| // Copyright 2015 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <pthread.h> |
| #include <sched.h> |
| #include <signal.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <sys/prctl.h> |
| #include <sys/ptrace.h> |
| #include <sys/socket.h> |
| #include <sys/syscall.h> |
| #include <sys/time.h> |
| #include <sys/types.h> |
| #include <sys/utsname.h> |
| #include <unistd.h> |
| |
| #if defined(ANDROID) |
| // Work-around for buggy headers in Android's NDK |
| #define __user |
| #endif |
| #include <linux/futex.h> |
| |
| #include "base/bind.h" |
| #include "base/check.h" |
| #include "base/macros.h" |
| #include "base/posix/eintr_wrapper.h" |
| #include "base/synchronization/waitable_event.h" |
| #include "base/system/sys_info.h" |
| #include "base/threading/thread.h" |
| #include "build/build_config.h" |
| #include "sandbox/linux/bpf_dsl/bpf_dsl.h" |
| #include "sandbox/linux/bpf_dsl/errorcode.h" |
| #include "sandbox/linux/bpf_dsl/linux_syscall_ranges.h" |
| #include "sandbox/linux/bpf_dsl/policy.h" |
| #include "sandbox/linux/bpf_dsl/seccomp_macros.h" |
| #include "sandbox/linux/seccomp-bpf/bpf_tests.h" |
| #include "sandbox/linux/seccomp-bpf/die.h" |
| #include "sandbox/linux/seccomp-bpf/sandbox_bpf.h" |
| #include "sandbox/linux/seccomp-bpf/syscall.h" |
| #include "sandbox/linux/seccomp-bpf/trap.h" |
| #include "sandbox/linux/services/syscall_wrappers.h" |
| #include "sandbox/linux/services/thread_helpers.h" |
| #include "sandbox/linux/system_headers/linux_syscalls.h" |
| #include "sandbox/linux/tests/scoped_temporary_file.h" |
| #include "sandbox/linux/tests/unit_tests.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| // Workaround for Android's prctl.h file. |
| #ifndef PR_GET_ENDIAN |
| #define PR_GET_ENDIAN 19 |
| #endif |
| #ifndef PR_CAPBSET_READ |
| #define PR_CAPBSET_READ 23 |
| #define PR_CAPBSET_DROP 24 |
| #endif |
| |
| #define CASES SANDBOX_BPF_DSL_CASES |
| |
| namespace sandbox { |
| namespace bpf_dsl { |
| |
| namespace { |
| |
| const int kExpectedReturnValue = 42; |
| const char kSandboxDebuggingEnv[] = "CHROME_SANDBOX_DEBUGGING"; |
| |
| // Set the global environment to allow the use of UnsafeTrap() policies. |
| void EnableUnsafeTraps() { |
| // The use of UnsafeTrap() causes us to print a warning message. This is |
| // generally desirable, but it results in the unittest failing, as it doesn't |
| // expect any messages on "stderr". So, temporarily disable messages. The |
| // BPF_TEST() is guaranteed to turn messages back on, after the policy |
| // function has completed. |
| setenv(kSandboxDebuggingEnv, "t", 0); |
| Die::SuppressInfoMessages(true); |
| } |
| |
| // BPF_TEST does a lot of the boiler-plate code around setting up a |
| // policy and optional passing data between the caller, the policy and |
| // any Trap() handlers. This is great for writing short and concise tests, |
| // and it helps us accidentally forgetting any of the crucial steps in |
| // setting up the sandbox. But it wouldn't hurt to have at least one test |
| // that explicitly walks through all these steps. |
| |
| intptr_t IncreaseCounter(const struct arch_seccomp_data& args, void* aux) { |
| BPF_ASSERT(aux); |
| int* counter = static_cast<int*>(aux); |
| return (*counter)++; |
| } |
| |
| class VerboseAPITestingPolicy : public Policy { |
| public: |
| explicit VerboseAPITestingPolicy(int* counter_ptr) |
| : counter_ptr_(counter_ptr) {} |
| ~VerboseAPITestingPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| if (sysno == __NR_uname) { |
| return Trap(IncreaseCounter, counter_ptr_); |
| } |
| return Allow(); |
| } |
| |
| private: |
| int* counter_ptr_; |
| |
| DISALLOW_COPY_AND_ASSIGN(VerboseAPITestingPolicy); |
| }; |
| |
| SANDBOX_TEST(SandboxBPF, DISABLE_ON_TSAN(VerboseAPITesting)) { |
| if (SandboxBPF::SupportsSeccompSandbox( |
| SandboxBPF::SeccompLevel::SINGLE_THREADED)) { |
| static int counter = 0; |
| SandboxBPF sandbox(std::make_unique<VerboseAPITestingPolicy>(&counter)); |
| BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED)); |
| BPF_ASSERT_EQ(0, counter); |
| BPF_ASSERT_EQ(0, syscall(__NR_uname, 0)); |
| BPF_ASSERT_EQ(1, counter); |
| BPF_ASSERT_EQ(1, syscall(__NR_uname, 0)); |
| BPF_ASSERT_EQ(2, counter); |
| } |
| } |
| |
| // A simple blacklist test |
| |
| class BlacklistNanosleepPolicy : public Policy { |
| public: |
| BlacklistNanosleepPolicy() {} |
| ~BlacklistNanosleepPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| switch (sysno) { |
| case __NR_nanosleep: |
| return Error(EACCES); |
| default: |
| return Allow(); |
| } |
| } |
| |
| static void AssertNanosleepFails() { |
| const struct timespec ts = {0, 0}; |
| errno = 0; |
| BPF_ASSERT_EQ(-1, HANDLE_EINTR(syscall(__NR_nanosleep, &ts, NULL))); |
| BPF_ASSERT_EQ(EACCES, errno); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BlacklistNanosleepPolicy); |
| }; |
| |
| BPF_TEST_C(SandboxBPF, ApplyBasicBlacklistPolicy, BlacklistNanosleepPolicy) { |
| BlacklistNanosleepPolicy::AssertNanosleepFails(); |
| } |
| |
| BPF_TEST_C(SandboxBPF, UseVsyscall, BlacklistNanosleepPolicy) { |
| time_t current_time; |
| // time() is implemented as a vsyscall. With an older glibc, with |
| // vsyscall=emulate and some versions of the seccomp BPF patch |
| // we may get SIGKILL-ed. Detect this! |
| BPF_ASSERT_NE(static_cast<time_t>(-1), time(¤t_time)); |
| } |
| |
| bool IsSyscallForTestHarness(int sysno) { |
| if (sysno == __NR_exit_group || sysno == __NR_write) { |
| // exit_group is special and we really need it to work. |
| // write() is needed for BPF_ASSERT() to report a useful error message. |
| return true; |
| } |
| #if defined(ADDRESS_SANITIZER) || defined(MEMORY_SANITIZER) || \ |
| defined(UNDEFINED_SANITIZER) |
| // UBSan_vptr checker needs mmap, munmap, pipe, write. |
| // ASan and MSan don't need any of these for normal operation, but they |
| // require at least mmap & munmap to print a report if an error is detected. |
| if (sysno == kMMapNr || sysno == __NR_munmap || sysno == __NR_pipe) { |
| return true; |
| } |
| #endif |
| return false; |
| } |
| |
| // Now do a simple whitelist test |
| |
| class WhitelistGetpidPolicy : public Policy { |
| public: |
| WhitelistGetpidPolicy() {} |
| ~WhitelistGetpidPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| if (IsSyscallForTestHarness(sysno) || sysno == __NR_getpid) { |
| return Allow(); |
| } |
| return Error(ENOMEM); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(WhitelistGetpidPolicy); |
| }; |
| |
| BPF_TEST_C(SandboxBPF, ApplyBasicWhitelistPolicy, WhitelistGetpidPolicy) { |
| // getpid() should be allowed |
| errno = 0; |
| BPF_ASSERT(sys_getpid() > 0); |
| BPF_ASSERT(errno == 0); |
| |
| // getpgid() should be denied |
| BPF_ASSERT(getpgid(0) == -1); |
| BPF_ASSERT(errno == ENOMEM); |
| } |
| |
| // A simple blacklist policy, with a SIGSYS handler |
| intptr_t EnomemHandler(const struct arch_seccomp_data& args, void* aux) { |
| // We also check that the auxiliary data is correct |
| SANDBOX_ASSERT(aux); |
| *(static_cast<int*>(aux)) = kExpectedReturnValue; |
| return -ENOMEM; |
| } |
| |
| class BlacklistNanosleepTrapPolicy : public Policy { |
| public: |
| explicit BlacklistNanosleepTrapPolicy(int* aux) : aux_(aux) {} |
| ~BlacklistNanosleepTrapPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| switch (sysno) { |
| case __NR_nanosleep: |
| return Trap(EnomemHandler, aux_); |
| default: |
| return Allow(); |
| } |
| } |
| |
| private: |
| int* aux_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BlacklistNanosleepTrapPolicy); |
| }; |
| |
| BPF_TEST(SandboxBPF, |
| BasicBlacklistWithSigsys, |
| BlacklistNanosleepTrapPolicy, |
| int /* (*BPF_AUX) */) { |
| // getpid() should work properly |
| errno = 0; |
| BPF_ASSERT(sys_getpid() > 0); |
| BPF_ASSERT(errno == 0); |
| |
| // Our Auxiliary Data, should be reset by the signal handler |
| *BPF_AUX = -1; |
| const struct timespec ts = {0, 0}; |
| BPF_ASSERT(syscall(__NR_nanosleep, &ts, NULL) == -1); |
| BPF_ASSERT(errno == ENOMEM); |
| |
| // We expect the signal handler to modify AuxData |
| BPF_ASSERT(*BPF_AUX == kExpectedReturnValue); |
| } |
| |
| // A simple test that verifies we can return arbitrary errno values. |
| |
| class ErrnoTestPolicy : public Policy { |
| public: |
| ErrnoTestPolicy() {} |
| ~ErrnoTestPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ErrnoTestPolicy); |
| }; |
| |
| ResultExpr ErrnoTestPolicy::EvaluateSyscall(int sysno) const { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| switch (sysno) { |
| case __NR_dup3: // dup2 is a wrapper of dup3 in android |
| #if defined(__NR_dup2) |
| case __NR_dup2: |
| #endif |
| // Pretend that dup2() worked, but don't actually do anything. |
| return Error(0); |
| case __NR_setuid: |
| #if defined(__NR_setuid32) |
| case __NR_setuid32: |
| #endif |
| // Return errno = 1. |
| return Error(1); |
| case __NR_setgid: |
| #if defined(__NR_setgid32) |
| case __NR_setgid32: |
| #endif |
| // Return maximum errno value (typically 4095). |
| return Error(ErrorCode::ERR_MAX_ERRNO); |
| case __NR_uname: |
| // Return errno = 42; |
| return Error(42); |
| default: |
| return Allow(); |
| } |
| } |
| |
| BPF_TEST_C(SandboxBPF, ErrnoTest, ErrnoTestPolicy) { |
| // Verify that dup2() returns success, but doesn't actually run. |
| int fds[4]; |
| BPF_ASSERT(pipe(fds) == 0); |
| BPF_ASSERT(pipe(fds + 2) == 0); |
| BPF_ASSERT(dup2(fds[2], fds[0]) == 0); |
| char buf[1] = {}; |
| BPF_ASSERT(write(fds[1], "\x55", 1) == 1); |
| BPF_ASSERT(write(fds[3], "\xAA", 1) == 1); |
| BPF_ASSERT(read(fds[0], buf, 1) == 1); |
| |
| // If dup2() executed, we will read \xAA, but it dup2() has been turned |
| // into a no-op by our policy, then we will read \x55. |
| BPF_ASSERT(buf[0] == '\x55'); |
| |
| // Verify that we can return the minimum and maximum errno values. |
| errno = 0; |
| BPF_ASSERT(setuid(0) == -1); |
| BPF_ASSERT(errno == 1); |
| |
| // On Android, errno is only supported up to 255, otherwise errno |
| // processing is skipped. |
| // We work around this (crbug.com/181647). |
| if (sandbox::IsAndroid() && setgid(0) != -1) { |
| errno = 0; |
| BPF_ASSERT(setgid(0) == -ErrorCode::ERR_MAX_ERRNO); |
| BPF_ASSERT(errno == 0); |
| } else { |
| errno = 0; |
| BPF_ASSERT(setgid(0) == -1); |
| BPF_ASSERT(errno == ErrorCode::ERR_MAX_ERRNO); |
| } |
| |
| // Finally, test an errno in between the minimum and maximum. |
| errno = 0; |
| struct utsname uts_buf; |
| BPF_ASSERT(uname(&uts_buf) == -1); |
| BPF_ASSERT(errno == 42); |
| } |
| |
| // Testing the stacking of two sandboxes |
| |
| class StackingPolicyPartOne : public Policy { |
| public: |
| StackingPolicyPartOne() {} |
| ~StackingPolicyPartOne() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| switch (sysno) { |
| case __NR_getppid: { |
| const Arg<int> arg(0); |
| return If(arg == 0, Allow()).Else(Error(EPERM)); |
| } |
| default: |
| return Allow(); |
| } |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartOne); |
| }; |
| |
| class StackingPolicyPartTwo : public Policy { |
| public: |
| StackingPolicyPartTwo() {} |
| ~StackingPolicyPartTwo() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| switch (sysno) { |
| case __NR_getppid: { |
| const Arg<int> arg(0); |
| return If(arg == 0, Error(EINVAL)).Else(Allow()); |
| } |
| default: |
| return Allow(); |
| } |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartTwo); |
| }; |
| |
| BPF_TEST_C(SandboxBPF, StackingPolicy, StackingPolicyPartOne) { |
| errno = 0; |
| BPF_ASSERT(syscall(__NR_getppid, 0) > 0); |
| BPF_ASSERT(errno == 0); |
| |
| BPF_ASSERT(syscall(__NR_getppid, 1) == -1); |
| BPF_ASSERT(errno == EPERM); |
| |
| // Stack a second sandbox with its own policy. Verify that we can further |
| // restrict filters, but we cannot relax existing filters. |
| SandboxBPF sandbox(std::make_unique<StackingPolicyPartTwo>()); |
| BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED)); |
| |
| errno = 0; |
| BPF_ASSERT(syscall(__NR_getppid, 0) == -1); |
| BPF_ASSERT(errno == EINVAL); |
| |
| BPF_ASSERT(syscall(__NR_getppid, 1) == -1); |
| BPF_ASSERT(errno == EPERM); |
| } |
| |
| // A more complex, but synthetic policy. This tests the correctness of the BPF |
| // program by iterating through all syscalls and checking for an errno that |
| // depends on the syscall number. Unlike the Verifier, this exercises the BPF |
| // interpreter in the kernel. |
| |
| // We try to make sure we exercise optimizations in the BPF compiler. We make |
| // sure that the compiler can have an opportunity to coalesce syscalls with |
| // contiguous numbers and we also make sure that disjoint sets can return the |
| // same errno. |
| int SysnoToRandomErrno(int sysno) { |
| // Small contiguous sets of 3 system calls return an errno equal to the |
| // index of that set + 1 (so that we never return a NUL errno). |
| return ((sysno & ~3) >> 2) % 29 + 1; |
| } |
| |
| class SyntheticPolicy : public Policy { |
| public: |
| SyntheticPolicy() {} |
| ~SyntheticPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| if (IsSyscallForTestHarness(sysno)) { |
| return Allow(); |
| } |
| return Error(SysnoToRandomErrno(sysno)); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(SyntheticPolicy); |
| }; |
| |
| BPF_TEST_C(SandboxBPF, SyntheticPolicy, SyntheticPolicy) { |
| // Ensure that that kExpectedReturnValue + syscallnumber + 1 does not int |
| // overflow. |
| BPF_ASSERT(std::numeric_limits<int>::max() - kExpectedReturnValue - 1 >= |
| static_cast<int>(MAX_PUBLIC_SYSCALL)); |
| |
| for (int syscall_number = static_cast<int>(MIN_SYSCALL); |
| syscall_number <= static_cast<int>(MAX_PUBLIC_SYSCALL); |
| ++syscall_number) { |
| if (IsSyscallForTestHarness(syscall_number)) { |
| continue; |
| } |
| errno = 0; |
| BPF_ASSERT(syscall(syscall_number) == -1); |
| BPF_ASSERT(errno == SysnoToRandomErrno(syscall_number)); |
| } |
| } |
| |
| #if defined(__arm__) |
| // A simple policy that tests whether ARM private system calls are supported |
| // by our BPF compiler and by the BPF interpreter in the kernel. |
| |
| // For ARM private system calls, return an errno equal to their offset from |
| // MIN_PRIVATE_SYSCALL plus 1 (to avoid NUL errno). |
| int ArmPrivateSysnoToErrno(int sysno) { |
| if (sysno >= static_cast<int>(MIN_PRIVATE_SYSCALL) && |
| sysno <= static_cast<int>(MAX_PRIVATE_SYSCALL)) { |
| return (sysno - MIN_PRIVATE_SYSCALL) + 1; |
| } else { |
| return ENOSYS; |
| } |
| } |
| |
| class ArmPrivatePolicy : public Policy { |
| public: |
| ArmPrivatePolicy() {} |
| ~ArmPrivatePolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| // Start from |__ARM_NR_set_tls + 1| so as not to mess with actual |
| // ARM private system calls. |
| if (sysno >= static_cast<int>(__ARM_NR_set_tls + 1) && |
| sysno <= static_cast<int>(MAX_PRIVATE_SYSCALL)) { |
| return Error(ArmPrivateSysnoToErrno(sysno)); |
| } |
| return Allow(); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArmPrivatePolicy); |
| }; |
| |
| BPF_TEST_C(SandboxBPF, ArmPrivatePolicy, ArmPrivatePolicy) { |
| for (int syscall_number = static_cast<int>(__ARM_NR_set_tls + 1); |
| syscall_number <= static_cast<int>(MAX_PRIVATE_SYSCALL); |
| ++syscall_number) { |
| errno = 0; |
| BPF_ASSERT(syscall(syscall_number) == -1); |
| BPF_ASSERT(errno == ArmPrivateSysnoToErrno(syscall_number)); |
| } |
| } |
| #endif // defined(__arm__) |
| |
| intptr_t CountSyscalls(const struct arch_seccomp_data& args, void* aux) { |
| // Count all invocations of our callback function. |
| ++*reinterpret_cast<int*>(aux); |
| |
| // Verify that within the callback function all filtering is temporarily |
| // disabled. |
| BPF_ASSERT(sys_getpid() > 1); |
| |
| // Verify that we can now call the underlying system call without causing |
| // infinite recursion. |
| return SandboxBPF::ForwardSyscall(args); |
| } |
| |
| class GreyListedPolicy : public Policy { |
| public: |
| explicit GreyListedPolicy(int* aux) : aux_(aux) { |
| // Set the global environment for unsafe traps once. |
| EnableUnsafeTraps(); |
| } |
| ~GreyListedPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| // Some system calls must always be allowed, if our policy wants to make |
| // use of UnsafeTrap() |
| if (SandboxBPF::IsRequiredForUnsafeTrap(sysno)) { |
| return Allow(); |
| } else if (sysno == __NR_getpid) { |
| // Disallow getpid() |
| return Error(EPERM); |
| } else { |
| // Allow (and count) all other system calls. |
| return UnsafeTrap(CountSyscalls, aux_); |
| } |
| } |
| |
| private: |
| int* aux_; |
| |
| DISALLOW_COPY_AND_ASSIGN(GreyListedPolicy); |
| }; |
| |
| BPF_TEST(SandboxBPF, GreyListedPolicy, GreyListedPolicy, int /* (*BPF_AUX) */) { |
| BPF_ASSERT(sys_getpid() == -1); |
| BPF_ASSERT(errno == EPERM); |
| BPF_ASSERT(*BPF_AUX == 0); |
| BPF_ASSERT(syscall(__NR_geteuid) == syscall(__NR_getuid)); |
| BPF_ASSERT(*BPF_AUX == 2); |
| char name[17] = {}; |
| BPF_ASSERT(!syscall(__NR_prctl, |
| PR_GET_NAME, |
| name, |
| (void*)NULL, |
| (void*)NULL, |
| (void*)NULL)); |
| BPF_ASSERT(*BPF_AUX == 3); |
| BPF_ASSERT(*name); |
| } |
| |
| SANDBOX_TEST(SandboxBPF, EnableUnsafeTrapsInSigSysHandler) { |
| // Disabling warning messages that could confuse our test framework. |
| setenv(kSandboxDebuggingEnv, "t", 0); |
| Die::SuppressInfoMessages(true); |
| |
| unsetenv(kSandboxDebuggingEnv); |
| SANDBOX_ASSERT(Trap::Registry()->EnableUnsafeTraps() == false); |
| setenv(kSandboxDebuggingEnv, "", 1); |
| SANDBOX_ASSERT(Trap::Registry()->EnableUnsafeTraps() == false); |
| setenv(kSandboxDebuggingEnv, "t", 1); |
| SANDBOX_ASSERT(Trap::Registry()->EnableUnsafeTraps() == true); |
| } |
| |
| intptr_t PrctlHandler(const struct arch_seccomp_data& args, void*) { |
| if (args.args[0] == PR_CAPBSET_DROP && static_cast<int>(args.args[1]) == -1) { |
| // prctl(PR_CAPBSET_DROP, -1) is never valid. The kernel will always |
| // return an error. But our handler allows this call. |
| return 0; |
| } else { |
| return SandboxBPF::ForwardSyscall(args); |
| } |
| } |
| |
| class PrctlPolicy : public Policy { |
| public: |
| PrctlPolicy() {} |
| ~PrctlPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| setenv(kSandboxDebuggingEnv, "t", 0); |
| Die::SuppressInfoMessages(true); |
| |
| if (sysno == __NR_prctl) { |
| // Handle prctl() inside an UnsafeTrap() |
| return UnsafeTrap(PrctlHandler, NULL); |
| } |
| |
| // Allow all other system calls. |
| return Allow(); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(PrctlPolicy); |
| }; |
| |
| BPF_TEST_C(SandboxBPF, ForwardSyscall, PrctlPolicy) { |
| // This call should never be allowed. But our policy will intercept it and |
| // let it pass successfully. |
| BPF_ASSERT( |
| !prctl(PR_CAPBSET_DROP, -1, (void*)NULL, (void*)NULL, (void*)NULL)); |
| |
| // Verify that the call will fail, if it makes it all the way to the kernel. |
| BPF_ASSERT( |
| prctl(PR_CAPBSET_DROP, -2, (void*)NULL, (void*)NULL, (void*)NULL) == -1); |
| |
| // And verify that other uses of prctl() work just fine. |
| char name[17] = {}; |
| BPF_ASSERT(!syscall(__NR_prctl, |
| PR_GET_NAME, |
| name, |
| (void*)NULL, |
| (void*)NULL, |
| (void*)NULL)); |
| BPF_ASSERT(*name); |
| |
| // Finally, verify that system calls other than prctl() are completely |
| // unaffected by our policy. |
| struct utsname uts = {}; |
| BPF_ASSERT(!uname(&uts)); |
| BPF_ASSERT(!strcmp(uts.sysname, "Linux")); |
| } |
| |
| intptr_t AllowRedirectedSyscall(const struct arch_seccomp_data& args, void*) { |
| return SandboxBPF::ForwardSyscall(args); |
| } |
| |
| class RedirectAllSyscallsPolicy : public Policy { |
| public: |
| RedirectAllSyscallsPolicy() {} |
| ~RedirectAllSyscallsPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(RedirectAllSyscallsPolicy); |
| }; |
| |
| ResultExpr RedirectAllSyscallsPolicy::EvaluateSyscall(int sysno) const { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| setenv(kSandboxDebuggingEnv, "t", 0); |
| Die::SuppressInfoMessages(true); |
| |
| // Some system calls must always be allowed, if our policy wants to make |
| // use of UnsafeTrap() |
| if (SandboxBPF::IsRequiredForUnsafeTrap(sysno)) |
| return Allow(); |
| return UnsafeTrap(AllowRedirectedSyscall, NULL); |
| } |
| |
| #if !defined(ADDRESS_SANITIZER) |
| // ASan does not allow changing the signal handler for SIGBUS, and treats it as |
| // a fatal signal. |
| |
| int bus_handler_fd_ = -1; |
| |
| void SigBusHandler(int, siginfo_t* info, void* void_context) { |
| BPF_ASSERT(write(bus_handler_fd_, "\x55", 1) == 1); |
| } |
| |
| BPF_TEST_C(SandboxBPF, SigBus, RedirectAllSyscallsPolicy) { |
| // We use the SIGBUS bit in the signal mask as a thread-local boolean |
| // value in the implementation of UnsafeTrap(). This is obviously a bit |
| // of a hack that could conceivably interfere with code that uses SIGBUS |
| // in more traditional ways. This test verifies that basic functionality |
| // of SIGBUS is not impacted, but it is certainly possibly to construe |
| // more complex uses of signals where our use of the SIGBUS mask is not |
| // 100% transparent. This is expected behavior. |
| int fds[2]; |
| BPF_ASSERT(socketpair(AF_UNIX, SOCK_STREAM, 0, fds) == 0); |
| bus_handler_fd_ = fds[1]; |
| struct sigaction sa = {}; |
| sa.sa_sigaction = SigBusHandler; |
| sa.sa_flags = SA_SIGINFO; |
| BPF_ASSERT(sigaction(SIGBUS, &sa, NULL) == 0); |
| kill(getpid(), SIGBUS); |
| char c = '\000'; |
| BPF_ASSERT(read(fds[0], &c, 1) == 1); |
| BPF_ASSERT(close(fds[0]) == 0); |
| BPF_ASSERT(close(fds[1]) == 0); |
| BPF_ASSERT(c == 0x55); |
| } |
| #endif // !defined(ADDRESS_SANITIZER) |
| |
| BPF_TEST_C(SandboxBPF, SigMask, RedirectAllSyscallsPolicy) { |
| // Signal masks are potentially tricky to handle. For instance, if we |
| // ever tried to update them from inside a Trap() or UnsafeTrap() handler, |
| // the call to sigreturn() at the end of the signal handler would undo |
| // all of our efforts. So, it makes sense to test that sigprocmask() |
| // works, even if we have a policy in place that makes use of UnsafeTrap(). |
| // In practice, this works because we force sigprocmask() to be handled |
| // entirely in the kernel. |
| sigset_t mask0, mask1, mask2; |
| |
| // Call sigprocmask() to verify that SIGUSR2 wasn't blocked, if we didn't |
| // change the mask (it shouldn't have been, as it isn't blocked by default |
| // in POSIX). |
| // |
| // Use SIGUSR2 because Android seems to use SIGUSR1 for some purpose. |
| sigemptyset(&mask0); |
| BPF_ASSERT(!sigprocmask(SIG_BLOCK, &mask0, &mask1)); |
| BPF_ASSERT(!sigismember(&mask1, SIGUSR2)); |
| |
| // Try again, and this time we verify that we can block it. This |
| // requires a second call to sigprocmask(). |
| sigaddset(&mask0, SIGUSR2); |
| BPF_ASSERT(!sigprocmask(SIG_BLOCK, &mask0, NULL)); |
| BPF_ASSERT(!sigprocmask(SIG_BLOCK, NULL, &mask2)); |
| BPF_ASSERT(sigismember(&mask2, SIGUSR2)); |
| } |
| |
| BPF_TEST_C(SandboxBPF, UnsafeTrapWithErrno, RedirectAllSyscallsPolicy) { |
| // An UnsafeTrap() (or for that matter, a Trap()) has to report error |
| // conditions by returning an exit code in the range -1..-4096. This |
| // should happen automatically if using ForwardSyscall(). If the TrapFnc() |
| // uses some other method to make system calls, then it is responsible |
| // for computing the correct return code. |
| // This test verifies that ForwardSyscall() does the correct thing. |
| |
| // The glibc system wrapper will ultimately set errno for us. So, from normal |
| // userspace, all of this should be completely transparent. |
| errno = 0; |
| BPF_ASSERT(close(-1) == -1); |
| BPF_ASSERT(errno == EBADF); |
| |
| // Explicitly avoid the glibc wrapper. This is not normally the way anybody |
| // would make system calls, but it allows us to verify that we don't |
| // accidentally mess with errno, when we shouldn't. |
| errno = 0; |
| struct arch_seccomp_data args = {}; |
| args.nr = __NR_close; |
| args.args[0] = -1; |
| BPF_ASSERT(SandboxBPF::ForwardSyscall(args) == -EBADF); |
| BPF_ASSERT(errno == 0); |
| } |
| |
| // Simple test demonstrating how to use SandboxBPF::Cond() |
| |
| class SimpleCondTestPolicy : public Policy { |
| public: |
| SimpleCondTestPolicy() {} |
| ~SimpleCondTestPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(SimpleCondTestPolicy); |
| }; |
| |
| ResultExpr SimpleCondTestPolicy::EvaluateSyscall(int sysno) const { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| |
| // We deliberately return unusual errno values upon failure, so that we |
| // can uniquely test for these values. In a "real" policy, you would want |
| // to return more traditional values. |
| int flags_argument_position = -1; |
| switch (sysno) { |
| #if defined(__NR_open) |
| case __NR_open: |
| flags_argument_position = 1; |
| FALLTHROUGH; |
| #endif |
| case __NR_openat: { // open can be a wrapper for openat(2). |
| if (sysno == __NR_openat) |
| flags_argument_position = 2; |
| |
| // Allow opening files for reading, but don't allow writing. |
| static_assert(O_RDONLY == 0, "O_RDONLY must be all zero bits"); |
| const Arg<int> flags(flags_argument_position); |
| return If((flags & O_ACCMODE) != 0, Error(EROFS)).Else(Allow()); |
| } |
| case __NR_prctl: { |
| // Allow prctl(PR_SET_DUMPABLE) and prctl(PR_GET_DUMPABLE), but |
| // disallow everything else. |
| const Arg<int> option(0); |
| return Switch(option) |
| .CASES((PR_SET_DUMPABLE, PR_GET_DUMPABLE), Allow()) |
| .Default(Error(ENOMEM)); |
| } |
| default: |
| return Allow(); |
| } |
| } |
| |
| BPF_TEST_C(SandboxBPF, SimpleCondTest, SimpleCondTestPolicy) { |
| int fd; |
| BPF_ASSERT((fd = open("/proc/self/comm", O_RDWR)) == -1); |
| BPF_ASSERT(errno == EROFS); |
| BPF_ASSERT((fd = open("/proc/self/comm", O_RDONLY)) >= 0); |
| close(fd); |
| |
| int ret; |
| BPF_ASSERT((ret = prctl(PR_GET_DUMPABLE)) >= 0); |
| BPF_ASSERT(prctl(PR_SET_DUMPABLE, 1 - ret) == 0); |
| BPF_ASSERT(prctl(PR_GET_ENDIAN, &ret) == -1); |
| BPF_ASSERT(errno == ENOMEM); |
| } |
| |
| // This test exercises the SandboxBPF::Cond() method by building a complex |
| // tree of conditional equality operations. It then makes system calls and |
| // verifies that they return the values that we expected from our BPF |
| // program. |
| class EqualityStressTest { |
| public: |
| EqualityStressTest() { |
| // We want a deterministic test |
| srand(0); |
| |
| // Iterates over system call numbers and builds a random tree of |
| // equality tests. |
| // We are actually constructing a graph of ArgValue objects. This |
| // graph will later be used to a) compute our sandbox policy, and |
| // b) drive the code that verifies the output from the BPF program. |
| static_assert( |
| kNumTestCases < (int)(MAX_PUBLIC_SYSCALL - MIN_SYSCALL - 10), |
| "kNumTestCases must be significantly smaller than the number " |
| "of system calls"); |
| for (int sysno = MIN_SYSCALL, end = kNumTestCases; sysno < end; ++sysno) { |
| if (IsReservedSyscall(sysno)) { |
| // Skip reserved system calls. This ensures that our test frame |
| // work isn't impacted by the fact that we are overriding |
| // a lot of different system calls. |
| ++end; |
| arg_values_.push_back(NULL); |
| } else { |
| arg_values_.push_back( |
| RandomArgValue(rand() % kMaxArgs, 0, rand() % kMaxArgs)); |
| } |
| } |
| } |
| |
| ~EqualityStressTest() { |
| for (std::vector<ArgValue*>::iterator iter = arg_values_.begin(); |
| iter != arg_values_.end(); |
| ++iter) { |
| DeleteArgValue(*iter); |
| } |
| } |
| |
| ResultExpr Policy(int sysno) { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| if (sysno < 0 || sysno >= (int)arg_values_.size() || |
| IsReservedSyscall(sysno)) { |
| // We only return ErrorCode values for the system calls that |
| // are part of our test data. Every other system call remains |
| // allowed. |
| return Allow(); |
| } else { |
| // ToErrorCode() turns an ArgValue object into an ErrorCode that is |
| // suitable for use by a sandbox policy. |
| return ToErrorCode(arg_values_[sysno]); |
| } |
| } |
| |
| void VerifyFilter() { |
| // Iterate over all system calls. Skip the system calls that have |
| // previously been determined as being reserved. |
| for (int sysno = 0; sysno < (int)arg_values_.size(); ++sysno) { |
| if (!arg_values_[sysno]) { |
| // Skip reserved system calls. |
| continue; |
| } |
| // Verify that system calls return the values that we expect them to |
| // return. This involves passing different combinations of system call |
| // parameters in order to exercise all possible code paths through the |
| // BPF filter program. |
| // We arbitrarily start by setting all six system call arguments to |
| // zero. And we then recursive traverse our tree of ArgValues to |
| // determine the necessary combinations of parameters. |
| intptr_t args[6] = {}; |
| Verify(sysno, args, *arg_values_[sysno]); |
| } |
| } |
| |
| private: |
| struct ArgValue { |
| int argno; // Argument number to inspect. |
| int size; // Number of test cases (must be > 0). |
| struct Tests { |
| uint32_t k_value; // Value to compare syscall arg against. |
| int err; // If non-zero, errno value to return. |
| struct ArgValue* arg_value; // Otherwise, more args needs inspecting. |
| }* tests; |
| int err; // If none of the tests passed, this is what |
| struct ArgValue* arg_value; // we'll return (this is the "else" branch). |
| }; |
| |
| bool IsReservedSyscall(int sysno) { |
| // There are a handful of system calls that we should never use in our |
| // test cases. These system calls are needed to allow the test framework |
| // to run properly. |
| // If we wanted to write fully generic code, there are more system calls |
| // that could be listed here, and it is quite difficult to come up with a |
| // truly comprehensive list. After all, we are deliberately making system |
| // calls unavailable. In practice, we have a pretty good idea of the system |
| // calls that will be made by this particular test. So, this small list is |
| // sufficient. But if anybody copy'n'pasted this code for other uses, they |
| // would have to review that the list. |
| return sysno == __NR_read || sysno == __NR_write || sysno == __NR_exit || |
| sysno == __NR_exit_group || sysno == __NR_restart_syscall; |
| } |
| |
| ArgValue* RandomArgValue(int argno, int args_mask, int remaining_args) { |
| // Create a new ArgValue and fill it with random data. We use as bit mask |
| // to keep track of the system call parameters that have previously been |
| // set; this ensures that we won't accidentally define a contradictory |
| // set of equality tests. |
| struct ArgValue* arg_value = new ArgValue(); |
| args_mask |= 1 << argno; |
| arg_value->argno = argno; |
| |
| // Apply some restrictions on just how complex our tests can be. |
| // Otherwise, we end up with a BPF program that is too complicated for |
| // the kernel to load. |
| int fan_out = kMaxFanOut; |
| if (remaining_args > 3) { |
| fan_out = 1; |
| } else if (remaining_args > 2) { |
| fan_out = 2; |
| } |
| |
| // Create a couple of different test cases with randomized values that |
| // we want to use when comparing system call parameter number "argno". |
| arg_value->size = rand() % fan_out + 1; |
| arg_value->tests = new ArgValue::Tests[arg_value->size]; |
| |
| uint32_t k_value = rand(); |
| for (int n = 0; n < arg_value->size; ++n) { |
| // Ensure that we have unique values |
| k_value += rand() % (RAND_MAX / (kMaxFanOut + 1)) + 1; |
| |
| // There are two possible types of nodes. Either this is a leaf node; |
| // in that case, we have completed all the equality tests that we |
| // wanted to perform, and we can now compute a random "errno" value that |
| // we should return. Or this is part of a more complex boolean |
| // expression; in that case, we have to recursively add tests for some |
| // of system call parameters that we have not yet included in our |
| // tests. |
| arg_value->tests[n].k_value = k_value; |
| if (!remaining_args || (rand() & 1)) { |
| arg_value->tests[n].err = (rand() % 1000) + 1; |
| arg_value->tests[n].arg_value = NULL; |
| } else { |
| arg_value->tests[n].err = 0; |
| arg_value->tests[n].arg_value = |
| RandomArgValue(RandomArg(args_mask), args_mask, remaining_args - 1); |
| } |
| } |
| // Finally, we have to define what we should return if none of the |
| // previous equality tests pass. Again, we can either deal with a leaf |
| // node, or we can randomly add another couple of tests. |
| if (!remaining_args || (rand() & 1)) { |
| arg_value->err = (rand() % 1000) + 1; |
| arg_value->arg_value = NULL; |
| } else { |
| arg_value->err = 0; |
| arg_value->arg_value = |
| RandomArgValue(RandomArg(args_mask), args_mask, remaining_args - 1); |
| } |
| // We have now built a new (sub-)tree of ArgValues defining a set of |
| // boolean expressions for testing random system call arguments against |
| // random values. Return this tree to our caller. |
| return arg_value; |
| } |
| |
| int RandomArg(int args_mask) { |
| // Compute a random system call parameter number. |
| int argno = rand() % kMaxArgs; |
| |
| // Make sure that this same parameter number has not previously been |
| // used. Otherwise, we could end up with a test that is impossible to |
| // satisfy (e.g. args[0] == 1 && args[0] == 2). |
| while (args_mask & (1 << argno)) { |
| argno = (argno + 1) % kMaxArgs; |
| } |
| return argno; |
| } |
| |
| void DeleteArgValue(ArgValue* arg_value) { |
| // Delete an ArgValue and all of its child nodes. This requires |
| // recursively descending into the tree. |
| if (arg_value) { |
| if (arg_value->size) { |
| for (int n = 0; n < arg_value->size; ++n) { |
| if (!arg_value->tests[n].err) { |
| DeleteArgValue(arg_value->tests[n].arg_value); |
| } |
| } |
| delete[] arg_value->tests; |
| } |
| if (!arg_value->err) { |
| DeleteArgValue(arg_value->arg_value); |
| } |
| delete arg_value; |
| } |
| } |
| |
| ResultExpr ToErrorCode(ArgValue* arg_value) { |
| // Compute the ResultExpr that should be returned, if none of our |
| // tests succeed (i.e. the system call parameter doesn't match any |
| // of the values in arg_value->tests[].k_value). |
| ResultExpr err; |
| if (arg_value->err) { |
| // If this was a leaf node, return the errno value that we expect to |
| // return from the BPF filter program. |
| err = Error(arg_value->err); |
| } else { |
| // If this wasn't a leaf node yet, recursively descend into the rest |
| // of the tree. This will end up adding a few more SandboxBPF::Cond() |
| // tests to our ErrorCode. |
| err = ToErrorCode(arg_value->arg_value); |
| } |
| |
| // Now, iterate over all the test cases that we want to compare against. |
| // This builds a chain of SandboxBPF::Cond() tests |
| // (aka "if ... elif ... elif ... elif ... fi") |
| for (int n = arg_value->size; n-- > 0;) { |
| ResultExpr matched; |
| // Again, we distinguish between leaf nodes and subtrees. |
| if (arg_value->tests[n].err) { |
| matched = Error(arg_value->tests[n].err); |
| } else { |
| matched = ToErrorCode(arg_value->tests[n].arg_value); |
| } |
| // For now, all of our tests are limited to 32bit. |
| // We have separate tests that check the behavior of 32bit vs. 64bit |
| // conditional expressions. |
| const Arg<uint32_t> arg(arg_value->argno); |
| err = If(arg == arg_value->tests[n].k_value, matched).Else(err); |
| } |
| return err; |
| } |
| |
| void Verify(int sysno, intptr_t* args, const ArgValue& arg_value) { |
| uint32_t mismatched = 0; |
| // Iterate over all the k_values in arg_value.tests[] and verify that |
| // we see the expected return values from system calls, when we pass |
| // the k_value as a parameter in a system call. |
| for (int n = arg_value.size; n-- > 0;) { |
| mismatched += arg_value.tests[n].k_value; |
| args[arg_value.argno] = arg_value.tests[n].k_value; |
| if (arg_value.tests[n].err) { |
| VerifyErrno(sysno, args, arg_value.tests[n].err); |
| } else { |
| Verify(sysno, args, *arg_value.tests[n].arg_value); |
| } |
| } |
| // Find a k_value that doesn't match any of the k_values in |
| // arg_value.tests[]. In most cases, the current value of "mismatched" |
| // would fit this requirement. But on the off-chance that it happens |
| // to collide, we double-check. |
| try_again: |
| for (int n = arg_value.size; n-- > 0;) { |
| if (mismatched == arg_value.tests[n].k_value) { |
| ++mismatched; |
| goto try_again; |
| } |
| } |
| // Now verify that we see the expected return value from system calls, |
| // if we pass a value that doesn't match any of the conditions (i.e. this |
| // is testing the "else" clause of the conditions). |
| args[arg_value.argno] = mismatched; |
| if (arg_value.err) { |
| VerifyErrno(sysno, args, arg_value.err); |
| } else { |
| Verify(sysno, args, *arg_value.arg_value); |
| } |
| // Reset args[arg_value.argno]. This is not technically needed, but it |
| // makes it easier to reason about the correctness of our tests. |
| args[arg_value.argno] = 0; |
| } |
| |
| void VerifyErrno(int sysno, intptr_t* args, int err) { |
| // We installed BPF filters that return different errno values |
| // based on the system call number and the parameters that we decided |
| // to pass in. Verify that this condition holds true. |
| BPF_ASSERT( |
| Syscall::Call( |
| sysno, args[0], args[1], args[2], args[3], args[4], args[5]) == |
| -err); |
| } |
| |
| // Vector of ArgValue trees. These trees define all the possible boolean |
| // expressions that we want to turn into a BPF filter program. |
| std::vector<ArgValue*> arg_values_; |
| |
| // Don't increase these values. We are pushing the limits of the maximum |
| // BPF program that the kernel will allow us to load. If the values are |
| // increased too much, the test will start failing. |
| #if defined(__aarch64__) |
| static const int kNumTestCases = 30; |
| #else |
| static const int kNumTestCases = 40; |
| #endif |
| static const int kMaxFanOut = 3; |
| static const int kMaxArgs = 6; |
| }; |
| |
| class EqualityStressTestPolicy : public Policy { |
| public: |
| explicit EqualityStressTestPolicy(EqualityStressTest* aux) : aux_(aux) {} |
| ~EqualityStressTestPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| return aux_->Policy(sysno); |
| } |
| |
| private: |
| EqualityStressTest* aux_; |
| |
| DISALLOW_COPY_AND_ASSIGN(EqualityStressTestPolicy); |
| }; |
| |
| BPF_TEST(SandboxBPF, |
| EqualityTests, |
| EqualityStressTestPolicy, |
| EqualityStressTest /* (*BPF_AUX) */) { |
| BPF_AUX->VerifyFilter(); |
| } |
| |
| class EqualityArgumentWidthPolicy : public Policy { |
| public: |
| EqualityArgumentWidthPolicy() {} |
| ~EqualityArgumentWidthPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(EqualityArgumentWidthPolicy); |
| }; |
| |
| ResultExpr EqualityArgumentWidthPolicy::EvaluateSyscall(int sysno) const { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| if (sysno == __NR_uname) { |
| const Arg<int> option(0); |
| const Arg<uint32_t> arg32(1); |
| const Arg<uint64_t> arg64(1); |
| return Switch(option) |
| .Case(0, If(arg32 == 0x55555555, Error(1)).Else(Error(2))) |
| #if __SIZEOF_POINTER__ > 4 |
| .Case(1, If(arg64 == 0x55555555AAAAAAAAULL, Error(1)).Else(Error(2))) |
| #endif |
| .Default(Error(3)); |
| } |
| return Allow(); |
| } |
| |
| BPF_TEST_C(SandboxBPF, EqualityArgumentWidth, EqualityArgumentWidthPolicy) { |
| BPF_ASSERT(Syscall::Call(__NR_uname, 0, 0x55555555) == -1); |
| BPF_ASSERT(Syscall::Call(__NR_uname, 0, 0xAAAAAAAA) == -2); |
| #if __SIZEOF_POINTER__ > 4 |
| // On 32bit machines, there is no way to pass a 64bit argument through the |
| // syscall interface. So, we have to skip the part of the test that requires |
| // 64bit arguments. |
| BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x55555555AAAAAAAAULL) == -1); |
| BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x5555555500000000ULL) == -2); |
| BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x5555555511111111ULL) == -2); |
| BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x11111111AAAAAAAAULL) == -2); |
| #endif |
| } |
| |
| #if __SIZEOF_POINTER__ > 4 |
| // On 32bit machines, there is no way to pass a 64bit argument through the |
| // syscall interface. So, we have to skip the part of the test that requires |
| // 64bit arguments. |
| BPF_DEATH_TEST_C(SandboxBPF, |
| EqualityArgumentUnallowed64bit, |
| DEATH_MESSAGE("Unexpected 64bit argument detected"), |
| EqualityArgumentWidthPolicy) { |
| Syscall::Call(__NR_uname, 0, 0x5555555555555555ULL); |
| } |
| #endif |
| |
| class EqualityWithNegativeArgumentsPolicy : public Policy { |
| public: |
| EqualityWithNegativeArgumentsPolicy() {} |
| ~EqualityWithNegativeArgumentsPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| if (sysno == __NR_uname) { |
| // TODO(mdempsky): This currently can't be Arg<int> because then |
| // 0xFFFFFFFF will be treated as a (signed) int, and then when |
| // Arg::EqualTo casts it to uint64_t, it will be sign extended. |
| const Arg<unsigned> arg(0); |
| return If(arg == 0xFFFFFFFF, Error(1)).Else(Error(2)); |
| } |
| return Allow(); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(EqualityWithNegativeArgumentsPolicy); |
| }; |
| |
| BPF_TEST_C(SandboxBPF, |
| EqualityWithNegativeArguments, |
| EqualityWithNegativeArgumentsPolicy) { |
| BPF_ASSERT(Syscall::Call(__NR_uname, 0xFFFFFFFF) == -1); |
| BPF_ASSERT(Syscall::Call(__NR_uname, -1) == -1); |
| BPF_ASSERT(Syscall::Call(__NR_uname, -1LL) == -1); |
| } |
| |
| #if __SIZEOF_POINTER__ > 4 |
| BPF_DEATH_TEST_C(SandboxBPF, |
| EqualityWithNegative64bitArguments, |
| DEATH_MESSAGE("Unexpected 64bit argument detected"), |
| EqualityWithNegativeArgumentsPolicy) { |
| // When expecting a 32bit system call argument, we look at the MSB of the |
| // 64bit value and allow both "0" and "-1". But the latter is allowed only |
| // iff the LSB was negative. So, this death test should error out. |
| BPF_ASSERT(Syscall::Call(__NR_uname, 0xFFFFFFFF00000000LL) == -1); |
| } |
| #endif |
| |
| class AllBitTestPolicy : public Policy { |
| public: |
| AllBitTestPolicy() {} |
| ~AllBitTestPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override; |
| |
| private: |
| static ResultExpr HasAllBits32(uint32_t bits); |
| static ResultExpr HasAllBits64(uint64_t bits); |
| |
| DISALLOW_COPY_AND_ASSIGN(AllBitTestPolicy); |
| }; |
| |
| ResultExpr AllBitTestPolicy::HasAllBits32(uint32_t bits) { |
| if (bits == 0) { |
| return Error(1); |
| } |
| const Arg<uint32_t> arg(1); |
| return If((arg & bits) == bits, Error(1)).Else(Error(0)); |
| } |
| |
| ResultExpr AllBitTestPolicy::HasAllBits64(uint64_t bits) { |
| if (bits == 0) { |
| return Error(1); |
| } |
| const Arg<uint64_t> arg(1); |
| return If((arg & bits) == bits, Error(1)).Else(Error(0)); |
| } |
| |
| ResultExpr AllBitTestPolicy::EvaluateSyscall(int sysno) const { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| // Test masked-equality cases that should trigger the "has all bits" |
| // peephole optimizations. We try to find bitmasks that could conceivably |
| // touch corner cases. |
| // For all of these tests, we override the uname(). We can make use with |
| // a single system call number, as we use the first system call argument to |
| // select the different bit masks that we want to test against. |
| if (sysno == __NR_uname) { |
| const Arg<int> option(0); |
| return Switch(option) |
| .Case(0, HasAllBits32(0x0)) |
| .Case(1, HasAllBits32(0x1)) |
| .Case(2, HasAllBits32(0x3)) |
| .Case(3, HasAllBits32(0x80000000)) |
| #if __SIZEOF_POINTER__ > 4 |
| .Case(4, HasAllBits64(0x0)) |
| .Case(5, HasAllBits64(0x1)) |
| .Case(6, HasAllBits64(0x3)) |
| .Case(7, HasAllBits64(0x80000000)) |
| .Case(8, HasAllBits64(0x100000000ULL)) |
| .Case(9, HasAllBits64(0x300000000ULL)) |
| .Case(10, HasAllBits64(0x100000001ULL)) |
| #endif |
| .Default(Kill()); |
| } |
| return Allow(); |
| } |
| |
| // Define a macro that performs tests using our test policy. |
| // NOTE: Not all of the arguments in this macro are actually used! |
| // They are here just to serve as documentation of the conditions |
| // implemented in the test policy. |
| // Most notably, "op" and "mask" are unused by the macro. If you want |
| // to make changes to these values, you will have to edit the |
| // test policy instead. |
| #define BITMASK_TEST(testcase, arg, op, mask, expected_value) \ |
| BPF_ASSERT(Syscall::Call(__NR_uname, (testcase), (arg)) == (expected_value)) |
| |
| // Our uname() system call returns ErrorCode(1) for success and |
| // ErrorCode(0) for failure. Syscall::Call() turns this into an |
| // exit code of -1 or 0. |
| #define EXPECT_FAILURE 0 |
| #define EXPECT_SUCCESS -1 |
| |
| // A couple of our tests behave differently on 32bit and 64bit systems, as |
| // there is no way for a 32bit system call to pass in a 64bit system call |
| // argument "arg". |
| // We expect these tests to succeed on 64bit systems, but to tail on 32bit |
| // systems. |
| #define EXPT64_SUCCESS (sizeof(void*) > 4 ? EXPECT_SUCCESS : EXPECT_FAILURE) |
| BPF_TEST_C(SandboxBPF, AllBitTests, AllBitTestPolicy) { |
| // 32bit test: all of 0x0 (should always be true) |
| BITMASK_TEST( 0, 0, ALLBITS32, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 0, 1, ALLBITS32, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 0, 3, ALLBITS32, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 0, 0xFFFFFFFFU, ALLBITS32, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 0, -1LL, ALLBITS32, 0, EXPECT_SUCCESS); |
| |
| // 32bit test: all of 0x1 |
| BITMASK_TEST( 1, 0, ALLBITS32, 0x1, EXPECT_FAILURE); |
| BITMASK_TEST( 1, 1, ALLBITS32, 0x1, EXPECT_SUCCESS); |
| BITMASK_TEST( 1, 2, ALLBITS32, 0x1, EXPECT_FAILURE); |
| BITMASK_TEST( 1, 3, ALLBITS32, 0x1, EXPECT_SUCCESS); |
| |
| // 32bit test: all of 0x3 |
| BITMASK_TEST( 2, 0, ALLBITS32, 0x3, EXPECT_FAILURE); |
| BITMASK_TEST( 2, 1, ALLBITS32, 0x3, EXPECT_FAILURE); |
| BITMASK_TEST( 2, 2, ALLBITS32, 0x3, EXPECT_FAILURE); |
| BITMASK_TEST( 2, 3, ALLBITS32, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 2, 7, ALLBITS32, 0x3, EXPECT_SUCCESS); |
| |
| // 32bit test: all of 0x80000000 |
| BITMASK_TEST( 3, 0, ALLBITS32, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 3, 0x40000000U, ALLBITS32, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 3, 0x80000000U, ALLBITS32, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 3, 0xC0000000U, ALLBITS32, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 3, -0x80000000LL, ALLBITS32, 0x80000000, EXPECT_SUCCESS); |
| |
| #if __SIZEOF_POINTER__ > 4 |
| // 64bit test: all of 0x0 (should always be true) |
| BITMASK_TEST( 4, 0, ALLBITS64, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 4, 1, ALLBITS64, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 4, 3, ALLBITS64, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 4, 0xFFFFFFFFU, ALLBITS64, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 4, 0x100000000LL, ALLBITS64, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 4, 0x300000000LL, ALLBITS64, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 4,0x8000000000000000LL, ALLBITS64, 0, EXPECT_SUCCESS); |
| BITMASK_TEST( 4, -1LL, ALLBITS64, 0, EXPECT_SUCCESS); |
| |
| // 64bit test: all of 0x1 |
| BITMASK_TEST( 5, 0, ALLBITS64, 1, EXPECT_FAILURE); |
| BITMASK_TEST( 5, 1, ALLBITS64, 1, EXPECT_SUCCESS); |
| BITMASK_TEST( 5, 2, ALLBITS64, 1, EXPECT_FAILURE); |
| BITMASK_TEST( 5, 3, ALLBITS64, 1, EXPECT_SUCCESS); |
| BITMASK_TEST( 5, 0x100000000LL, ALLBITS64, 1, EXPECT_FAILURE); |
| BITMASK_TEST( 5, 0x100000001LL, ALLBITS64, 1, EXPECT_SUCCESS); |
| BITMASK_TEST( 5, 0x100000002LL, ALLBITS64, 1, EXPECT_FAILURE); |
| BITMASK_TEST( 5, 0x100000003LL, ALLBITS64, 1, EXPECT_SUCCESS); |
| |
| // 64bit test: all of 0x3 |
| BITMASK_TEST( 6, 0, ALLBITS64, 3, EXPECT_FAILURE); |
| BITMASK_TEST( 6, 1, ALLBITS64, 3, EXPECT_FAILURE); |
| BITMASK_TEST( 6, 2, ALLBITS64, 3, EXPECT_FAILURE); |
| BITMASK_TEST( 6, 3, ALLBITS64, 3, EXPECT_SUCCESS); |
| BITMASK_TEST( 6, 7, ALLBITS64, 3, EXPECT_SUCCESS); |
| BITMASK_TEST( 6, 0x100000000LL, ALLBITS64, 3, EXPECT_FAILURE); |
| BITMASK_TEST( 6, 0x100000001LL, ALLBITS64, 3, EXPECT_FAILURE); |
| BITMASK_TEST( 6, 0x100000002LL, ALLBITS64, 3, EXPECT_FAILURE); |
| BITMASK_TEST( 6, 0x100000003LL, ALLBITS64, 3, EXPECT_SUCCESS); |
| BITMASK_TEST( 6, 0x100000007LL, ALLBITS64, 3, EXPECT_SUCCESS); |
| |
| // 64bit test: all of 0x80000000 |
| BITMASK_TEST( 7, 0, ALLBITS64, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 7, 0x40000000U, ALLBITS64, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 7, 0x80000000U, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 7, 0xC0000000U, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 7, -0x80000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 7, 0x100000000LL, ALLBITS64, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 7, 0x140000000LL, ALLBITS64, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 7, 0x180000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 7, 0x1C0000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 7, -0x180000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
| |
| // 64bit test: all of 0x100000000 |
| BITMASK_TEST( 8, 0x000000000LL, ALLBITS64,0x100000000, EXPECT_FAILURE); |
| BITMASK_TEST( 8, 0x100000000LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 8, 0x200000000LL, ALLBITS64,0x100000000, EXPECT_FAILURE); |
| BITMASK_TEST( 8, 0x300000000LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 8, 0x000000001LL, ALLBITS64,0x100000000, EXPECT_FAILURE); |
| BITMASK_TEST( 8, 0x100000001LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 8, 0x200000001LL, ALLBITS64,0x100000000, EXPECT_FAILURE); |
| BITMASK_TEST( 8, 0x300000001LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); |
| |
| // 64bit test: all of 0x300000000 |
| BITMASK_TEST( 9, 0x000000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
| BITMASK_TEST( 9, 0x100000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
| BITMASK_TEST( 9, 0x200000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
| BITMASK_TEST( 9, 0x300000000LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 9, 0x700000000LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 9, 0x000000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
| BITMASK_TEST( 9, 0x100000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
| BITMASK_TEST( 9, 0x200000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
| BITMASK_TEST( 9, 0x300000001LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 9, 0x700000001LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); |
| |
| // 64bit test: all of 0x100000001 |
| BITMASK_TEST(10, 0x000000000LL, ALLBITS64,0x100000001, EXPECT_FAILURE); |
| BITMASK_TEST(10, 0x000000001LL, ALLBITS64,0x100000001, EXPECT_FAILURE); |
| BITMASK_TEST(10, 0x100000000LL, ALLBITS64,0x100000001, EXPECT_FAILURE); |
| BITMASK_TEST(10, 0x100000001LL, ALLBITS64,0x100000001, EXPT64_SUCCESS); |
| BITMASK_TEST(10, 0xFFFFFFFFU, ALLBITS64,0x100000001, EXPECT_FAILURE); |
| BITMASK_TEST(10, -1L, ALLBITS64,0x100000001, EXPT64_SUCCESS); |
| #endif |
| } |
| |
| class AnyBitTestPolicy : public Policy { |
| public: |
| AnyBitTestPolicy() {} |
| ~AnyBitTestPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override; |
| |
| private: |
| static ResultExpr HasAnyBits32(uint32_t); |
| static ResultExpr HasAnyBits64(uint64_t); |
| |
| DISALLOW_COPY_AND_ASSIGN(AnyBitTestPolicy); |
| }; |
| |
| ResultExpr AnyBitTestPolicy::HasAnyBits32(uint32_t bits) { |
| if (bits == 0) { |
| return Error(0); |
| } |
| const Arg<uint32_t> arg(1); |
| return If((arg & bits) != 0, Error(1)).Else(Error(0)); |
| } |
| |
| ResultExpr AnyBitTestPolicy::HasAnyBits64(uint64_t bits) { |
| if (bits == 0) { |
| return Error(0); |
| } |
| const Arg<uint64_t> arg(1); |
| return If((arg & bits) != 0, Error(1)).Else(Error(0)); |
| } |
| |
| ResultExpr AnyBitTestPolicy::EvaluateSyscall(int sysno) const { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| // Test masked-equality cases that should trigger the "has any bits" |
| // peephole optimizations. We try to find bitmasks that could conceivably |
| // touch corner cases. |
| // For all of these tests, we override the uname(). We can make use with |
| // a single system call number, as we use the first system call argument to |
| // select the different bit masks that we want to test against. |
| if (sysno == __NR_uname) { |
| const Arg<int> option(0); |
| return Switch(option) |
| .Case(0, HasAnyBits32(0x0)) |
| .Case(1, HasAnyBits32(0x1)) |
| .Case(2, HasAnyBits32(0x3)) |
| .Case(3, HasAnyBits32(0x80000000)) |
| #if __SIZEOF_POINTER__ > 4 |
| .Case(4, HasAnyBits64(0x0)) |
| .Case(5, HasAnyBits64(0x1)) |
| .Case(6, HasAnyBits64(0x3)) |
| .Case(7, HasAnyBits64(0x80000000)) |
| .Case(8, HasAnyBits64(0x100000000ULL)) |
| .Case(9, HasAnyBits64(0x300000000ULL)) |
| .Case(10, HasAnyBits64(0x100000001ULL)) |
| #endif |
| .Default(Kill()); |
| } |
| return Allow(); |
| } |
| |
| BPF_TEST_C(SandboxBPF, AnyBitTests, AnyBitTestPolicy) { |
| // 32bit test: any of 0x0 (should always be false) |
| BITMASK_TEST( 0, 0, ANYBITS32, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 0, 1, ANYBITS32, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 0, 3, ANYBITS32, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 0, 0xFFFFFFFFU, ANYBITS32, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 0, -1LL, ANYBITS32, 0x0, EXPECT_FAILURE); |
| |
| // 32bit test: any of 0x1 |
| BITMASK_TEST( 1, 0, ANYBITS32, 0x1, EXPECT_FAILURE); |
| BITMASK_TEST( 1, 1, ANYBITS32, 0x1, EXPECT_SUCCESS); |
| BITMASK_TEST( 1, 2, ANYBITS32, 0x1, EXPECT_FAILURE); |
| BITMASK_TEST( 1, 3, ANYBITS32, 0x1, EXPECT_SUCCESS); |
| |
| // 32bit test: any of 0x3 |
| BITMASK_TEST( 2, 0, ANYBITS32, 0x3, EXPECT_FAILURE); |
| BITMASK_TEST( 2, 1, ANYBITS32, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 2, 2, ANYBITS32, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 2, 3, ANYBITS32, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 2, 7, ANYBITS32, 0x3, EXPECT_SUCCESS); |
| |
| // 32bit test: any of 0x80000000 |
| BITMASK_TEST( 3, 0, ANYBITS32, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 3, 0x40000000U, ANYBITS32, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 3, 0x80000000U, ANYBITS32, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 3, 0xC0000000U, ANYBITS32, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 3, -0x80000000LL, ANYBITS32, 0x80000000, EXPECT_SUCCESS); |
| |
| #if __SIZEOF_POINTER__ > 4 |
| // 64bit test: any of 0x0 (should always be false) |
| BITMASK_TEST( 4, 0, ANYBITS64, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 4, 1, ANYBITS64, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 4, 3, ANYBITS64, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 4, 0xFFFFFFFFU, ANYBITS64, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 4, 0x100000000LL, ANYBITS64, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 4, 0x300000000LL, ANYBITS64, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 4,0x8000000000000000LL, ANYBITS64, 0x0, EXPECT_FAILURE); |
| BITMASK_TEST( 4, -1LL, ANYBITS64, 0x0, EXPECT_FAILURE); |
| |
| // 64bit test: any of 0x1 |
| BITMASK_TEST( 5, 0, ANYBITS64, 0x1, EXPECT_FAILURE); |
| BITMASK_TEST( 5, 1, ANYBITS64, 0x1, EXPECT_SUCCESS); |
| BITMASK_TEST( 5, 2, ANYBITS64, 0x1, EXPECT_FAILURE); |
| BITMASK_TEST( 5, 3, ANYBITS64, 0x1, EXPECT_SUCCESS); |
| BITMASK_TEST( 5, 0x100000001LL, ANYBITS64, 0x1, EXPECT_SUCCESS); |
| BITMASK_TEST( 5, 0x100000000LL, ANYBITS64, 0x1, EXPECT_FAILURE); |
| BITMASK_TEST( 5, 0x100000002LL, ANYBITS64, 0x1, EXPECT_FAILURE); |
| BITMASK_TEST( 5, 0x100000003LL, ANYBITS64, 0x1, EXPECT_SUCCESS); |
| |
| // 64bit test: any of 0x3 |
| BITMASK_TEST( 6, 0, ANYBITS64, 0x3, EXPECT_FAILURE); |
| BITMASK_TEST( 6, 1, ANYBITS64, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 6, 2, ANYBITS64, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 6, 3, ANYBITS64, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 6, 7, ANYBITS64, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 6, 0x100000000LL, ANYBITS64, 0x3, EXPECT_FAILURE); |
| BITMASK_TEST( 6, 0x100000001LL, ANYBITS64, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 6, 0x100000002LL, ANYBITS64, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 6, 0x100000003LL, ANYBITS64, 0x3, EXPECT_SUCCESS); |
| BITMASK_TEST( 6, 0x100000007LL, ANYBITS64, 0x3, EXPECT_SUCCESS); |
| |
| // 64bit test: any of 0x80000000 |
| BITMASK_TEST( 7, 0, ANYBITS64, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 7, 0x40000000U, ANYBITS64, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 7, 0x80000000U, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 7, 0xC0000000U, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 7, -0x80000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 7, 0x100000000LL, ANYBITS64, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 7, 0x140000000LL, ANYBITS64, 0x80000000, EXPECT_FAILURE); |
| BITMASK_TEST( 7, 0x180000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 7, 0x1C0000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
| BITMASK_TEST( 7, -0x180000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
| |
| // 64bit test: any of 0x100000000 |
| BITMASK_TEST( 8, 0x000000000LL, ANYBITS64,0x100000000, EXPECT_FAILURE); |
| BITMASK_TEST( 8, 0x100000000LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 8, 0x200000000LL, ANYBITS64,0x100000000, EXPECT_FAILURE); |
| BITMASK_TEST( 8, 0x300000000LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 8, 0x000000001LL, ANYBITS64,0x100000000, EXPECT_FAILURE); |
| BITMASK_TEST( 8, 0x100000001LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 8, 0x200000001LL, ANYBITS64,0x100000000, EXPECT_FAILURE); |
| BITMASK_TEST( 8, 0x300000001LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); |
| |
| // 64bit test: any of 0x300000000 |
| BITMASK_TEST( 9, 0x000000000LL, ANYBITS64,0x300000000, EXPECT_FAILURE); |
| BITMASK_TEST( 9, 0x100000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 9, 0x200000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 9, 0x300000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 9, 0x700000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 9, 0x000000001LL, ANYBITS64,0x300000000, EXPECT_FAILURE); |
| BITMASK_TEST( 9, 0x100000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 9, 0x200000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 9, 0x300000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
| BITMASK_TEST( 9, 0x700000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
| |
| // 64bit test: any of 0x100000001 |
| BITMASK_TEST( 10, 0x000000000LL, ANYBITS64,0x100000001, EXPECT_FAILURE); |
| BITMASK_TEST( 10, 0x000000001LL, ANYBITS64,0x100000001, EXPECT_SUCCESS); |
| BITMASK_TEST( 10, 0x100000000LL, ANYBITS64,0x100000001, EXPT64_SUCCESS); |
| BITMASK_TEST( 10, 0x100000001LL, ANYBITS64,0x100000001, EXPECT_SUCCESS); |
| BITMASK_TEST( 10, 0xFFFFFFFFU, ANYBITS64,0x100000001, EXPECT_SUCCESS); |
| BITMASK_TEST( 10, -1L, ANYBITS64,0x100000001, EXPECT_SUCCESS); |
| #endif |
| } |
| |
| class MaskedEqualTestPolicy : public Policy { |
| public: |
| MaskedEqualTestPolicy() {} |
| ~MaskedEqualTestPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override; |
| |
| private: |
| static ResultExpr MaskedEqual32(uint32_t mask, uint32_t value); |
| static ResultExpr MaskedEqual64(uint64_t mask, uint64_t value); |
| |
| DISALLOW_COPY_AND_ASSIGN(MaskedEqualTestPolicy); |
| }; |
| |
| ResultExpr MaskedEqualTestPolicy::MaskedEqual32(uint32_t mask, uint32_t value) { |
| const Arg<uint32_t> arg(1); |
| return If((arg & mask) == value, Error(1)).Else(Error(0)); |
| } |
| |
| ResultExpr MaskedEqualTestPolicy::MaskedEqual64(uint64_t mask, uint64_t value) { |
| const Arg<uint64_t> arg(1); |
| return If((arg & mask) == value, Error(1)).Else(Error(0)); |
| } |
| |
| ResultExpr MaskedEqualTestPolicy::EvaluateSyscall(int sysno) const { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| |
| if (sysno == __NR_uname) { |
| const Arg<int> option(0); |
| return Switch(option) |
| .Case(0, MaskedEqual32(0x00ff00ff, 0x005500aa)) |
| #if __SIZEOF_POINTER__ > 4 |
| .Case(1, MaskedEqual64(0x00ff00ff00000000, 0x005500aa00000000)) |
| .Case(2, MaskedEqual64(0x00ff00ff00ff00ff, 0x005500aa005500aa)) |
| #endif |
| .Default(Kill()); |
| } |
| |
| return Allow(); |
| } |
| |
| #define MASKEQ_TEST(rulenum, arg, expected_result) \ |
| BPF_ASSERT(Syscall::Call(__NR_uname, (rulenum), (arg)) == (expected_result)) |
| |
| BPF_TEST_C(SandboxBPF, MaskedEqualTests, MaskedEqualTestPolicy) { |
| // Allowed: 0x__55__aa |
| MASKEQ_TEST(0, 0x00000000, EXPECT_FAILURE); |
| MASKEQ_TEST(0, 0x00000001, EXPECT_FAILURE); |
| MASKEQ_TEST(0, 0x00000003, EXPECT_FAILURE); |
| MASKEQ_TEST(0, 0x00000100, EXPECT_FAILURE); |
| MASKEQ_TEST(0, 0x00000300, EXPECT_FAILURE); |
| MASKEQ_TEST(0, 0x005500aa, EXPECT_SUCCESS); |
| MASKEQ_TEST(0, 0x005500ab, EXPECT_FAILURE); |
| MASKEQ_TEST(0, 0x005600aa, EXPECT_FAILURE); |
| MASKEQ_TEST(0, 0x005501aa, EXPECT_SUCCESS); |
| MASKEQ_TEST(0, 0x005503aa, EXPECT_SUCCESS); |
| MASKEQ_TEST(0, 0x555500aa, EXPECT_SUCCESS); |
| MASKEQ_TEST(0, 0xaa5500aa, EXPECT_SUCCESS); |
| |
| #if __SIZEOF_POINTER__ > 4 |
| // Allowed: 0x__55__aa________ |
| MASKEQ_TEST(1, 0x0000000000000000, EXPECT_FAILURE); |
| MASKEQ_TEST(1, 0x0000000000000010, EXPECT_FAILURE); |
| MASKEQ_TEST(1, 0x0000000000000050, EXPECT_FAILURE); |
| MASKEQ_TEST(1, 0x0000000100000000, EXPECT_FAILURE); |
| MASKEQ_TEST(1, 0x0000000300000000, EXPECT_FAILURE); |
| MASKEQ_TEST(1, 0x0000010000000000, EXPECT_FAILURE); |
| MASKEQ_TEST(1, 0x0000030000000000, EXPECT_FAILURE); |
| MASKEQ_TEST(1, 0x005500aa00000000, EXPECT_SUCCESS); |
| MASKEQ_TEST(1, 0x005500ab00000000, EXPECT_FAILURE); |
| MASKEQ_TEST(1, 0x005600aa00000000, EXPECT_FAILURE); |
| MASKEQ_TEST(1, 0x005501aa00000000, EXPECT_SUCCESS); |
| MASKEQ_TEST(1, 0x005503aa00000000, EXPECT_SUCCESS); |
| MASKEQ_TEST(1, 0x555500aa00000000, EXPECT_SUCCESS); |
| MASKEQ_TEST(1, 0xaa5500aa00000000, EXPECT_SUCCESS); |
| MASKEQ_TEST(1, 0xaa5500aa00000000, EXPECT_SUCCESS); |
| MASKEQ_TEST(1, 0xaa5500aa0000cafe, EXPECT_SUCCESS); |
| |
| // Allowed: 0x__55__aa__55__aa |
| MASKEQ_TEST(2, 0x0000000000000000, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x0000000000000010, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x0000000000000050, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x0000000100000000, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x0000000300000000, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x0000010000000000, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x0000030000000000, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x00000000005500aa, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x005500aa00000000, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x005500aa005500aa, EXPECT_SUCCESS); |
| MASKEQ_TEST(2, 0x005500aa005700aa, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x005700aa005500aa, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x005500aa004500aa, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x004500aa005500aa, EXPECT_FAILURE); |
| MASKEQ_TEST(2, 0x005512aa005500aa, EXPECT_SUCCESS); |
| MASKEQ_TEST(2, 0x005500aa005534aa, EXPECT_SUCCESS); |
| MASKEQ_TEST(2, 0xff5500aa0055ffaa, EXPECT_SUCCESS); |
| #endif |
| } |
| |
| intptr_t PthreadTrapHandler(const struct arch_seccomp_data& args, void* aux) { |
| if (args.args[0] != (CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | SIGCHLD)) { |
| // We expect to get called for an attempt to fork(). No need to log that |
| // call. But if we ever get called for anything else, we want to verbosely |
| // print as much information as possible. |
| const char* msg = (const char*)aux; |
| printf( |
| "Clone() was called with unexpected arguments\n" |
| " nr: %d\n" |
| " 1: 0x%llX\n" |
| " 2: 0x%llX\n" |
| " 3: 0x%llX\n" |
| " 4: 0x%llX\n" |
| " 5: 0x%llX\n" |
| " 6: 0x%llX\n" |
| "%s\n", |
| args.nr, |
| (long long)args.args[0], |
| (long long)args.args[1], |
| (long long)args.args[2], |
| (long long)args.args[3], |
| (long long)args.args[4], |
| (long long)args.args[5], |
| msg); |
| } |
| return -EPERM; |
| } |
| |
| class PthreadPolicyEquality : public Policy { |
| public: |
| PthreadPolicyEquality() {} |
| ~PthreadPolicyEquality() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(PthreadPolicyEquality); |
| }; |
| |
| ResultExpr PthreadPolicyEquality::EvaluateSyscall(int sysno) const { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| // This policy allows creating threads with pthread_create(). But it |
| // doesn't allow any other uses of clone(). Most notably, it does not |
| // allow callers to implement fork() or vfork() by passing suitable flags |
| // to the clone() system call. |
| if (sysno == __NR_clone) { |
| // We have seen two different valid combinations of flags. Glibc |
| // uses the more modern flags, sets the TLS from the call to clone(), and |
| // uses futexes to monitor threads. Android's C run-time library, doesn't |
| // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED. |
| // More recent versions of Android don't set CLONE_DETACHED anymore, so |
| // the last case accounts for that. |
| // The following policy is very strict. It only allows the exact masks |
| // that we have seen in known implementations. It is probably somewhat |
| // stricter than what we would want to do. |
| const uint64_t kGlibcCloneMask = CLONE_VM | CLONE_FS | CLONE_FILES | |
| CLONE_SIGHAND | CLONE_THREAD | |
| CLONE_SYSVSEM | CLONE_SETTLS | |
| CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID; |
| const uint64_t kBaseAndroidCloneMask = CLONE_VM | CLONE_FS | CLONE_FILES | |
| CLONE_SIGHAND | CLONE_THREAD | |
| CLONE_SYSVSEM; |
| const Arg<unsigned long> flags(0); |
| return Switch(flags) |
| .CASES((kGlibcCloneMask, (kBaseAndroidCloneMask | CLONE_DETACHED), |
| kBaseAndroidCloneMask), |
| Allow()) |
| .Default(Trap(PthreadTrapHandler, "Unknown mask")); |
| } |
| |
| return Allow(); |
| } |
| |
| class PthreadPolicyBitMask : public Policy { |
| public: |
| PthreadPolicyBitMask() {} |
| ~PthreadPolicyBitMask() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override; |
| |
| private: |
| static BoolExpr HasAnyBits(const Arg<unsigned long>& arg, unsigned long bits); |
| static BoolExpr HasAllBits(const Arg<unsigned long>& arg, unsigned long bits); |
| |
| DISALLOW_COPY_AND_ASSIGN(PthreadPolicyBitMask); |
| }; |
| |
| BoolExpr PthreadPolicyBitMask::HasAnyBits(const Arg<unsigned long>& arg, |
| unsigned long bits) { |
| return (arg & bits) != 0; |
| } |
| |
| BoolExpr PthreadPolicyBitMask::HasAllBits(const Arg<unsigned long>& arg, |
| unsigned long bits) { |
| return (arg & bits) == bits; |
| } |
| |
| ResultExpr PthreadPolicyBitMask::EvaluateSyscall(int sysno) const { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| // This policy allows creating threads with pthread_create(). But it |
| // doesn't allow any other uses of clone(). Most notably, it does not |
| // allow callers to implement fork() or vfork() by passing suitable flags |
| // to the clone() system call. |
| if (sysno == __NR_clone) { |
| // We have seen two different valid combinations of flags. Glibc |
| // uses the more modern flags, sets the TLS from the call to clone(), and |
| // uses futexes to monitor threads. Android's C run-time library, doesn't |
| // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED. |
| // The following policy allows for either combination of flags, but it |
| // is generally a little more conservative than strictly necessary. We |
| // err on the side of rather safe than sorry. |
| // Very noticeably though, we disallow fork() (which is often just a |
| // wrapper around clone()). |
| const unsigned long kMandatoryFlags = CLONE_VM | CLONE_FS | CLONE_FILES | |
| CLONE_SIGHAND | CLONE_THREAD | |
| CLONE_SYSVSEM; |
| const unsigned long kFutexFlags = |
| CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID; |
| const unsigned long kNoopFlags = CLONE_DETACHED; |
| const unsigned long kKnownFlags = |
| kMandatoryFlags | kFutexFlags | kNoopFlags; |
| |
| const Arg<unsigned long> flags(0); |
| return If(HasAnyBits(flags, ~kKnownFlags), |
| Trap(PthreadTrapHandler, "Unexpected CLONE_XXX flag found")) |
| .ElseIf(Not(HasAllBits(flags, kMandatoryFlags)), |
| Trap(PthreadTrapHandler, |
| "Missing mandatory CLONE_XXX flags " |
| "when creating new thread")) |
| .ElseIf(AllOf(Not(HasAllBits(flags, kFutexFlags)), |
| HasAnyBits(flags, kFutexFlags)), |
| Trap(PthreadTrapHandler, |
| "Must set either all or none of the TLS and futex bits in " |
| "call to clone()")) |
| .Else(Allow()); |
| } |
| |
| return Allow(); |
| } |
| |
| static void* ThreadFnc(void* arg) { |
| ++*reinterpret_cast<int*>(arg); |
| Syscall::Call(__NR_futex, arg, FUTEX_WAKE, 1, 0, 0, 0); |
| return NULL; |
| } |
| |
| static void PthreadTest() { |
| // Attempt to start a joinable thread. This should succeed. |
| pthread_t thread; |
| int thread_ran = 0; |
| BPF_ASSERT(!pthread_create(&thread, NULL, ThreadFnc, &thread_ran)); |
| BPF_ASSERT(!pthread_join(thread, NULL)); |
| BPF_ASSERT(thread_ran); |
| |
| // Attempt to start a detached thread. This should succeed. |
| thread_ran = 0; |
| pthread_attr_t attr; |
| BPF_ASSERT(!pthread_attr_init(&attr)); |
| BPF_ASSERT(!pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)); |
| BPF_ASSERT(!pthread_create(&thread, &attr, ThreadFnc, &thread_ran)); |
| BPF_ASSERT(!pthread_attr_destroy(&attr)); |
| while (Syscall::Call(__NR_futex, &thread_ran, FUTEX_WAIT, 0, 0, 0, 0) == |
| -EINTR) { |
| } |
| BPF_ASSERT(thread_ran); |
| |
| // Attempt to fork() a process using clone(). This should fail. We use the |
| // same flags that glibc uses when calling fork(). But we don't actually |
| // try calling the fork() implementation in the C run-time library, as |
| // run-time libraries other than glibc might call __NR_fork instead of |
| // __NR_clone, and that would introduce a bogus test failure. |
| int pid; |
| BPF_ASSERT(Syscall::Call(__NR_clone, |
| CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | SIGCHLD, |
| 0, |
| 0, |
| &pid) == -EPERM); |
| } |
| |
| BPF_TEST_C(SandboxBPF, PthreadEquality, PthreadPolicyEquality) { |
| PthreadTest(); |
| } |
| |
| BPF_TEST_C(SandboxBPF, PthreadBitMask, PthreadPolicyBitMask) { |
| PthreadTest(); |
| } |
| |
| // libc might not define these even though the kernel supports it. |
| #ifndef PTRACE_O_TRACESECCOMP |
| #define PTRACE_O_TRACESECCOMP 0x00000080 |
| #endif |
| |
| #ifdef PTRACE_EVENT_SECCOMP |
| #define IS_SECCOMP_EVENT(status) ((status >> 16) == PTRACE_EVENT_SECCOMP) |
| #else |
| // When Debian/Ubuntu backported seccomp-bpf support into earlier kernels, they |
| // changed the value of PTRACE_EVENT_SECCOMP from 7 to 8, since 7 was taken by |
| // PTRACE_EVENT_STOP (upstream chose to renumber PTRACE_EVENT_STOP to 128). If |
| // PTRACE_EVENT_SECCOMP isn't defined, we have no choice but to consider both |
| // values here. |
| #define IS_SECCOMP_EVENT(status) ((status >> 16) == 7 || (status >> 16) == 8) |
| #endif |
| |
| #if defined(__arm__) |
| #ifndef PTRACE_SET_SYSCALL |
| #define PTRACE_SET_SYSCALL 23 |
| #endif |
| #endif |
| |
| #if defined(__aarch64__) |
| #ifndef PTRACE_GETREGS |
| #if defined(__GLIBC__) |
| #define PTRACE_GETREGS static_cast<enum __ptrace_request>(12) |
| #else |
| #define PTRACE_GETREGS 12 |
| #endif // defined(__GLIBC__) |
| #endif // !defined(PTRACE_GETREGS) |
| #endif // defined(__aarch64__) |
| |
| #if defined(__aarch64__) |
| #ifndef PTRACE_SETREGS |
| #if defined(__GLIBC__) |
| #define PTRACE_SETREGS static_cast<enum __ptrace_request>(13) |
| #else |
| #define PTRACE_SETREGS 13 |
| #endif // defined(__GLIBC__) |
| #endif // !defined(PTRACE_SETREGS) |
| #endif // defined(__aarch64__) |
| |
| // Changes the syscall to run for a child being sandboxed using seccomp-bpf with |
| // PTRACE_O_TRACESECCOMP. Should only be called when the child is stopped on |
| // PTRACE_EVENT_SECCOMP. |
| // |
| // regs should contain the current set of registers of the child, obtained using |
| // PTRACE_GETREGS. |
| // |
| // Depending on the architecture, this may modify regs, so the caller is |
| // responsible for committing these changes using PTRACE_SETREGS. |
| #if !defined(__arm__) && !defined(__aarch64__) && !defined(__mips__) |
| long SetSyscall(pid_t pid, regs_struct* regs, int syscall_number) { |
| #if defined(__arm__) |
| // On ARM, the syscall is changed using PTRACE_SET_SYSCALL. We cannot use the |
| // libc ptrace call as the request parameter is an enum, and |
| // PTRACE_SET_SYSCALL may not be in the enum. |
| return syscall(__NR_ptrace, PTRACE_SET_SYSCALL, pid, NULL, syscall_number); |
| #else |
| SECCOMP_PT_SYSCALL(*regs) = syscall_number; |
| return 0; |
| #endif |
| } |
| #endif |
| |
| const uint16_t kTraceData = 0xcc; |
| |
| class TraceAllPolicy : public Policy { |
| public: |
| TraceAllPolicy() {} |
| ~TraceAllPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int system_call_number) const override { |
| return Trace(kTraceData); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(TraceAllPolicy); |
| }; |
| |
| SANDBOX_TEST(SandboxBPF, DISABLE_ON_TSAN(SeccompRetTrace)) { |
| if (!SandboxBPF::SupportsSeccompSandbox( |
| SandboxBPF::SeccompLevel::SINGLE_THREADED)) { |
| return; |
| } |
| |
| // This test is disabled on arm due to a kernel bug. |
| // See https://code.google.com/p/chromium/issues/detail?id=383977 |
| #if defined(__arm__) || defined(__aarch64__) |
| printf("This test is currently disabled on ARM32/64 due to a kernel bug."); |
| #elif defined(__mips__) |
| // TODO: Figure out how to support specificity of handling indirect syscalls |
| // in this test and enable it. |
| printf("This test is currently disabled on MIPS."); |
| #else |
| pid_t pid = fork(); |
| BPF_ASSERT_NE(-1, pid); |
| if (pid == 0) { |
| pid_t my_pid = getpid(); |
| BPF_ASSERT_NE(-1, ptrace(PTRACE_TRACEME, -1, NULL, NULL)); |
| BPF_ASSERT_EQ(0, raise(SIGSTOP)); |
| SandboxBPF sandbox(std::make_unique<TraceAllPolicy>()); |
| BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED)); |
| |
| // getpid is allowed. |
| BPF_ASSERT_EQ(my_pid, sys_getpid()); |
| |
| // write to stdout is skipped and returns a fake value. |
| BPF_ASSERT_EQ(kExpectedReturnValue, |
| syscall(__NR_write, STDOUT_FILENO, "A", 1)); |
| |
| // kill is rewritten to exit(kExpectedReturnValue). |
| syscall(__NR_kill, my_pid, SIGKILL); |
| |
| // Should not be reached. |
| BPF_ASSERT(false); |
| } |
| |
| int status; |
| BPF_ASSERT(HANDLE_EINTR(waitpid(pid, &status, WUNTRACED)) != -1); |
| BPF_ASSERT(WIFSTOPPED(status)); |
| |
| BPF_ASSERT_NE(-1, |
| ptrace(PTRACE_SETOPTIONS, |
| pid, |
| NULL, |
| reinterpret_cast<void*>(PTRACE_O_TRACESECCOMP))); |
| BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT, pid, NULL, NULL)); |
| while (true) { |
| BPF_ASSERT(HANDLE_EINTR(waitpid(pid, &status, 0)) != -1); |
| if (WIFEXITED(status) || WIFSIGNALED(status)) { |
| BPF_ASSERT(WIFEXITED(status)); |
| BPF_ASSERT_EQ(kExpectedReturnValue, WEXITSTATUS(status)); |
| break; |
| } |
| |
| if (!WIFSTOPPED(status) || WSTOPSIG(status) != SIGTRAP || |
| !IS_SECCOMP_EVENT(status)) { |
| BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT, pid, NULL, NULL)); |
| continue; |
| } |
| |
| unsigned long data; |
| BPF_ASSERT_NE(-1, ptrace(PTRACE_GETEVENTMSG, pid, NULL, &data)); |
| BPF_ASSERT_EQ(kTraceData, data); |
| |
| regs_struct regs; |
| BPF_ASSERT_NE(-1, ptrace(PTRACE_GETREGS, pid, NULL, ®s)); |
| switch (SECCOMP_PT_SYSCALL(regs)) { |
| case __NR_write: |
| // Skip writes to stdout, make it return kExpectedReturnValue. Allow |
| // writes to stderr so that BPF_ASSERT messages show up. |
| if (SECCOMP_PT_PARM1(regs) == STDOUT_FILENO) { |
| BPF_ASSERT_NE(-1, SetSyscall(pid, ®s, -1)); |
| SECCOMP_PT_RESULT(regs) = kExpectedReturnValue; |
| BPF_ASSERT_NE(-1, ptrace(PTRACE_SETREGS, pid, NULL, ®s)); |
| } |
| break; |
| |
| case __NR_kill: |
| // Rewrite to exit(kExpectedReturnValue). |
| BPF_ASSERT_NE(-1, SetSyscall(pid, ®s, __NR_exit)); |
| SECCOMP_PT_PARM1(regs) = kExpectedReturnValue; |
| BPF_ASSERT_NE(-1, ptrace(PTRACE_SETREGS, pid, NULL, ®s)); |
| break; |
| |
| default: |
| // Allow all other syscalls. |
| break; |
| } |
| |
| BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT, pid, NULL, NULL)); |
| } |
| #endif |
| } |
| |
| // Android does not expose pread64 nor pwrite64. |
| #if !defined(OS_ANDROID) |
| |
| bool FullPwrite64(int fd, const char* buffer, size_t count, off64_t offset) { |
| while (count > 0) { |
| const ssize_t transfered = |
| HANDLE_EINTR(pwrite64(fd, buffer, count, offset)); |
| if (transfered <= 0 || static_cast<size_t>(transfered) > count) { |
| return false; |
| } |
| count -= transfered; |
| buffer += transfered; |
| offset += transfered; |
| } |
| return true; |
| } |
| |
| bool FullPread64(int fd, char* buffer, size_t count, off64_t offset) { |
| while (count > 0) { |
| const ssize_t transfered = HANDLE_EINTR(pread64(fd, buffer, count, offset)); |
| if (transfered <= 0 || static_cast<size_t>(transfered) > count) { |
| return false; |
| } |
| count -= transfered; |
| buffer += transfered; |
| offset += transfered; |
| } |
| return true; |
| } |
| |
| bool pread_64_was_forwarded = false; |
| |
| class TrapPread64Policy : public Policy { |
| public: |
| TrapPread64Policy() {} |
| ~TrapPread64Policy() override {} |
| |
| ResultExpr EvaluateSyscall(int system_call_number) const override { |
| // Set the global environment for unsafe traps once. |
| if (system_call_number == MIN_SYSCALL) { |
| EnableUnsafeTraps(); |
| } |
| |
| if (system_call_number == __NR_pread64) { |
| return UnsafeTrap(ForwardPreadHandler, NULL); |
| } |
| return Allow(); |
| } |
| |
| private: |
| static intptr_t ForwardPreadHandler(const struct arch_seccomp_data& args, |
| void* aux) { |
| BPF_ASSERT(args.nr == __NR_pread64); |
| pread_64_was_forwarded = true; |
| |
| return SandboxBPF::ForwardSyscall(args); |
| } |
| |
| DISALLOW_COPY_AND_ASSIGN(TrapPread64Policy); |
| }; |
| |
| // pread(2) takes a 64 bits offset. On 32 bits systems, it will be split |
| // between two arguments. In this test, we make sure that ForwardSyscall() can |
| // forward it properly. |
| BPF_TEST_C(SandboxBPF, Pread64, TrapPread64Policy) { |
| ScopedTemporaryFile temp_file; |
| const uint64_t kLargeOffset = (static_cast<uint64_t>(1) << 32) | 0xBEEF; |
| const char kTestString[] = "This is a test!"; |
| BPF_ASSERT(FullPwrite64( |
| temp_file.fd(), kTestString, sizeof(kTestString), kLargeOffset)); |
| |
| char read_test_string[sizeof(kTestString)] = {0}; |
| BPF_ASSERT(FullPread64(temp_file.fd(), |
| read_test_string, |
| sizeof(read_test_string), |
| kLargeOffset)); |
| BPF_ASSERT_EQ(0, memcmp(kTestString, read_test_string, sizeof(kTestString))); |
| BPF_ASSERT(pread_64_was_forwarded); |
| } |
| |
| #endif // !defined(OS_ANDROID) |
| |
| void* TsyncApplyToTwoThreadsFunc(void* cond_ptr) { |
| base::WaitableEvent* event = static_cast<base::WaitableEvent*>(cond_ptr); |
| |
| // Wait for the main thread to signal that the filter has been applied. |
| if (!event->IsSignaled()) { |
| event->Wait(); |
| } |
| |
| BPF_ASSERT(event->IsSignaled()); |
| |
| BlacklistNanosleepPolicy::AssertNanosleepFails(); |
| |
| return NULL; |
| } |
| |
| SANDBOX_TEST(SandboxBPF, Tsync) { |
| const bool supports_multi_threaded = SandboxBPF::SupportsSeccompSandbox( |
| SandboxBPF::SeccompLevel::MULTI_THREADED); |
| // On Chrome OS tsync is mandatory. |
| #if defined(OS_CHROMEOS) |
| if (base::SysInfo::IsRunningOnChromeOS()) { |
| BPF_ASSERT_EQ(true, supports_multi_threaded); |
| } |
| // else a Chrome OS build not running on a Chrome OS device e.g. Chrome bots. |
| // In this case fall through. |
| #endif |
| if (!supports_multi_threaded) { |
| return; |
| } |
| |
| base::WaitableEvent event(base::WaitableEvent::ResetPolicy::MANUAL, |
| base::WaitableEvent::InitialState::NOT_SIGNALED); |
| |
| // Create a thread on which to invoke the blocked syscall. |
| pthread_t thread; |
| BPF_ASSERT_EQ( |
| 0, pthread_create(&thread, NULL, &TsyncApplyToTwoThreadsFunc, &event)); |
| |
| // Test that nanoseelp success. |
| const struct timespec ts = {0, 0}; |
| BPF_ASSERT_EQ(0, HANDLE_EINTR(syscall(__NR_nanosleep, &ts, NULL))); |
| |
| // Engage the sandbox. |
| SandboxBPF sandbox(std::make_unique<BlacklistNanosleepPolicy>()); |
| BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::SeccompLevel::MULTI_THREADED)); |
| |
| // This thread should have the filter applied as well. |
| BlacklistNanosleepPolicy::AssertNanosleepFails(); |
| |
| // Signal the condition to invoke the system call. |
| event.Signal(); |
| |
| // Wait for the thread to finish. |
| BPF_ASSERT_EQ(0, pthread_join(thread, NULL)); |
| } |
| |
| class AllowAllPolicy : public Policy { |
| public: |
| AllowAllPolicy() {} |
| ~AllowAllPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { return Allow(); } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(AllowAllPolicy); |
| }; |
| |
| SANDBOX_DEATH_TEST( |
| SandboxBPF, |
| StartMultiThreadedAsSingleThreaded, |
| DEATH_MESSAGE( |
| ThreadHelpers::GetAssertSingleThreadedErrorMessageForTests())) { |
| base::Thread thread("sandbox.linux.StartMultiThreadedAsSingleThreaded"); |
| BPF_ASSERT(thread.Start()); |
| |
| SandboxBPF sandbox(std::make_unique<AllowAllPolicy>()); |
| BPF_ASSERT(!sandbox.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED)); |
| } |
| |
| // A stub handler for the UnsafeTrap. Never called. |
| intptr_t NoOpHandler(const struct arch_seccomp_data& args, void*) { |
| return -1; |
| } |
| |
| class UnsafeTrapWithCondPolicy : public Policy { |
| public: |
| UnsafeTrapWithCondPolicy() {} |
| ~UnsafeTrapWithCondPolicy() override {} |
| |
| ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| setenv(kSandboxDebuggingEnv, "t", 0); |
| Die::SuppressInfoMessages(true); |
| |
| if (SandboxBPF::IsRequiredForUnsafeTrap(sysno)) |
| return Allow(); |
| |
| if (IsSyscallForTestHarness(sysno)) |
| return Allow(); |
| |
| switch (sysno) { |
| case __NR_uname: { |
| const Arg<uint32_t> arg(0); |
| return If(arg == 0, Allow()).Else(Error(EPERM)); |
| } |
| case __NR_setgid: { |
| const Arg<uint32_t> arg(0); |
| return Switch(arg) |
| .Case(100, Error(ENOMEM)) |
| .Case(200, Error(ENOSYS)) |
| .Default(Error(EPERM)); |
| } |
| case __NR_close: |
| return Allow(); |
| case __NR_getppid: |
| return UnsafeTrap(NoOpHandler, NULL); |
| default: |
| return Error(EPERM); |
| } |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(UnsafeTrapWithCondPolicy); |
| }; |
| |
| BPF_TEST_C(SandboxBPF, UnsafeTrapWithCond, UnsafeTrapWithCondPolicy) { |
| BPF_ASSERT_EQ(-1, syscall(__NR_uname, 0)); |
| BPF_ASSERT_EQ(EFAULT, errno); |
| |
| BPF_ASSERT_EQ(-1, syscall(__NR_uname, 1)); |
| BPF_ASSERT_EQ(EPERM, errno); |
| |
| BPF_ASSERT_EQ(-1, syscall(__NR_setgid, 100)); |
| BPF_ASSERT_EQ(ENOMEM, errno); |
| |
| BPF_ASSERT_EQ(-1, syscall(__NR_setgid, 200)); |
| BPF_ASSERT_EQ(ENOSYS, errno); |
| |
| BPF_ASSERT_EQ(-1, syscall(__NR_setgid, 300)); |
| BPF_ASSERT_EQ(EPERM, errno); |
| } |
| |
| } // namespace |
| |
| } // namespace bpf_dsl |
| } // namespace sandbox |