| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "sql/recovery.h" |
| |
| #include <stddef.h> |
| |
| #include "base/files/file_path.h" |
| #include "base/format_macros.h" |
| #include "base/logging.h" |
| #include "base/metrics/histogram_functions.h" |
| #include "base/metrics/histogram_macros.h" |
| #include "base/strings/string_util.h" |
| #include "base/strings/stringprintf.h" |
| #include "sql/database.h" |
| #include "sql/recover_module/module.h" |
| #include "sql/statement.h" |
| #include "third_party/sqlite/sqlite3.h" |
| |
| namespace sql { |
| |
| namespace { |
| |
| // This enum must match the numbering for Sqlite.RecoveryEvents in |
| // histograms.xml. Do not reorder or remove items, only add new items before |
| // RECOVERY_EVENT_MAX. |
| enum RecoveryEventType { |
| // Init() completed successfully. |
| RECOVERY_SUCCESS_INIT = 0, |
| |
| // Failed to open temporary database to recover into. |
| RECOVERY_FAILED_OPEN_TEMPORARY, |
| |
| // Failed to initialize recover vtable system. |
| RECOVERY_FAILED_VIRTUAL_TABLE_INIT, |
| |
| // System SQLite doesn't support vtable. |
| // This is deprecated. Chrome doesn't support using the system SQLite anymore. |
| DEPRECATED_RECOVERY_FAILED_VIRTUAL_TABLE_SYSTEM_SQLITE, |
| |
| // Failed attempting to enable writable_schema. |
| RECOVERY_FAILED_WRITABLE_SCHEMA, |
| |
| // Failed to attach the corrupt database to the temporary database. |
| RECOVERY_FAILED_ATTACH, |
| |
| // Backup() successfully completed. |
| RECOVERY_SUCCESS_BACKUP, |
| |
| // Failed sqlite3_backup_init(). Error code in Sqlite.RecoveryHandle. |
| RECOVERY_FAILED_BACKUP_INIT, |
| |
| // Failed sqlite3_backup_step(). Error code in Sqlite.RecoveryStep. |
| RECOVERY_FAILED_BACKUP_STEP, |
| |
| // AutoRecoverTable() successfully completed. |
| RECOVERY_SUCCESS_AUTORECOVER, |
| |
| // The target table contained a type which the code is not equipped |
| // to handle. This should only happen if things are fubar. |
| RECOVERY_FAILED_AUTORECOVER_UNRECOGNIZED_TYPE, |
| |
| // The target table does not exist. |
| RECOVERY_FAILED_AUTORECOVER_MISSING_TABLE, |
| |
| // The recovery virtual table creation failed. |
| RECOVERY_FAILED_AUTORECOVER_CREATE, |
| |
| // Copying data from the recovery table to the target table failed. |
| RECOVERY_FAILED_AUTORECOVER_INSERT, |
| |
| // Dropping the recovery virtual table failed. |
| RECOVERY_FAILED_AUTORECOVER_DROP, |
| |
| // SetupMeta() successfully completed. |
| RECOVERY_SUCCESS_SETUP_META, |
| |
| // Failure creating recovery meta table. |
| RECOVERY_FAILED_META_CREATE, |
| |
| // GetMetaVersionNumber() successfully completed. |
| RECOVERY_SUCCESS_META_VERSION, |
| |
| // Failed in querying recovery meta table. |
| RECOVERY_FAILED_META_QUERY, |
| |
| // No version key in recovery meta table. |
| RECOVERY_FAILED_META_NO_VERSION, |
| |
| // Automatically recovered entire database successfully. |
| RECOVERY_SUCCESS_AUTORECOVERDB, |
| |
| // Database was so broken recovery couldn't be entered. |
| RECOVERY_FAILED_AUTORECOVERDB_BEGIN, |
| |
| // Failed to schema from corrupt database. |
| RECOVERY_FAILED_AUTORECOVERDB_SCHEMASELECT, |
| |
| // Failed to create copy of schema in recovery database. |
| RECOVERY_FAILED_AUTORECOVERDB_SCHEMACREATE, |
| |
| // Failed querying tables to recover. Should be impossible. |
| RECOVERY_FAILED_AUTORECOVERDB_NAMESELECT, |
| |
| // Failed to recover an individual table. |
| RECOVERY_FAILED_AUTORECOVERDB_TABLE, |
| |
| // Failed to recover [sqlite_sequence] table. |
| RECOVERY_FAILED_AUTORECOVERDB_SEQUENCE, |
| |
| // Failed to recover triggers or views or virtual tables. |
| RECOVERY_FAILED_AUTORECOVERDB_AUX, |
| |
| // After SQLITE_NOTADB failure setting up for recovery, Delete() failed. |
| RECOVERY_FAILED_AUTORECOVERDB_NOTADB_DELETE, |
| |
| // After SQLITE_NOTADB failure setting up for recovery, Delete() succeeded |
| // then Open() failed. |
| RECOVERY_FAILED_AUTORECOVERDB_NOTADB_REOPEN, |
| |
| // After SQLITE_NOTADB failure setting up for recovery, Delete() and Open() |
| // succeeded, then querying the database failed. |
| RECOVERY_FAILED_AUTORECOVERDB_NOTADB_QUERY, |
| |
| // After SQLITE_NOTADB failure setting up for recovery, the database was |
| // successfully deleted. |
| RECOVERY_SUCCESS_AUTORECOVERDB_NOTADB_DELETE, |
| |
| // Failed to find required [meta.version] information. |
| RECOVERY_FAILED_AUTORECOVERDB_META_VERSION, |
| |
| // Add new items before this one, always keep this one at the end. |
| RECOVERY_EVENT_MAX, |
| }; |
| |
| void RecordRecoveryEvent(RecoveryEventType recovery_event) { |
| UMA_HISTOGRAM_ENUMERATION("Sqlite.RecoveryEvents", |
| recovery_event, RECOVERY_EVENT_MAX); |
| } |
| |
| } // namespace |
| |
| // static |
| std::unique_ptr<Recovery> Recovery::Begin(Database* database, |
| const base::FilePath& db_path) { |
| // Recovery is likely to be used in error handling. Since recovery changes |
| // the state of the handle, protect against multiple layers attempting the |
| // same recovery. |
| if (!database->is_open()) { |
| // Warn about API mis-use. |
| DCHECK(database->poisoned(InternalApiToken())) |
| << "Illegal to recover with closed Database"; |
| return std::unique_ptr<Recovery>(); |
| } |
| |
| // Using `new` to access a non-public constructor |
| std::unique_ptr<Recovery> recovery(new Recovery(database)); |
| if (!recovery->Init(db_path)) { |
| // TODO(shess): Should Init() failure result in Raze()? |
| recovery->Shutdown(POISON); |
| return std::unique_ptr<Recovery>(); |
| } |
| |
| return recovery; |
| } |
| |
| // static |
| bool Recovery::Recovered(std::unique_ptr<Recovery> r) { |
| return r->Backup(); |
| } |
| |
| // static |
| void Recovery::Unrecoverable(std::unique_ptr<Recovery> r) { |
| CHECK(r->db_); |
| // ~Recovery() will RAZE_AND_POISON. |
| } |
| |
| // static |
| void Recovery::Rollback(std::unique_ptr<Recovery> r) { |
| // TODO(shess): HISTOGRAM to track? Or just have people crash out? |
| // Crash and dump? |
| r->Shutdown(POISON); |
| } |
| |
| Recovery::Recovery(Database* connection) : db_(connection), recover_db_() { |
| // Result should keep the page size specified earlier. |
| recover_db_.set_page_size(db_->page_size()); |
| |
| // Files with I/O errors cannot be safely memory-mapped. |
| recover_db_.set_mmap_disabled(); |
| |
| // TODO(shess): This may not handle cases where the default page |
| // size is used, but the default has changed. I do not think this |
| // has ever happened. This could be handled by using "PRAGMA |
| // page_size", at the cost of potential additional failure cases. |
| } |
| |
| Recovery::~Recovery() { |
| Shutdown(RAZE_AND_POISON); |
| } |
| |
| bool Recovery::Init(const base::FilePath& db_path) { |
| // Prevent the possibility of re-entering this code due to errors |
| // which happen while executing this code. |
| DCHECK(!db_->has_error_callback()); |
| |
| // Break any outstanding transactions on the original database to |
| // prevent deadlocks reading through the attached version. |
| // TODO(shess): A client may legitimately wish to recover from |
| // within the transaction context, because it would potentially |
| // preserve any in-flight changes. Unfortunately, any attach-based |
| // system could not handle that. A system which manually queried |
| // one database and stored to the other possibly could, but would be |
| // more complicated. |
| db_->RollbackAllTransactions(); |
| |
| // Disable exclusive locking mode so that the attached database can |
| // access things. The locking_mode change is not active until the |
| // next database access, so immediately force an access. Enabling |
| // writable_schema allows processing through certain kinds of |
| // corruption. |
| // TODO(shess): It would be better to just close the handle, but it |
| // is necessary for the final backup which rewrites things. It |
| // might be reasonable to close then re-open the handle. |
| ignore_result(db_->Execute("PRAGMA writable_schema=1")); |
| ignore_result(db_->Execute("PRAGMA locking_mode=NORMAL")); |
| ignore_result(db_->Execute("SELECT COUNT(*) FROM sqlite_master")); |
| |
| // TODO(shess): If this is a common failure case, it might be |
| // possible to fall back to a memory database. But it probably |
| // implies that the SQLite tmpdir logic is busted, which could cause |
| // a variety of other random issues in our code. |
| if (!recover_db_.OpenTemporary()) { |
| RecordRecoveryEvent(RECOVERY_FAILED_OPEN_TEMPORARY); |
| return false; |
| } |
| |
| // Enable the recover virtual table for this connection. |
| int rc = EnableRecoveryExtension(&recover_db_, InternalApiToken()); |
| if (rc != SQLITE_OK) { |
| RecordRecoveryEvent(RECOVERY_FAILED_VIRTUAL_TABLE_INIT); |
| LOG(ERROR) << "Failed to initialize recover module: " |
| << recover_db_.GetErrorMessage(); |
| return false; |
| } |
| |
| // Turn on |SQLITE_RecoveryMode| for the handle, which allows |
| // reading certain broken databases. |
| if (!recover_db_.Execute("PRAGMA writable_schema=1")) { |
| RecordRecoveryEvent(RECOVERY_FAILED_WRITABLE_SCHEMA); |
| return false; |
| } |
| |
| if (!recover_db_.AttachDatabase(db_path, "corrupt", InternalApiToken())) { |
| RecordRecoveryEvent(RECOVERY_FAILED_ATTACH); |
| base::UmaHistogramSparse("Sqlite.RecoveryAttachError", |
| recover_db_.GetErrorCode()); |
| return false; |
| } |
| |
| RecordRecoveryEvent(RECOVERY_SUCCESS_INIT); |
| return true; |
| } |
| |
| bool Recovery::Backup() { |
| CHECK(db_); |
| CHECK(recover_db_.is_open()); |
| |
| // TODO(shess): Some of the failure cases here may need further |
| // exploration. Just as elsewhere, persistent problems probably |
| // need to be razed, while anything which might succeed on a future |
| // run probably should be allowed to try. But since Raze() uses the |
| // same approach, even that wouldn't work when this code fails. |
| // |
| // The documentation for the backup system indicate a relatively |
| // small number of errors are expected: |
| // SQLITE_BUSY - cannot lock the destination database. This should |
| // only happen if someone has another handle to the |
| // database, Chromium generally doesn't do that. |
| // SQLITE_LOCKED - someone locked the source database. Should be |
| // impossible (perhaps anti-virus could?). |
| // SQLITE_READONLY - destination is read-only. |
| // SQLITE_IOERR - since source database is temporary, probably |
| // indicates that the destination contains blocks |
| // throwing errors, or gross filesystem errors. |
| // SQLITE_NOMEM - out of memory, should be transient. |
| // |
| // AFAICT, SQLITE_BUSY and SQLITE_NOMEM could perhaps be considered |
| // transient, with SQLITE_LOCKED being unclear. |
| // |
| // SQLITE_READONLY and SQLITE_IOERR are probably persistent, with a |
| // strong chance that Raze() would not resolve them. If Delete() |
| // deletes the database file, the code could then re-open the file |
| // and attempt the backup again. |
| // |
| // For now, this code attempts a best effort and records histograms |
| // to inform future development. |
| |
| // Backup the original db from the recovered db. |
| const char* kMain = "main"; |
| sqlite3_backup* backup = |
| sqlite3_backup_init(db_->db(InternalApiToken()), kMain, |
| recover_db_.db(InternalApiToken()), kMain); |
| if (!backup) { |
| RecordRecoveryEvent(RECOVERY_FAILED_BACKUP_INIT); |
| |
| // Error code is in the destination database handle. |
| int err = sqlite3_extended_errcode(db_->db(InternalApiToken())); |
| base::UmaHistogramSparse("Sqlite.RecoveryHandle", err); |
| LOG(ERROR) << "sqlite3_backup_init() failed: " |
| << sqlite3_errmsg(db_->db(InternalApiToken())); |
| |
| return false; |
| } |
| |
| // -1 backs up the entire database. |
| int rc = sqlite3_backup_step(backup, -1); |
| int pages = sqlite3_backup_pagecount(backup); |
| // TODO(shess): sqlite3_backup_finish() appears to allow returning a |
| // different value from sqlite3_backup_step(). Circle back and |
| // figure out if that can usefully inform the decision of whether to |
| // retry or not. |
| sqlite3_backup_finish(backup); |
| DCHECK_GT(pages, 0); |
| |
| if (rc != SQLITE_DONE) { |
| RecordRecoveryEvent(RECOVERY_FAILED_BACKUP_STEP); |
| base::UmaHistogramSparse("Sqlite.RecoveryStep", rc); |
| LOG(ERROR) << "sqlite3_backup_step() failed: " |
| << sqlite3_errmsg(db_->db(InternalApiToken())); |
| } |
| |
| // The destination database was locked. Give up, but leave the data |
| // in place. Maybe it won't be locked next time. |
| if (rc == SQLITE_BUSY || rc == SQLITE_LOCKED) { |
| Shutdown(POISON); |
| return false; |
| } |
| |
| // Running out of memory should be transient, retry later. |
| if (rc == SQLITE_NOMEM) { |
| Shutdown(POISON); |
| return false; |
| } |
| |
| // TODO(shess): For now, leave the original database alone, pending |
| // results from Sqlite.RecoveryStep. Some errors should probably |
| // route to RAZE_AND_POISON. |
| if (rc != SQLITE_DONE) { |
| Shutdown(POISON); |
| return false; |
| } |
| |
| // Clean up the recovery db, and terminate the main database |
| // connection. |
| RecordRecoveryEvent(RECOVERY_SUCCESS_BACKUP); |
| Shutdown(POISON); |
| return true; |
| } |
| |
| void Recovery::Shutdown(Recovery::Disposition raze) { |
| if (!db_) |
| return; |
| |
| recover_db_.Close(); |
| if (raze == RAZE_AND_POISON) { |
| db_->RazeAndClose(); |
| } else if (raze == POISON) { |
| db_->Poison(); |
| } |
| db_ = nullptr; |
| } |
| |
| bool Recovery::AutoRecoverTable(const char* table_name, |
| size_t* rows_recovered) { |
| // Query the info for the recovered table in database [main]. |
| std::string query( |
| base::StringPrintf("PRAGMA main.table_info(%s)", table_name)); |
| Statement s(db()->GetUniqueStatement(query.c_str())); |
| |
| // The columns of the recover virtual table. |
| std::vector<std::string> create_column_decls; |
| |
| // The columns to select from the recover virtual table when copying |
| // to the recovered table. |
| std::vector<std::string> insert_columns; |
| |
| // If PRIMARY KEY is a single INTEGER column, then it is an alias |
| // for ROWID. The primary key can be compound, so this can only be |
| // determined after processing all column data and tracking what is |
| // seen. |pk_column_count| counts the columns in the primary key. |
| // |rowid_decl| stores the ROWID version of the last INTEGER column |
| // seen, which is at |rowid_ofs| in |create_column_decls|. |
| size_t pk_column_count = 0; |
| size_t rowid_ofs = 0; // Only valid if rowid_decl is set. |
| std::string rowid_decl; // ROWID version of column |rowid_ofs|. |
| |
| while (s.Step()) { |
| const std::string column_name(s.ColumnString(1)); |
| const std::string column_type(s.ColumnString(2)); |
| const ColumnType default_type = s.GetColumnType(4); |
| const bool default_is_null = (default_type == ColumnType::kNull); |
| const int pk_column = s.ColumnInt(5); |
| |
| // http://www.sqlite.org/pragma.html#pragma_table_info documents column 5 as |
| // the 1-based index of the column in the primary key, otherwise 0. |
| if (pk_column > 0) |
| ++pk_column_count; |
| |
| // Construct column declaration as "name type [optional constraint]". |
| std::string column_decl = column_name; |
| |
| // SQLite's affinity detection is documented at: |
| // http://www.sqlite.org/datatype3.html#affname |
| // The gist of it is that CHAR, TEXT, and INT use substring matches. |
| // TODO(shess): It would be nice to unit test the type handling, |
| // but it is not obvious to me how to write a test which would |
| // fail appropriately when something was broken. It would have to |
| // somehow use data which would allow detecting the various type |
| // coercions which happen. If STRICT could be enabled, type |
| // mismatches could be detected by which rows are filtered. |
| if (column_type.find("INT") != std::string::npos) { |
| if (pk_column == 1) { |
| rowid_ofs = create_column_decls.size(); |
| rowid_decl = column_name + " ROWID"; |
| } |
| column_decl += " INTEGER"; |
| } else if (column_type.find("CHAR") != std::string::npos || |
| column_type.find("TEXT") != std::string::npos) { |
| column_decl += " TEXT"; |
| } else if (column_type == "BLOB") { |
| column_decl += " BLOB"; |
| } else if (column_type.find("DOUB") != std::string::npos) { |
| column_decl += " FLOAT"; |
| } else { |
| // TODO(shess): AFAICT, there remain: |
| // - contains("CLOB") -> TEXT |
| // - contains("REAL") -> FLOAT |
| // - contains("FLOA") -> FLOAT |
| // - other -> "NUMERIC" |
| // Just code those in as they come up. |
| NOTREACHED() << " Unsupported type " << column_type; |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVER_UNRECOGNIZED_TYPE); |
| return false; |
| } |
| |
| create_column_decls.push_back(column_decl); |
| |
| // Per the NOTE in the header file, convert NULL values to the |
| // DEFAULT. All columns could be IFNULL(column_name,default), but |
| // the NULL case would require special handling either way. |
| if (default_is_null) { |
| insert_columns.push_back(column_name); |
| } else { |
| // The default value appears to be pre-quoted, as if it is |
| // literally from the sqlite_master CREATE statement. |
| std::string default_value = s.ColumnString(4); |
| insert_columns.push_back(base::StringPrintf( |
| "IFNULL(%s,%s)", column_name.c_str(), default_value.c_str())); |
| } |
| } |
| |
| // Receiving no column information implies that the table doesn't exist. |
| if (create_column_decls.empty()) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVER_MISSING_TABLE); |
| return false; |
| } |
| |
| // If the PRIMARY KEY was a single INTEGER column, convert it to ROWID. |
| if (pk_column_count == 1 && !rowid_decl.empty()) |
| create_column_decls[rowid_ofs] = rowid_decl; |
| |
| std::string recover_create(base::StringPrintf( |
| "CREATE VIRTUAL TABLE temp.recover_%s USING recover(corrupt.%s, %s)", |
| table_name, |
| table_name, |
| base::JoinString(create_column_decls, ",").c_str())); |
| |
| // INSERT OR IGNORE means that it will drop rows resulting from constraint |
| // violations. INSERT OR REPLACE only handles UNIQUE constraint violations. |
| std::string recover_insert(base::StringPrintf( |
| "INSERT OR IGNORE INTO main.%s SELECT %s FROM temp.recover_%s", |
| table_name, |
| base::JoinString(insert_columns, ",").c_str(), |
| table_name)); |
| |
| std::string recover_drop(base::StringPrintf( |
| "DROP TABLE temp.recover_%s", table_name)); |
| |
| if (!db()->Execute(recover_create.c_str())) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVER_CREATE); |
| return false; |
| } |
| |
| if (!db()->Execute(recover_insert.c_str())) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVER_INSERT); |
| ignore_result(db()->Execute(recover_drop.c_str())); |
| return false; |
| } |
| |
| *rows_recovered = db()->GetLastChangeCount(); |
| |
| // TODO(shess): Is leaving the recover table around a breaker? |
| if (!db()->Execute(recover_drop.c_str())) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVER_DROP); |
| return false; |
| } |
| RecordRecoveryEvent(RECOVERY_SUCCESS_AUTORECOVER); |
| return true; |
| } |
| |
| bool Recovery::SetupMeta() { |
| static const char kCreateSql[] = |
| "CREATE VIRTUAL TABLE temp.recover_meta USING recover" |
| "(" |
| "corrupt.meta," |
| "key TEXT NOT NULL," |
| "value ANY" // Whatever is stored. |
| ")"; |
| if (!db()->Execute(kCreateSql)) { |
| RecordRecoveryEvent(RECOVERY_FAILED_META_CREATE); |
| return false; |
| } |
| RecordRecoveryEvent(RECOVERY_SUCCESS_SETUP_META); |
| return true; |
| } |
| |
| bool Recovery::GetMetaVersionNumber(int* version) { |
| DCHECK(version); |
| // TODO(shess): DCHECK(db()->DoesTableExist("temp.recover_meta")); |
| // Unfortunately, DoesTableExist() queries sqlite_master, not |
| // sqlite_temp_master. |
| |
| static const char kVersionSql[] = |
| "SELECT value FROM temp.recover_meta WHERE key = 'version'"; |
| sql::Statement recovery_version(db()->GetUniqueStatement(kVersionSql)); |
| if (!recovery_version.Step()) { |
| if (!recovery_version.Succeeded()) { |
| RecordRecoveryEvent(RECOVERY_FAILED_META_QUERY); |
| } else { |
| RecordRecoveryEvent(RECOVERY_FAILED_META_NO_VERSION); |
| } |
| return false; |
| } |
| |
| RecordRecoveryEvent(RECOVERY_SUCCESS_META_VERSION); |
| *version = recovery_version.ColumnInt(0); |
| return true; |
| } |
| |
| namespace { |
| |
| // Collect statements from [corrupt.sqlite_master.sql] which start with |prefix| |
| // (which should be a valid SQL string ending with the space before a table |
| // name), then apply the statements to [main]. Skip any table named |
| // 'sqlite_sequence', as that table is created on demand by SQLite if any tables |
| // use AUTOINCREMENT. |
| // |
| // Returns |true| if all of the matching items were created in the main |
| // database. Returns |false| if an item fails on creation, or if the corrupt |
| // database schema cannot be queried. |
| bool SchemaCopyHelper(Database* db, const char* prefix) { |
| const size_t prefix_len = strlen(prefix); |
| DCHECK_EQ(' ', prefix[prefix_len-1]); |
| |
| sql::Statement s(db->GetUniqueStatement( |
| "SELECT DISTINCT sql FROM corrupt.sqlite_master " |
| "WHERE name<>'sqlite_sequence'")); |
| while (s.Step()) { |
| std::string sql = s.ColumnString(0); |
| |
| // Skip statements that don't start with |prefix|. |
| if (sql.compare(0, prefix_len, prefix) != 0) |
| continue; |
| |
| sql.insert(prefix_len, "main."); |
| if (!db->Execute(sql.c_str())) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_SCHEMACREATE); |
| return false; |
| } |
| } |
| if (!s.Succeeded()) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_SCHEMASELECT); |
| return false; |
| } |
| return true; |
| } |
| |
| } // namespace |
| |
| // This method is derived from SQLite's vacuum.c. VACUUM operates very |
| // similarily, creating a new database, populating the schema, then copying the |
| // data. |
| // |
| // TODO(shess): This conservatively uses Rollback() rather than Unrecoverable(). |
| // With Rollback(), it is expected that the database will continue to generate |
| // errors. Change the failure cases to Unrecoverable() if/when histogram |
| // results indicate that everything is working reasonably. |
| // |
| // static |
| std::unique_ptr<Recovery> Recovery::BeginRecoverDatabase( |
| Database* db, |
| const base::FilePath& db_path) { |
| std::unique_ptr<sql::Recovery> recovery = sql::Recovery::Begin(db, db_path); |
| if (!recovery) { |
| // Close the underlying sqlite* handle. Windows does not allow deleting |
| // open files, and all platforms block opening a second sqlite3* handle |
| // against a database when exclusive locking is set. |
| db->Poison(); |
| |
| // Histograms from Recovery::Begin() show all current failures are in |
| // attaching the corrupt database, with 2/3 being SQLITE_NOTADB. Don't |
| // delete the database except for that specific failure case. |
| { |
| Database probe_db; |
| if (!probe_db.OpenInMemory() || |
| probe_db.AttachDatabase(db_path, "corrupt", InternalApiToken()) || |
| probe_db.GetErrorCode() != SQLITE_NOTADB) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_BEGIN); |
| return nullptr; |
| } |
| } |
| |
| // The database has invalid data in the SQLite header, so it is almost |
| // certainly not recoverable without manual intervention (and likely not |
| // recoverable _with_ manual intervention). Clear away the broken database. |
| if (!sql::Database::Delete(db_path)) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_NOTADB_DELETE); |
| return nullptr; |
| } |
| |
| // Windows deletion is complicated by file scanners and malware - sometimes |
| // Delete() appears to succeed, even though the file remains. The following |
| // attempts to track if this happens often enough to cause concern. |
| { |
| Database probe_db; |
| if (!probe_db.Open(db_path)) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_NOTADB_REOPEN); |
| return nullptr; |
| } |
| if (!probe_db.Execute("PRAGMA auto_vacuum")) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_NOTADB_QUERY); |
| return nullptr; |
| } |
| } |
| |
| // The rest of the recovery code could be run on the re-opened database, but |
| // the database is empty, so there would be no point. |
| RecordRecoveryEvent(RECOVERY_SUCCESS_AUTORECOVERDB_NOTADB_DELETE); |
| return nullptr; |
| } |
| |
| #if DCHECK_IS_ON() |
| // This code silently fails to recover fts3 virtual tables. At this time no |
| // browser database contain fts3 tables. Just to be safe, complain loudly if |
| // the database contains virtual tables. |
| // |
| // fts3 has an [x_segdir] table containing a column [end_block INTEGER]. But |
| // it actually stores either an integer or a text containing a pair of |
| // integers separated by a space. AutoRecoverTable() trusts the INTEGER tag |
| // when setting up the recover vtable, so those rows get dropped. Setting |
| // that column to ANY may work. |
| if (db->is_open()) { |
| sql::Statement s(db->GetUniqueStatement( |
| "SELECT 1 FROM sqlite_master WHERE sql LIKE 'CREATE VIRTUAL TABLE %'")); |
| DCHECK(!s.Step()) << "Recovery of virtual tables not supported"; |
| } |
| #endif |
| |
| // TODO(shess): vacuum.c turns off checks and foreign keys. |
| |
| // TODO(shess): vacuum.c turns synchronous=OFF for the target. I do not fully |
| // understand this, as the temporary db should not have a journal file at all. |
| // Perhaps it does in case of cache spill? |
| |
| // Copy table schema from [corrupt] to [main]. |
| if (!SchemaCopyHelper(recovery->db(), "CREATE TABLE ") || |
| !SchemaCopyHelper(recovery->db(), "CREATE INDEX ") || |
| !SchemaCopyHelper(recovery->db(), "CREATE UNIQUE INDEX ")) { |
| // No RecordRecoveryEvent() here because SchemaCopyHelper() already did. |
| Recovery::Rollback(std::move(recovery)); |
| return nullptr; |
| } |
| |
| // Run auto-recover against each table, skipping the sequence table. This is |
| // necessary because table recovery can create the sequence table as a side |
| // effect, so recovering that table inline could lead to duplicate data. |
| { |
| sql::Statement s(recovery->db()->GetUniqueStatement( |
| "SELECT name FROM sqlite_master WHERE sql LIKE 'CREATE TABLE %' " |
| "AND name!='sqlite_sequence'")); |
| while (s.Step()) { |
| const std::string name = s.ColumnString(0); |
| size_t rows_recovered; |
| if (!recovery->AutoRecoverTable(name.c_str(), &rows_recovered)) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_TABLE); |
| Recovery::Rollback(std::move(recovery)); |
| return nullptr; |
| } |
| } |
| if (!s.Succeeded()) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_NAMESELECT); |
| Recovery::Rollback(std::move(recovery)); |
| return nullptr; |
| } |
| } |
| |
| // Overwrite any sequences created. |
| if (recovery->db()->DoesTableExist("corrupt.sqlite_sequence")) { |
| ignore_result(recovery->db()->Execute("DELETE FROM main.sqlite_sequence")); |
| size_t rows_recovered; |
| if (!recovery->AutoRecoverTable("sqlite_sequence", &rows_recovered)) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_SEQUENCE); |
| Recovery::Rollback(std::move(recovery)); |
| return nullptr; |
| } |
| } |
| |
| // Copy triggers and views directly to sqlite_master. Any tables they refer |
| // to should already exist. |
| static const char kCreateMetaItemsSql[] = |
| "INSERT INTO main.sqlite_master " |
| "SELECT type, name, tbl_name, rootpage, sql " |
| "FROM corrupt.sqlite_master WHERE type='view' OR type='trigger'"; |
| if (!recovery->db()->Execute(kCreateMetaItemsSql)) { |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_AUX); |
| Recovery::Rollback(std::move(recovery)); |
| return nullptr; |
| } |
| |
| RecordRecoveryEvent(RECOVERY_SUCCESS_AUTORECOVERDB); |
| return recovery; |
| } |
| |
| void Recovery::RecoverDatabase(Database* db, const base::FilePath& db_path) { |
| std::unique_ptr<sql::Recovery> recovery = BeginRecoverDatabase(db, db_path); |
| |
| // ignore_result() because BeginRecoverDatabase() and Recovered() already |
| // provide suitable histogram coverage. |
| if (recovery) |
| ignore_result(Recovery::Recovered(std::move(recovery))); |
| } |
| |
| void Recovery::RecoverDatabaseWithMetaVersion(Database* db, |
| const base::FilePath& db_path) { |
| std::unique_ptr<sql::Recovery> recovery = BeginRecoverDatabase(db, db_path); |
| if (!recovery) |
| return; |
| |
| int version = 0; |
| if (!recovery->SetupMeta() || !recovery->GetMetaVersionNumber(&version)) { |
| sql::Recovery::Unrecoverable(std::move(recovery)); |
| RecordRecoveryEvent(RECOVERY_FAILED_AUTORECOVERDB_META_VERSION); |
| return; |
| } |
| |
| // ignore_result() because BeginRecoverDatabase() and Recovered() already |
| // provide suitable histogram coverage. |
| ignore_result(Recovery::Recovered(std::move(recovery))); |
| } |
| |
| // static |
| bool Recovery::ShouldRecover(int extended_error) { |
| // Trim extended error codes. |
| int error = extended_error & 0xFF; |
| switch (error) { |
| case SQLITE_NOTADB: |
| // SQLITE_NOTADB happens if the SQLite header is broken. Some earlier |
| // versions of SQLite return this where other versions return |
| // SQLITE_CORRUPT, which is a recoverable case. Later versions only |
| // return this error only in unrecoverable cases, in which case recovery |
| // will fail with no changes to the database, so there's no harm in |
| // attempting recovery in this case. |
| return true; |
| |
| case SQLITE_CORRUPT: |
| // SQLITE_CORRUPT generally means that the database is readable as a |
| // SQLite database, but some inconsistency has been detected by SQLite. |
| // In many cases the inconsistency is relatively trivial, such as if an |
| // index refers to a row which was deleted, in which case most or even all |
| // of the data can be recovered. This can also be reported if parts of |
| // the file have been overwritten with garbage data, in which recovery |
| // should be able to recover partial data. |
| return true; |
| |
| // TODO(shess): Possible future options for automated fixing: |
| // - SQLITE_CANTOPEN - delete the broken symlink or directory. |
| // - SQLITE_PERM - permissions could be fixed. |
| // - SQLITE_READONLY - permissions could be fixed. |
| // - SQLITE_IOERR - rewrite using new blocks. |
| // - SQLITE_FULL - recover in memory and rewrite subset of data. |
| |
| default: |
| return false; |
| } |
| } |
| |
| // static |
| int Recovery::EnableRecoveryExtension(Database* db, InternalApiToken) { |
| return sql::recover::RegisterRecoverExtension(db->db(InternalApiToken())); |
| } |
| |
| } // namespace sql |