| // Copyright 2011 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "courgette/encoded_program.h" |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <algorithm> |
| #include <map> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "base/environment.h" |
| #include "base/logging.h" |
| #include "base/memory/raw_ptr.h" |
| #include "base/numerics/safe_conversions.h" |
| #include "base/numerics/safe_math.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "base/strings/string_util.h" |
| #include "courgette/label_manager.h" |
| #include "courgette/streams.h" |
| |
| namespace courgette { |
| |
| namespace { |
| |
| // Serializes a vector of integral values using Varint32 coding. |
| template<typename V> |
| CheckBool WriteVector(const V& items, SinkStream* buffer) { |
| size_t count = items.size(); |
| bool ok = buffer->WriteSizeVarint32(count); |
| for (size_t i = 0; ok && i < count; ++i) { |
| ok = buffer->WriteSizeVarint32(items[i]); |
| } |
| return ok; |
| } |
| |
| template<typename V> |
| bool ReadVector(V* items, SourceStream* buffer) { |
| uint32_t count; |
| if (!buffer->ReadVarint32(&count)) |
| return false; |
| |
| items->clear(); |
| |
| bool ok = items->reserve(count); |
| for (size_t i = 0; ok && i < count; ++i) { |
| uint32_t item; |
| ok = buffer->ReadVarint32(&item); |
| if (ok) |
| ok = items->push_back(static_cast<typename V::value_type>(item)); |
| } |
| |
| return ok; |
| } |
| |
| // Serializes a vector, using delta coding followed by Varint32Signed coding. |
| template<typename V> |
| CheckBool WriteSigned32Delta(const V& set, SinkStream* buffer) { |
| size_t count = set.size(); |
| bool ok = buffer->WriteSizeVarint32(count); |
| uint32_t prev = 0; |
| for (size_t i = 0; ok && i < count; ++i) { |
| uint32_t current = set[i]; |
| int32_t delta = current - prev; |
| ok = buffer->WriteVarint32Signed(delta); |
| prev = current; |
| } |
| return ok; |
| } |
| |
| template <typename V> |
| static CheckBool ReadSigned32Delta(V* set, SourceStream* buffer) { |
| uint32_t count; |
| |
| if (!buffer->ReadVarint32(&count)) |
| return false; |
| |
| set->clear(); |
| bool ok = set->reserve(count); |
| uint32_t prev = 0; |
| for (size_t i = 0; ok && i < count; ++i) { |
| int32_t delta; |
| ok = buffer->ReadVarint32Signed(&delta); |
| if (ok) { |
| uint32_t current = static_cast<uint32_t>(prev + delta); |
| ok = set->push_back(current); |
| prev = current; |
| } |
| } |
| return ok; |
| } |
| |
| // Write a vector as the byte representation of the contents. |
| // |
| // (This only really makes sense for a type T that has sizeof(T)==1, otherwise |
| // serialized representation is not endian-agnostic. But it is useful to keep |
| // the possibility of a greater size for experiments comparing Varint32 encoding |
| // of a vector of larger integrals vs a plain form.) |
| // |
| template<typename V> |
| CheckBool WriteVectorU8(const V& items, SinkStream* buffer) { |
| size_t count = items.size(); |
| bool ok = buffer->WriteSizeVarint32(count); |
| if (count != 0 && ok) { |
| size_t byte_count = count * sizeof(typename V::value_type); |
| ok = buffer->Write(static_cast<const void*>(&items[0]), byte_count); |
| } |
| return ok; |
| } |
| |
| template<typename V> |
| bool ReadVectorU8(V* items, SourceStream* buffer) { |
| uint32_t count; |
| if (!buffer->ReadVarint32(&count)) |
| return false; |
| |
| items->clear(); |
| bool ok = items->resize(count, 0); |
| if (ok && count != 0) { |
| size_t byte_count = count * sizeof(typename V::value_type); |
| return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count); |
| } |
| return ok; |
| } |
| |
| /******** InstructionStoreReceptor ********/ |
| |
| // An InstructionReceptor that stores emitted instructions. |
| class InstructionStoreReceptor : public InstructionReceptor { |
| public: |
| explicit InstructionStoreReceptor(ExecutableType exe_type, |
| EncodedProgram* encoded) |
| : exe_type_(exe_type), encoded_(encoded) { |
| CHECK(encoded_); |
| } |
| |
| InstructionStoreReceptor(const InstructionStoreReceptor&) = delete; |
| InstructionStoreReceptor& operator=(const InstructionStoreReceptor&) = delete; |
| |
| CheckBool EmitPeRelocs() override { |
| return encoded_->AddPeMakeRelocs(exe_type_); |
| } |
| CheckBool EmitElfRelocation() override { |
| return encoded_->AddElfMakeRelocs(); |
| } |
| CheckBool EmitOrigin(RVA rva) override { return encoded_->AddOrigin(rva); } |
| CheckBool EmitSingleByte(uint8_t byte) override { |
| return encoded_->AddCopy(1, &byte); |
| } |
| CheckBool EmitMultipleBytes(const uint8_t* bytes, size_t len) override { |
| return encoded_->AddCopy(len, bytes); |
| } |
| CheckBool EmitRel32(Label* label) override { |
| return encoded_->AddRel32(label->index_); |
| } |
| CheckBool EmitAbs32(Label* label) override { |
| return encoded_->AddAbs32(label->index_); |
| } |
| CheckBool EmitAbs64(Label* label) override { |
| return encoded_->AddAbs64(label->index_); |
| } |
| |
| private: |
| ExecutableType exe_type_; |
| raw_ptr<EncodedProgram> encoded_; |
| }; |
| |
| } // namespace |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // Constructor is here rather than in the header. Although the constructor |
| // appears to do nothing it is fact quite large because of the implicit calls to |
| // field constructors. Ditto for the destructor. |
| EncodedProgram::EncodedProgram() = default; |
| EncodedProgram::~EncodedProgram() = default; |
| |
| CheckBool EncodedProgram::ImportLabels( |
| const LabelManager& abs32_label_manager, |
| const LabelManager& rel32_label_manager) { |
| if (!WriteRvasToList(abs32_label_manager, &abs32_rva_) || |
| !WriteRvasToList(rel32_label_manager, &rel32_rva_)) { |
| return false; |
| } |
| FillUnassignedRvaSlots(&abs32_rva_); |
| FillUnassignedRvaSlots(&rel32_rva_); |
| return true; |
| } |
| |
| CheckBool EncodedProgram::AddOrigin(RVA origin) { |
| return ops_.push_back(ORIGIN) && origins_.push_back(origin); |
| } |
| |
| CheckBool EncodedProgram::AddCopy(size_t count, const void* bytes) { |
| const uint8_t* source = static_cast<const uint8_t*>(bytes); |
| |
| bool ok = true; |
| |
| // Fold adjacent COPY instructions into one. This nearly halves the size of |
| // an EncodedProgram with only COPY1 instructions since there are approx plain |
| // 16 bytes per reloc. This has a working-set benefit during decompression. |
| // For compression of files with large differences this makes a small (4%) |
| // improvement in size. For files with small differences this degrades the |
| // compressed size by 1.3% |
| if (!ops_.empty()) { |
| if (ops_.back() == COPY1) { |
| ops_.back() = COPY; |
| ok = copy_counts_.push_back(1); |
| } |
| if (ok && ops_.back() == COPY) { |
| copy_counts_.back() += count; |
| for (size_t i = 0; ok && i < count; ++i) { |
| ok = copy_bytes_.push_back(source[i]); |
| } |
| return ok; |
| } |
| } |
| |
| if (ok) { |
| if (count == 1) { |
| ok = ops_.push_back(COPY1) && copy_bytes_.push_back(source[0]); |
| } else { |
| ok = ops_.push_back(COPY) && copy_counts_.push_back(count); |
| for (size_t i = 0; ok && i < count; ++i) { |
| ok = copy_bytes_.push_back(source[i]); |
| } |
| } |
| } |
| |
| return ok; |
| } |
| |
| CheckBool EncodedProgram::AddAbs32(int label_index) { |
| return ops_.push_back(ABS32) && abs32_ix_.push_back(label_index); |
| } |
| |
| CheckBool EncodedProgram::AddAbs64(int label_index) { |
| return ops_.push_back(ABS64) && abs32_ix_.push_back(label_index); |
| } |
| |
| CheckBool EncodedProgram::AddRel32(int label_index) { |
| return ops_.push_back(REL32) && rel32_ix_.push_back(label_index); |
| } |
| |
| CheckBool EncodedProgram::AddPeMakeRelocs(ExecutableType kind) { |
| if (kind == EXE_WIN_32_X86) |
| return ops_.push_back(MAKE_PE_RELOCATION_TABLE); |
| return ops_.push_back(MAKE_PE64_RELOCATION_TABLE); |
| } |
| |
| CheckBool EncodedProgram::AddElfMakeRelocs() { |
| return ops_.push_back(MAKE_ELF_RELOCATION_TABLE); |
| } |
| |
| void EncodedProgram::DebuggingSummary() { |
| VLOG(1) << "EncodedProgram Summary" |
| << "\n image base " << image_base_ |
| << "\n abs32 rvas " << abs32_rva_.size() |
| << "\n rel32 rvas " << rel32_rva_.size() |
| << "\n ops " << ops_.size() |
| << "\n origins " << origins_.size() |
| << "\n copy_counts " << copy_counts_.size() |
| << "\n copy_bytes " << copy_bytes_.size() |
| << "\n abs32_ix " << abs32_ix_.size() |
| << "\n rel32_ix " << rel32_ix_.size(); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // For algorithm refinement purposes it is useful to write subsets of the file |
| // format. This gives us the ability to estimate the entropy of the |
| // differential compression of the individual streams, which can provide |
| // invaluable insights. The default, of course, is to include all the streams. |
| // |
| enum FieldSelect { |
| INCLUDE_ABS32_ADDRESSES = 0x0001, |
| INCLUDE_REL32_ADDRESSES = 0x0002, |
| INCLUDE_ABS32_INDEXES = 0x0010, |
| INCLUDE_REL32_INDEXES = 0x0020, |
| INCLUDE_OPS = 0x0100, |
| INCLUDE_BYTES = 0x0200, |
| INCLUDE_COPY_COUNTS = 0x0400, |
| INCLUDE_MISC = 0x1000 |
| }; |
| |
| static FieldSelect GetFieldSelect() { |
| // TODO(sra): Use better configuration. |
| std::unique_ptr<base::Environment> env(base::Environment::Create()); |
| std::string s; |
| env->GetVar("A_FIELDS", &s); |
| uint64_t fields; |
| if (!base::StringToUint64(s, &fields)) |
| return static_cast<FieldSelect>(~0); |
| return static_cast<FieldSelect>(fields); |
| } |
| |
| CheckBool EncodedProgram::WriteTo(SinkStreamSet* streams) { |
| FieldSelect select = GetFieldSelect(); |
| |
| // The order of fields must be consistent in WriteTo and ReadFrom, regardless |
| // of the streams used. The code can be configured with all kStreamXXX |
| // constants the same. |
| // |
| // If we change the code to pipeline reading with assembly (to avoid temporary |
| // storage vectors by consuming operands directly from the stream) then we |
| // need to read the base address and the random access address tables first, |
| // the rest can be interleaved. |
| |
| if (select & INCLUDE_MISC) { |
| uint32_t high = static_cast<uint32_t>(image_base_ >> 32); |
| uint32_t low = static_cast<uint32_t>(image_base_ & 0xffffffffU); |
| |
| if (!streams->stream(kStreamMisc)->WriteVarint32(high) || |
| !streams->stream(kStreamMisc)->WriteVarint32(low)) { |
| return false; |
| } |
| } |
| |
| bool success = true; |
| |
| if (select & INCLUDE_ABS32_ADDRESSES) { |
| success &= WriteSigned32Delta(abs32_rva_, |
| streams->stream(kStreamAbs32Addresses)); |
| } |
| |
| if (select & INCLUDE_REL32_ADDRESSES) { |
| success &= WriteSigned32Delta(rel32_rva_, |
| streams->stream(kStreamRel32Addresses)); |
| } |
| |
| if (select & INCLUDE_MISC) |
| success &= WriteVector(origins_, streams->stream(kStreamOriginAddresses)); |
| |
| if (select & INCLUDE_OPS) { |
| // 5 for length. |
| success &= streams->stream(kStreamOps)->Reserve(ops_.size() + 5); |
| success &= WriteVector(ops_, streams->stream(kStreamOps)); |
| } |
| |
| if (select & INCLUDE_COPY_COUNTS) |
| success &= WriteVector(copy_counts_, streams->stream(kStreamCopyCounts)); |
| |
| if (select & INCLUDE_BYTES) |
| success &= WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes)); |
| |
| if (select & INCLUDE_ABS32_INDEXES) |
| success &= WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes)); |
| |
| if (select & INCLUDE_REL32_INDEXES) |
| success &= WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes)); |
| |
| return success; |
| } |
| |
| bool EncodedProgram::ReadFrom(SourceStreamSet* streams) { |
| uint32_t high; |
| uint32_t low; |
| |
| if (!streams->stream(kStreamMisc)->ReadVarint32(&high) || |
| !streams->stream(kStreamMisc)->ReadVarint32(&low)) { |
| return false; |
| } |
| image_base_ = (static_cast<uint64_t>(high) << 32) | low; |
| |
| if (!ReadSigned32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses))) |
| return false; |
| if (!ReadSigned32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses))) |
| return false; |
| if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses))) |
| return false; |
| if (!ReadVector(&ops_, streams->stream(kStreamOps))) |
| return false; |
| if (!ReadVector(©_counts_, streams->stream(kStreamCopyCounts))) |
| return false; |
| if (!ReadVectorU8(©_bytes_, streams->stream(kStreamBytes))) |
| return false; |
| if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes))) |
| return false; |
| if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes))) |
| return false; |
| |
| // Check that streams have been completely consumed. |
| for (int i = 0; i < kStreamLimit; ++i) { |
| if (streams->stream(i)->Remaining() > 0) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Safe, non-throwing version of std::vector::at(). Returns 'true' for success, |
| // 'false' for out-of-bounds index error. |
| template<typename V, typename T> |
| bool VectorAt(const V& v, size_t index, T* output) { |
| if (index >= v.size()) |
| return false; |
| *output = v[index]; |
| return true; |
| } |
| |
| CheckBool EncodedProgram::AssembleTo(SinkStream* final_buffer) { |
| // For the most part, the assembly process walks the various tables. |
| // ix_mumble is the index into the mumble table. |
| size_t ix_origins = 0; |
| size_t ix_copy_counts = 0; |
| size_t ix_copy_bytes = 0; |
| size_t ix_abs32_ix = 0; |
| size_t ix_rel32_ix = 0; |
| |
| RVA current_rva = 0; |
| |
| bool pending_pe_relocation_table = false; |
| uint8_t pending_pe_relocation_table_type = 0x03; // IMAGE_REL_BASED_HIGHLOW |
| Elf32_Word pending_elf_relocation_table_type = 0; |
| SinkStream bytes_following_relocation_table; |
| |
| SinkStream* output = final_buffer; |
| |
| for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) { |
| OP op = ops_[ix_ops]; |
| |
| switch (op) { |
| default: |
| return false; |
| |
| case ORIGIN: { |
| RVA section_rva; |
| if (!VectorAt(origins_, ix_origins, §ion_rva)) |
| return false; |
| ++ix_origins; |
| current_rva = section_rva; |
| break; |
| } |
| |
| case COPY: { |
| size_t count; |
| if (!VectorAt(copy_counts_, ix_copy_counts, &count)) |
| return false; |
| ++ix_copy_counts; |
| for (size_t i = 0; i < count; ++i) { |
| uint8_t b; |
| if (!VectorAt(copy_bytes_, ix_copy_bytes, &b)) |
| return false; |
| ++ix_copy_bytes; |
| if (!output->Write(&b, 1)) |
| return false; |
| } |
| current_rva += static_cast<RVA>(count); |
| break; |
| } |
| |
| case COPY1: { |
| uint8_t b; |
| if (!VectorAt(copy_bytes_, ix_copy_bytes, &b)) |
| return false; |
| ++ix_copy_bytes; |
| if (!output->Write(&b, 1)) |
| return false; |
| current_rva += 1; |
| break; |
| } |
| |
| case REL32: { |
| uint32_t index; |
| if (!VectorAt(rel32_ix_, ix_rel32_ix, &index)) |
| return false; |
| ++ix_rel32_ix; |
| RVA rva; |
| if (!VectorAt(rel32_rva_, index, &rva)) |
| return false; |
| uint32_t offset = (rva - (current_rva + 4)); |
| if (!output->Write(&offset, 4)) |
| return false; |
| current_rva += 4; |
| break; |
| } |
| |
| case ABS32: |
| case ABS64: { |
| uint32_t index; |
| if (!VectorAt(abs32_ix_, ix_abs32_ix, &index)) |
| return false; |
| ++ix_abs32_ix; |
| RVA rva; |
| if (!VectorAt(abs32_rva_, index, &rva)) |
| return false; |
| if (op == ABS32) { |
| base::CheckedNumeric<uint32_t> abs32 = image_base_; |
| abs32 += rva; |
| uint32_t safe_abs32 = abs32.ValueOrDie(); |
| if (!abs32_relocs_.push_back(current_rva) || |
| !output->Write(&safe_abs32, 4)) { |
| return false; |
| } |
| current_rva += 4; |
| } else { |
| base::CheckedNumeric<uint64_t> abs64 = image_base_; |
| abs64 += rva; |
| uint64_t safe_abs64 = abs64.ValueOrDie(); |
| if (!abs32_relocs_.push_back(current_rva) || |
| !output->Write(&safe_abs64, 8)) { |
| return false; |
| } |
| current_rva += 8; |
| } |
| break; |
| } |
| |
| case MAKE_PE_RELOCATION_TABLE: { |
| // We can see the base relocation anywhere, but we only have the |
| // information to generate it at the very end. So we divert the bytes |
| // we are generating to a temporary stream. |
| if (pending_pe_relocation_table) |
| return false; // Can't have two base relocation tables. |
| |
| pending_pe_relocation_table = true; |
| output = &bytes_following_relocation_table; |
| break; |
| // There is a potential problem *if* the instruction stream contains |
| // some REL32 relocations following the base relocation and in the same |
| // section. We don't know the size of the table, so 'current_rva' will |
| // be wrong, causing REL32 offsets to be miscalculated. This never |
| // happens; the base relocation table is usually in a section of its |
| // own, a data-only section, and following everything else in the |
| // executable except some padding zero bytes. We could fix this by |
| // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE. |
| } |
| |
| case MAKE_PE64_RELOCATION_TABLE: { |
| if (pending_pe_relocation_table) |
| return false; // Can't have two base relocation tables. |
| |
| pending_pe_relocation_table = true; |
| pending_pe_relocation_table_type = 0x0A; // IMAGE_REL_BASED_DIR64 |
| output = &bytes_following_relocation_table; |
| break; |
| } |
| |
| case MAKE_ELF_RELOCATION_TABLE: { |
| // We can see the base relocation anywhere, but we only have the |
| // information to generate it at the very end. So we divert the bytes |
| // we are generating to a temporary stream. |
| if (pending_elf_relocation_table_type) |
| return false; // Can't have two base relocation tables. |
| |
| pending_elf_relocation_table_type = R_386_RELATIVE; |
| output = &bytes_following_relocation_table; |
| break; |
| } |
| } |
| } |
| |
| if (pending_pe_relocation_table) { |
| if (!GeneratePeRelocations(final_buffer, |
| pending_pe_relocation_table_type) || |
| !final_buffer->Append(&bytes_following_relocation_table)) |
| return false; |
| } |
| |
| if (pending_elf_relocation_table_type) { |
| if (!GenerateElfRelocations(pending_elf_relocation_table_type, |
| final_buffer) || |
| !final_buffer->Append(&bytes_following_relocation_table)) |
| return false; |
| } |
| |
| // Final verification check: did we consume all lists? |
| if (ix_copy_counts != copy_counts_.size()) |
| return false; |
| if (ix_copy_bytes != copy_bytes_.size()) |
| return false; |
| if (ix_abs32_ix != abs32_ix_.size()) |
| return false; |
| if (ix_rel32_ix != rel32_ix_.size()) |
| return false; |
| |
| return true; |
| } |
| |
| CheckBool EncodedProgram::GenerateInstructions( |
| ExecutableType exe_type, |
| const InstructionGenerator& gen) { |
| InstructionStoreReceptor store_receptor(exe_type, this); |
| return gen.Run(&store_receptor); |
| } |
| |
| // RelocBlock has the layout of a block of relocations in the base relocation |
| // table file format. |
| struct RelocBlockPOD { |
| uint32_t page_rva; |
| uint32_t block_size; |
| uint16_t relocs[4096]; // Allow up to one relocation per byte of a 4k page. |
| }; |
| |
| static_assert(offsetof(RelocBlockPOD, relocs) == 8, "reloc block header size"); |
| |
| class RelocBlock { |
| public: |
| RelocBlock() { |
| pod.page_rva = 0xFFFFFFFF; |
| pod.block_size = 8; |
| } |
| |
| void Add(uint16_t item) { |
| pod.relocs[(pod.block_size-8)/2] = item; |
| pod.block_size += 2; |
| } |
| |
| [[nodiscard]] CheckBool Flush(SinkStream* buffer) { |
| bool ok = true; |
| if (pod.block_size != 8) { |
| if (pod.block_size % 4 != 0) { // Pad to make size multiple of 4 bytes. |
| Add(0); |
| } |
| ok = buffer->Write(&pod, pod.block_size); |
| pod.block_size = 8; |
| } |
| return ok; |
| } |
| RelocBlockPOD pod; |
| }; |
| |
| // static |
| // Updates |rvas| so |rvas[label.index_] == label.rva_| for each |label| in |
| // |label_manager|, assuming |label.index_| is properly assigned. Takes care of |
| // |rvas| resizing. Unused slots in |rvas| are assigned |kUnassignedRVA|. |
| // Returns true on success, and false otherwise. |
| CheckBool EncodedProgram::WriteRvasToList(const LabelManager& label_manager, |
| RvaVector* rvas) { |
| rvas->clear(); |
| int index_bound = LabelManager::GetLabelIndexBound(label_manager.Labels()); |
| if (!rvas->resize(index_bound, kUnassignedRVA)) |
| return false; |
| |
| // For each Label, write its RVA to assigned index. |
| for (const Label& label : label_manager.Labels()) { |
| DCHECK_NE(label.index_, Label::kNoIndex); |
| DCHECK_EQ((*rvas)[label.index_], kUnassignedRVA) |
| << "ExportToList() double assigned " << label.index_; |
| (*rvas)[label.index_] = label.rva_; |
| } |
| return true; |
| } |
| |
| // static |
| // Replaces all unassigned slots in |rvas| with the value at the previous index |
| // so they delta-encode to zero. (There might be better values than zero. The |
| // way to get that is have the higher level assembly program assign the |
| // unassigned slots.) |
| void EncodedProgram::FillUnassignedRvaSlots(RvaVector* rvas) { |
| RVA previous = 0; |
| for (RVA& rva : *rvas) { |
| if (rva == kUnassignedRVA) |
| rva = previous; |
| else |
| previous = rva; |
| } |
| } |
| |
| CheckBool EncodedProgram::GeneratePeRelocations(SinkStream* buffer, |
| uint8_t type) { |
| std::sort(abs32_relocs_.begin(), abs32_relocs_.end()); |
| DCHECK(abs32_relocs_.empty() || abs32_relocs_.back() != kUnassignedRVA); |
| |
| RelocBlock block; |
| |
| bool ok = true; |
| for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) { |
| uint32_t rva = abs32_relocs_[i]; |
| uint32_t page_rva = rva & ~0xFFF; |
| if (page_rva != block.pod.page_rva) { |
| ok &= block.Flush(buffer); |
| block.pod.page_rva = page_rva; |
| } |
| if (ok) |
| block.Add(((static_cast<uint16_t>(type)) << 12) | (rva & 0xFFF)); |
| } |
| ok &= block.Flush(buffer); |
| return ok; |
| } |
| |
| CheckBool EncodedProgram::GenerateElfRelocations(Elf32_Word r_info, |
| SinkStream* buffer) { |
| std::sort(abs32_relocs_.begin(), abs32_relocs_.end()); |
| DCHECK(abs32_relocs_.empty() || abs32_relocs_.back() != kUnassignedRVA); |
| |
| Elf32_Rel relocation_block; |
| |
| relocation_block.r_info = r_info; |
| |
| bool ok = true; |
| for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) { |
| relocation_block.r_offset = abs32_relocs_[i]; |
| ok = buffer->Write(&relocation_block, sizeof(Elf32_Rel)); |
| } |
| |
| return ok; |
| } |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) { |
| if (!encoded->WriteTo(sink)) |
| return C_STREAM_ERROR; |
| return C_OK; |
| } |
| |
| Status ReadEncodedProgram(SourceStreamSet* streams, |
| std::unique_ptr<EncodedProgram>* output) { |
| output->reset(); |
| std::unique_ptr<EncodedProgram> encoded(new EncodedProgram()); |
| if (!encoded->ReadFrom(streams)) |
| return C_DESERIALIZATION_FAILED; |
| |
| *output = std::move(encoded); |
| return C_OK; |
| } |
| |
| Status Assemble(EncodedProgram* encoded, SinkStream* buffer) { |
| bool assembled = encoded->AssembleTo(buffer); |
| if (assembled) |
| return C_OK; |
| return C_ASSEMBLY_FAILED; |
| } |
| |
| } // namespace courgette |