[go: nahoru, domu]

blob: b290c1676fff1066052e37d81e3864246db6c2db [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "build/build_config.h"
#if defined(OS_WIN)
#include <windows.h>
#elif defined(OS_POSIX)
#include <sys/types.h>
#include <unistd.h>
#endif
#include <stdio.h>
#include <string>
#include <utility>
#include "ipc/ipc_test_base.h"
#include "base/base_switches.h"
#include "base/command_line.h"
#include "base/debug/debug_on_start_win.h"
#include "base/perftimer.h"
#include "base/pickle.h"
#include "base/test/perf_test_suite.h"
#include "base/threading/thread.h"
#include "base/time.h"
#include "ipc/ipc_descriptors.h"
#include "ipc/ipc_channel.h"
#include "ipc/ipc_channel_proxy.h"
#include "ipc/ipc_message_utils.h"
#include "ipc/ipc_multiprocess_test.h"
#include "ipc/ipc_sender.h"
#include "ipc/ipc_switches.h"
#include "testing/multiprocess_func_list.h"
// This test times the roundtrip IPC message cycle. It is enabled with a
// special preprocessor define to enable it instead of the standard IPC
// unit tests. This works around some funny termination conditions in the
// regular unit tests.
//
// This test is not automated. To test, you will want to vary the message
// count and message size in TEST to get the numbers you want.
//
// FIXME(brettw): Automate this test and have it run by default.
class IPCChannelPerfTest : public IPCTestBase {
};
// This channel listener just replies to all messages with the exact same
// message. It assumes each message has one string parameter. When the string
// "quit" is sent, it will exit.
class ChannelReflectorListener : public IPC::Listener {
public:
explicit ChannelReflectorListener(IPC::Channel *channel) :
channel_(channel),
count_messages_(0) {
std::cout << "Reflector up" << std::endl;
}
~ChannelReflectorListener() {
std::cout << "Client Messages: " << count_messages_ << std::endl;
std::cout << "Client Latency: " << latency_messages_.InMilliseconds()
<< std::endl;
}
virtual bool OnMessageReceived(const IPC::Message& message) {
count_messages_++;
PickleIterator iter(message);
int64 time_internal;
EXPECT_TRUE(iter.ReadInt64(&time_internal));
int msgid;
EXPECT_TRUE(iter.ReadInt(&msgid));
std::string payload;
EXPECT_TRUE(iter.ReadString(&payload));
// TODO(vtl): Should we use |HighResNow()| instead of |Now()|?
latency_messages_ += base::TimeTicks::Now() -
base::TimeTicks::FromInternalValue(time_internal);
// cout << "reflector msg received: " << msgid << endl;
if (payload == "quit")
MessageLoop::current()->Quit();
IPC::Message* msg = new IPC::Message(0,
2,
IPC::Message::PRIORITY_NORMAL);
msg->WriteInt64(base::TimeTicks::Now().ToInternalValue());
msg->WriteInt(msgid);
msg->WriteString(payload);
channel_->Send(msg);
return true;
}
private:
IPC::Channel *channel_;
int count_messages_;
base::TimeDelta latency_messages_;
};
class ChannelPerfListener : public IPC::Listener {
public:
ChannelPerfListener(IPC::Channel* channel, int msg_count, int msg_size) :
count_down_(msg_count),
channel_(channel),
count_messages_(0) {
payload_.resize(msg_size);
for (int i = 0; i < static_cast<int>(payload_.size()); i++)
payload_[i] = 'a';
std::cout << "perflistener up" << std::endl;
}
~ChannelPerfListener() {
std::cout << "Server Messages: " << count_messages_ << std::endl;
std::cout << "Server Latency: " << latency_messages_.InMilliseconds()
<< std::endl;
}
virtual bool OnMessageReceived(const IPC::Message& message) {
count_messages_++;
// Decode the string so this gets counted in the total time.
PickleIterator iter(message);
int64 time_internal;
EXPECT_TRUE(iter.ReadInt64(&time_internal));
int msgid;
EXPECT_TRUE(iter.ReadInt(&msgid));
std::string cur;
EXPECT_TRUE(iter.ReadString(&cur));
latency_messages_ += base::TimeTicks::Now() -
base::TimeTicks::FromInternalValue(time_internal);
count_down_--;
if (count_down_ == 0) {
IPC::Message* msg = new IPC::Message(0,
2,
IPC::Message::PRIORITY_NORMAL);
msg->WriteInt64(base::TimeTicks::Now().ToInternalValue());
msg->WriteInt(count_down_);
msg->WriteString("quit");
channel_->Send(msg);
MessageLoop::current()->QuitWhenIdle();
return true;
}
IPC::Message* msg = new IPC::Message(0,
2,
IPC::Message::PRIORITY_NORMAL);
msg->WriteInt64(base::TimeTicks::Now().ToInternalValue());
msg->WriteInt(count_down_);
msg->WriteString(payload_);
channel_->Send(msg);
return true;
}
private:
int count_down_;
std::string payload_;
IPC::Channel *channel_;
int count_messages_;
base::TimeDelta latency_messages_;
};
TEST_F(IPCChannelPerfTest, Performance) {
// setup IPC channel
IPC::Channel chan(kReflectorChannel, IPC::Channel::MODE_SERVER, NULL);
ChannelPerfListener perf_listener(&chan, 10000, 100000);
chan.set_listener(&perf_listener);
ASSERT_TRUE(chan.Connect());
base::ProcessHandle process_handle = SpawnChild(TEST_REFLECTOR, &chan);
ASSERT_TRUE(process_handle);
base::PlatformThread::Sleep(base::TimeDelta::FromSeconds(1));
PerfTimeLogger logger("IPC_Perf");
// this initial message will kick-start the ping-pong of messages
IPC::Message* message = new IPC::Message(0,
2,
IPC::Message::PRIORITY_NORMAL);
message->WriteInt64(base::TimeTicks::Now().ToInternalValue());
message->WriteInt(-1);
message->WriteString("Hello");
chan.Send(message);
// run message loop
MessageLoop::current()->Run();
// Clean up child process.
EXPECT_TRUE(base::WaitForSingleProcess(
process_handle, base::TimeDelta::FromSeconds(5)));
base::CloseProcessHandle(process_handle);
}
// This message loop bounces all messages back to the sender
MULTIPROCESS_IPC_TEST_MAIN(RunReflector) {
MessageLoopForIO main_message_loop;
IPC::Channel chan(kReflectorChannel, IPC::Channel::MODE_CLIENT, NULL);
ChannelReflectorListener channel_reflector_listener(&chan);
chan.set_listener(&channel_reflector_listener);
CHECK(chan.Connect());
MessageLoop::current()->Run();
return 0;
}