response1, kResponseLenV1));
ASSERT_NE(0, memcmp(lm_response2, ntlm_response2, kResponseLenV1));
}
TEST(NtlmTest, GenerateResponsesV1WithSessionSecurityVerifySSUsed) {
uint8_t lm_response1[kResponseLenV1];
uint8_t lm_response2[kResponseLenV1];
uint8_t ntlm_response1[kResponseLenV1];
uint8_t ntlm_response2[kResponseLenV1];
GenerateResponsesV1WithSessionSecurity(
test::kPassword, test::kServerChallenge, test::kClientChallenge,
lm_response1, ntlm_response1);
GenerateResponsesV1(test::kPassword, test::kServerChallenge, lm_response2,
ntlm_response2);
// Verify that the responses with session security are not the
// same as without it.
ASSERT_NE(0, memcmp(lm_response1, lm_response2, kResponseLenV1));
ASSERT_NE(0, memcmp(ntlm_response1, ntlm_response2, kResponseLenV1));
}
// ------------------------------------------------
// NTLM V2 specific tests.
// ------------------------------------------------
TEST(NtlmTest, GenerateNtlmHashV2SpecTests) {
uint8_t hash[kNtlmHashLen];
GenerateNtlmHashV2(test::kNtlmDomain, test::kUser, test::kPassword, hash);
ASSERT_EQ(0, memcmp(hash, test::kExpectedNtlmHashV2, kNtlmHashLen));
}
TEST(NtlmTest, GenerateProofInputV2SpecTests) {
Buffer proof_input;
proof_input =
GenerateProofInputV2(test::kServerTimestamp, test::kClientChallenge);
ASSERT_EQ(kProofInputLenV2, proof_input.size());
// |GenerateProofInputV2| generates the first |kProofInputLenV2| bytes of
// what [MS-NLMP] calls "temp".
ASSERT_EQ(0, memcmp(test::kExpectedTempFromSpecV2, proof_input.data(),
proof_input.size()));
}
TEST(NtlmTest, GenerateNtlmProofV2SpecTests) {
// Only the first |kProofInputLenV2| bytes of |test::kExpectedTempFromSpecV2|
// are read and this is equivalent to the output of |GenerateProofInputV2|.
// See |GenerateProofInputV2SpecTests| for validation.
uint8_t v2_proof[kNtlmProofLenV2];
GenerateNtlmProofV2(test::kExpectedNtlmHashV2, test::kServerChallenge,
Buffer(test::kExpectedTempFromSpecV2, kProofInputLenV2),
Buffer(test::kExpectedTargetInfoFromSpecV2,
arraysize(test::kExpectedTargetInfoFromSpecV2)),
v2_proof);
ASSERT_EQ(0,
memcmp(test::kExpectedProofFromSpecV2, v2_proof, kNtlmProofLenV2));
}
TEST(NtlmTest, GenerateSessionBaseKeyV2SpecTests) {
// Generate the session base key.
uint8_t session_base_key[kSessionKeyLenV2];
GenerateSessionBaseKeyV2(test::kExpectedNtlmHashV2,
test::kExpectedProofFromSpecV2, session_base_key);
// Verify the session base key.
ASSERT_EQ(0, memcmp(test::kExpectedSessionBaseKeyFromSpecV2, session_base_key,
kSessionKeyLenV2));
}
TEST(NtlmTest, GenerateSessionBaseKeyWithClientTimestampV2SpecTests) {
// Generate the session base key.
uint8_t session_base_key[kSessionKeyLenV2];
GenerateSessionBaseKeyV2(
test::kExpectedNtlmHashV2,
test::kExpectedProofSpecResponseWithClientTimestampV2, session_base_key);
// Verify the session base key.
ASSERT_EQ(0, memcmp(test::kExpectedSessionBaseKeyWithClientTimestampV2,
session_base_key, kSessionKeyLenV2));
}
TEST(NtlmTest, GenerateChannelBindingHashV2SpecTests) {
uint8_t v2_channel_binding_hash[kChannelBindingsHashLen];
GenerateChannelBindingHashV2(test::kChannelBindings, v2_channel_binding_hash);
ASSERT_EQ(0, memcmp(test::kExpectedChannelBindingHashV2,
v2_channel_binding_hash, kChannelBindingsHashLen));
}
TEST(NtlmTest, GenerateMicV2Simple) {
// The MIC is defined as HMAC_MD5(session_base_key, CONCAT(a, b, c)) where
// a, b, c are the negotiate, challenge and authenticate messages
// respectively.
//
// This compares a simple set of inputs to a precalculated result.
const Buffer a{0x44, 0x44, 0x44, 0x44};
const Buffer b{0x66, 0x66, 0x66, 0x66, 0x66, 0x66};
const Buffer c{0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88};
// expected_mic = HMAC_MD5(
// key=8de40ccadbc14a82f15cb0ad0de95ca3,
// input=444444446666666666668888888888888888)
uint8_t expected_mic[kMicLenV2] = {0x71, 0xfe, 0xef, 0xd7, 0x76, 0xd4,
0x42, 0xa8, 0x5f, 0x6e, 0x18, 0x0a,
0x6b, 0x02, 0x47, 0x20};
uint8_t mic[kMicLenV2];
GenerateMicV2(test::kExpectedSessionBaseKeyFromSpecV2, a, b, c, mic);
ASSERT_EQ(0, memcmp(expected_mic, mic, kMicLenV2));
}
TEST(NtlmTest, GenerateMicSpecResponseV2) {
Buffer negotiate_msg(test::kExpectedNegotiateMsg,
arraysize(test::kExpectedNegotiateMsg));
Buffer challenge_msg(test::kChallengeMsgFromSpecV2,
arraysize(test::kChallengeMsgFromSpecV2));
size_t authenticate_msg_len =
arraysize(test::kExpectedAuthenticateMsgSpecResponseV2);
Buffer authenticate_msg(authenticate_msg_len, '\0');
memcpy(&authenticate_msg[0], test::kExpectedAuthenticateMsgSpecResponseV2,
authenticate_msg_len);
memset(&authenticate_msg[kMicOffsetV2], 0x00, kMicLenV2);
uint8_t mic[kMicLenV2];
GenerateMicV2(test::kExpectedSessionBaseKeyWithClientTimestampV2,
negotiate_msg, challenge_msg, authenticate_msg, mic);
ASSERT_EQ(0, memcmp(test::kExpectedMicV2, mic, kMicLenV2));
}
TEST(NtlmTest, GenerateUpdatedTargetInfo) {
// This constructs a std::vector<AvPair> that corresponds to the test input
// values in [MS-NLMP] Section 4.2.4.
std::vector<AvPair> server_av_pairs;
server_av_pairs.push_back(MakeDomainAvPair());
server_av_pairs.push_back(MakeServerAvPair());
uint64_t server_timestamp = UINT64_MAX;
Buffer updated_target_info = GenerateUpdatedTargetInfo(
true, true, test::kChannelBindings, test::kNtlmSpn, server_av_pairs,
&server_timestamp);
// With MIC and EPA enabled 3 additional AvPairs will be added.
// 1) A flags AVPair with the MIC_PRESENT bit set.
// 2) A channel bindings AVPair containing the channel bindings hash.
// 3) A target name AVPair containing the SPN of the server.
ASSERT_EQ(arraysize(test::kExpectedTargetInfoSpecResponseV2),
updated_target_info.size());
ASSERT_EQ(0, memcmp(test::kExpectedTargetInfoSpecResponseV2,
updated_target_info.data(), updated_target_info.size()));
}
TEST(NtlmTest, GenerateUpdatedTargetInfoNoEpaOrMic) {
// This constructs a std::vector<AvPair> that corresponds to the test input
// values in [MS-NLMP] Section 4.2.4.
std::vector<AvPair> server_av_pairs;
server_av_pairs.push_back(MakeDomainAvPair());
server_av_pairs.push_back(MakeServerAvPair());
uint64_t server_timestamp = UINT64_MAX;
// When both EPA and MIC are false the target info does not get modified by
// the client.
Buffer updated_target_info = GenerateUpdatedTargetInfo(
false, false, test::kChannelBindings, test::kNtlmSpn, server_av_pairs,
&server_timestamp);
ASSERT_EQ(arraysize(test::kExpectedTargetInfoFromSpecV2),
updated_target_info.size());
ASSERT_EQ(0, memcmp(test::kExpectedTargetInfoFromSpecV2,
updated_target_info.data(), updated_target_info.size()));
}
TEST(NtlmTest, GenerateUpdatedTargetInfoWithServerTimestamp) {
// This constructs a std::vector<AvPair> that corresponds to the test input
// values in [MS-NLMP] Section 4.2.4 with an additional server timestamp.
std::vector<AvPair> server_av_pairs;
server_av_pairs.push_back(MakeDomainAvPair());
server_av_pairs.push_back(MakeServerAvPair());
// Set the timestamp to |test::kServerTimestamp| and the buffer to all zeros.
AvPair pair(TargetInfoAvId::kTimestamp, Buffer(sizeof(uint64_t), 0));
pair.timestamp = test::kServerTimestamp;
server_av_pairs.push_back(std::move(pair));
uint64_t server_timestamp = UINT64_MAX;
// When both EPA and MIC are false the target info does not get modified by
// the client.
Buffer updated_target_info = GenerateUpdatedTargetInfo(
false, false, test::kChannelBindings, test::kNtlmSpn, server_av_pairs,
&server_timestamp);
// Verify that the server timestamp was read from the target info.
ASSERT_EQ(test::kServerTimestamp, server_timestamp);
ASSERT_EQ(arraysize(test::kExpectedTargetInfoFromSpecPlusServerTimestampV2),
updated_target_info.size());
ASSERT_EQ(0, memcmp(test::kExpectedTargetInfoFromSpecPlusServerTimestampV2,
updated_target_info.data(), updated_target_info.size()));
}
TEST(NtlmTest, GenerateUpdatedTargetInfoWhenServerSendsNoTargetInfo) {
// In some older implementations the server supports NTLMv2 but does not
// send target info. This manifests as an empty list of AvPairs.
std::vector<AvPair> server_av_pairs;
uint64_t server_timestamp = UINT64_MAX;
Buffer updated_target_info = GenerateUpdatedTargetInfo(
true, true, test::kChannelBindings, test::kNtlmSpn, server_av_pairs,
&server_timestamp);
// With MIC and EPA enabled 3 additional AvPairs will be added.
// 1) A flags AVPair with the MIC_PRESENT bit set.
// 2) A channel bindings AVPair containing the channel bindings hash.
// 3) A target name AVPair containing the SPN of the server.
//
// Compared to the spec example in |GenerateUpdatedTargetInfo| the result
// is the same but with the first 32 bytes (which were the Domain and
// Server pairs) not present.
const size_t kMissingServerPairsLength = 32;
ASSERT_EQ(arraysize(test::kExpectedTargetInfoSpecResponseV2) -
kMissingServerPairsLength,
updated_target_info.size());
ASSERT_EQ(0, memcmp(test::kExpectedTargetInfoSpecResponseV2 +
kMissingServerPairsLength,
updated_target_info.data(), updated_target_info.size()));
}
TEST(NtlmTest, GenerateNtlmProofV2) {
uint8_t proof[kNtlmProofLenV2];
// NOTE: Only the first |kProofInputLenV2| bytes of |kExpectedTempFromSpecV2|
// are read.
GenerateNtlmProofV2(
test::kExpectedNtlmHashV2, test::kServerChallenge,
Buffer(test::kExpectedTempFromSpecV2, kProofInputLenV2),
Buffer(test::kExpectedTargetInfoSpecResponseV2,
arraysize(test::kExpectedTargetInfoSpecResponseV2)),
proof);
ASSERT_EQ(0,
memcmp(test::kExpectedProofSpecResponseV2, proof, kNtlmProofLenV2));
}
TEST(NtlmTest, GenerateNtlmProofWithClientTimestampV2) {
uint8_t proof[kNtlmProofLenV2];
// NOTE: Only the first |kProofInputLenV2| bytes of
// |kExpectedTempWithClientTimestampV2| are read. Since the test data for
// "temp" in the spec does not include the client timestamp, a separate
// proof test value must be validated for use in full message validation.
GenerateNtlmProofV2(
test::kExpectedNtlmHashV2, test::kServerChallenge,
Buffer(test::kExpectedTempWithClientTimestampV2, kProofInputLenV2),
Buffer(test::kExpectedTargetInfoSpecResponseV2,
arraysize(test::kExpectedTargetInfoSpecResponseV2)),
proof);
ASSERT_EQ(0, memcmp(test::kExpectedProofSpecResponseWithClientTimestampV2,
proof, kNtlmProofLenV2));
}
} // namespace ntlm
} // namespace net