[go: nahoru, domu]

blob: 2af8a72320fa489750568d0f26b12ef406fc46ab [file] [log] [blame]
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Portions of this code based on Mozilla:
// (netwerk/cookie/src/nsCookieService.cpp)
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Daniel Witte (dwitte@stanford.edu)
* Michiel van Leeuwen (mvl@exedo.nl)
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "net/base/cookie_monster.h"
#include <algorithm>
#include "base/basictypes.h"
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/scoped_ptr.h"
#include "base/string_tokenizer.h"
#include "base/string_util.h"
#include "googleurl/src/gurl.h"
#include "net/base/net_util.h"
#include "net/base/registry_controlled_domain.h"
// #define COOKIE_LOGGING_ENABLED
#ifdef COOKIE_LOGGING_ENABLED
#define COOKIE_DLOG(severity) DLOG_IF(INFO, 1)
#else
#define COOKIE_DLOG(severity) DLOG_IF(INFO, 0)
#endif
using base::Time;
using base::TimeDelta;
namespace net {
// Cookie garbage collection thresholds. Based off of the Mozilla defaults.
// It might seem scary to have a high purge value, but really it's not. You
// just make sure that you increase the max to cover the increase in purge,
// and we would have been purging the same amount of cookies. We're just
// going through the garbage collection process less often.
static const size_t kNumCookiesPerHost = 70; // ~50 cookies
static const size_t kNumCookiesPerHostPurge = 20;
static const size_t kNumCookiesTotal = 3300; // ~3000 cookies
static const size_t kNumCookiesTotalPurge = 300;
// Default minimum delay after updating a cookie's LastAccessDate before we
// will update it again.
static const int kDefaultAccessUpdateThresholdSeconds = 60;
// static
bool CookieMonster::enable_file_scheme_ = false;
// static
void CookieMonster::EnableFileScheme() {
enable_file_scheme_ = true;
}
CookieMonster::CookieMonster()
: initialized_(false),
store_(NULL),
last_access_threshold_(
TimeDelta::FromSeconds(kDefaultAccessUpdateThresholdSeconds)) {
SetDefaultCookieableSchemes();
}
CookieMonster::CookieMonster(PersistentCookieStore* store)
: initialized_(false),
store_(store),
last_access_threshold_(
TimeDelta::FromSeconds(kDefaultAccessUpdateThresholdSeconds)) {
SetDefaultCookieableSchemes();
}
CookieMonster::~CookieMonster() {
DeleteAll(false);
}
void CookieMonster::InitStore() {
DCHECK(store_) << "Store must exist to initialize";
// Initialize the store and sync in any saved persistent cookies. We don't
// care if it's expired, insert it so it can be garbage collected, removed,
// and sync'd.
std::vector<KeyedCanonicalCookie> cookies;
// Reserve space for the maximum amount of cookies a database should have.
// This prevents multiple vector growth / copies as we append cookies.
cookies.reserve(kNumCookiesTotal);
store_->Load(&cookies);
for (std::vector<KeyedCanonicalCookie>::const_iterator it = cookies.begin();
it != cookies.end(); ++it) {
InternalInsertCookie(it->first, it->second, false);
}
}
void CookieMonster::SetDefaultCookieableSchemes() {
// Note: file must be the last scheme.
static const char* kDefaultCookieableSchemes[] = { "http", "https", "file" };
int num_schemes = enable_file_scheme_ ? 3 : 2;
SetCookieableSchemes(kDefaultCookieableSchemes, num_schemes);
}
// The system resolution is not high enough, so we can have multiple
// set cookies that result in the same system time. When this happens, we
// increment by one Time unit. Let's hope computers don't get too fast.
Time CookieMonster::CurrentTime() {
return std::max(Time::Now(),
Time::FromInternalValue(last_time_seen_.ToInternalValue() + 1));
}
// Parse a cookie expiration time. We try to be lenient, but we need to
// assume some order to distinguish the fields. The basic rules:
// - The month name must be present and prefix the first 3 letters of the
// full month name (jan for January, jun for June).
// - If the year is <= 2 digits, it must occur after the day of month.
// - The time must be of the format hh:mm:ss.
// An average cookie expiration will look something like this:
// Sat, 15-Apr-17 21:01:22 GMT
Time CookieMonster::ParseCookieTime(const std::string& time_string) {
static const char* kMonths[] = { "jan", "feb", "mar", "apr", "may", "jun",
"jul", "aug", "sep", "oct", "nov", "dec" };
static const int kMonthsLen = arraysize(kMonths);
// We want to be pretty liberal, and support most non-ascii and non-digit
// characters as a delimiter. We can't treat : as a delimiter, because it
// is the delimiter for hh:mm:ss, and we want to keep this field together.
// We make sure to include - and +, since they could prefix numbers.
// If the cookie attribute came in in quotes (ex expires="XXX"), the quotes
// will be preserved, and we will get them here. So we make sure to include
// quote characters, and also \ for anything that was internally escaped.
static const char* kDelimiters = "\t !\"#$%&'()*+,-./;<=>?@[\\]^_`{|}~";
Time::Exploded exploded = {0};
StringTokenizer tokenizer(time_string, kDelimiters);
bool found_day_of_month = false;
bool found_month = false;
bool found_time = false;
bool found_year = false;
while (tokenizer.GetNext()) {
const std::string token = tokenizer.token();
DCHECK(!token.empty());
bool numerical = IsAsciiDigit(token[0]);
// String field
if (!numerical) {
if (!found_month) {
for (int i = 0; i < kMonthsLen; ++i) {
// Match prefix, so we could match January, etc
if (base::strncasecmp(token.c_str(), kMonths[i], 3) == 0) {
exploded.month = i + 1;
found_month = true;
break;
}
}
} else {
// If we've gotten here, it means we've already found and parsed our
// month, and we have another string, which we would expect to be the
// the time zone name. According to the RFC and my experiments with
// how sites format their expirations, we don't have much of a reason
// to support timezones. We don't want to ever barf on user input,
// but this DCHECK should pass for well-formed data.
// DCHECK(token == "GMT");
}
// Numeric field w/ a colon
} else if (token.find(':') != std::string::npos) {
if (!found_time &&
#ifdef COMPILER_MSVC
sscanf_s(
#else
sscanf(
#endif
token.c_str(), "%2u:%2u:%2u", &exploded.hour,
&exploded.minute, &exploded.second) == 3) {
found_time = true;
} else {
// We should only ever encounter one time-like thing. If we're here,
// it means we've found a second, which shouldn't happen. We keep
// the first. This check should be ok for well-formed input:
// NOTREACHED();
}
// Numeric field
} else {
// Overflow with atoi() is unspecified, so we enforce a max length.
if (!found_day_of_month && token.length() <= 2) {
exploded.day_of_month = atoi(token.c_str());
found_day_of_month = true;
} else if (!found_year && token.length() <= 5) {
exploded.year = atoi(token.c_str());
found_year = true;
} else {
// If we're here, it means we've either found an extra numeric field,
// or a numeric field which was too long. For well-formed input, the
// following check would be reasonable:
// NOTREACHED();
}
}
}
if (!found_day_of_month || !found_month || !found_time || !found_year) {
// We didn't find all of the fields we need. For well-formed input, the
// following check would be reasonable:
// NOTREACHED() << "Cookie parse expiration failed: " << time_string;
return Time();
}
// Normalize the year to expand abbreviated years to the full year.
if (exploded.year >= 69 && exploded.year <= 99)
exploded.year += 1900;
if (exploded.year >= 0 && exploded.year <= 68)
exploded.year += 2000;
// If our values are within their correct ranges, we got our time.
if (exploded.day_of_month >= 1 && exploded.day_of_month <= 31 &&
exploded.month >= 1 && exploded.month <= 12 &&
exploded.year >= 1601 && exploded.year <= 30827 &&
exploded.hour <= 23 && exploded.minute <= 59 && exploded.second <= 59) {
return Time::FromUTCExploded(exploded);
}
// One of our values was out of expected range. For well-formed input,
// the following check would be reasonable:
// NOTREACHED() << "Cookie exploded expiration failed: " << time_string;
return Time();
}
// Determine the cookie domain key to use for setting the specified cookie.
// On success returns true, and sets cookie_domain_key to either a
// -host cookie key (ex: "google.com")
// -domain cookie key (ex: ".google.com")
static bool GetCookieDomainKey(const GURL& url,
const CookieMonster::ParsedCookie& pc,
std::string* cookie_domain_key) {
const std::string url_host(url.host());
// If no domain was specified in the cookie, default to a host cookie.
// We match IE/Firefox in allowing a domain=IPADDR if it matches the url
// ip address hostname exactly. It should be treated as a host cookie.
if (!pc.HasDomain() || pc.Domain().empty() ||
(url.HostIsIPAddress() && url_host == pc.Domain())) {
*cookie_domain_key = url_host;
DCHECK((*cookie_domain_key)[0] != '.');
return true;
}
// Get the normalized domain specified in cookie line.
// Note: The RFC says we can reject a cookie if the domain
// attribute does not start with a dot. IE/FF/Safari however, allow a cookie
// of the form domain=my.domain.com, treating it the same as
// domain=.my.domain.com -- for compatibility we do the same here. Firefox
// also treats domain=.....my.domain.com like domain=.my.domain.com, but
// neither IE nor Safari do this, and we don't either.
url_canon::CanonHostInfo ignored;
std::string cookie_domain(net::CanonicalizeHost(pc.Domain(), &ignored));
if (cookie_domain.empty())
return false;
if (cookie_domain[0] != '.')
cookie_domain = "." + cookie_domain;
// Ensure |url| and |cookie_domain| have the same domain+registry.
const std::string url_domain_and_registry(
RegistryControlledDomainService::GetDomainAndRegistry(url));
if (url_domain_and_registry.empty())
return false; // IP addresses/intranet hosts can't set domain cookies.
const std::string cookie_domain_and_registry(
RegistryControlledDomainService::GetDomainAndRegistry(cookie_domain));
if (url_domain_and_registry != cookie_domain_and_registry)
return false; // Can't set a cookie on a different domain + registry.
// Ensure |url_host| is |cookie_domain| or one of its subdomains. Given that
// we know the domain+registry are the same from the above checks, this is
// basically a simple string suffix check.
if ((url_host.length() < cookie_domain.length()) ?
(cookie_domain != ("." + url_host)) :
url_host.compare(url_host.length() - cookie_domain.length(),
cookie_domain.length(), cookie_domain))
return false;
*cookie_domain_key = cookie_domain;
return true;
}
static std::string CanonPath(const GURL& url,
const CookieMonster::ParsedCookie& pc) {
// The RFC says the path should be a prefix of the current URL path.
// However, Mozilla allows you to set any path for compatibility with
// broken websites. We unfortunately will mimic this behavior. We try
// to be generous and accept cookies with an invalid path attribute, and
// default the path to something reasonable.
// The path was supplied in the cookie, we'll take it.
if (pc.HasPath() && !pc.Path().empty() && pc.Path()[0] == '/')
return pc.Path();
// The path was not supplied in the cookie or invalid, we will default
// to the current URL path.
// """Defaults to the path of the request URL that generated the
// Set-Cookie response, up to, but not including, the
// right-most /."""
// How would this work for a cookie on /? We will include it then.
const std::string& url_path = url.path();
size_t idx = url_path.find_last_of('/');
// The cookie path was invalid or a single '/'.
if (idx == 0 || idx == std::string::npos)
return std::string("/");
// Return up to the rightmost '/'.
return url_path.substr(0, idx);
}
static Time CanonExpiration(const CookieMonster::ParsedCookie& pc,
const Time& current) {
// First, try the Max-Age attribute.
uint64 max_age = 0;
if (pc.HasMaxAge() &&
#ifdef COMPILER_MSVC
sscanf_s(
#else
sscanf(
#endif
pc.MaxAge().c_str(), " %" PRIu64, &max_age) == 1) {
return current + TimeDelta::FromSeconds(max_age);
}
// Try the Expires attribute.
if (pc.HasExpires())
return CookieMonster::ParseCookieTime(pc.Expires());
// Invalid or no expiration, persistent cookie.
return Time();
}
bool CookieMonster::HasCookieableScheme(const GURL& url) {
// Make sure the request is on a cookie-able url scheme.
for (size_t i = 0; i < cookieable_schemes_.size(); ++i) {
// We matched a scheme.
if (url.SchemeIs(cookieable_schemes_[i].c_str())) {
// We've matched a supported scheme.
return true;
}
}
// The scheme didn't match any in our whitelist.
COOKIE_DLOG(WARNING) << "Unsupported cookie scheme: " << url.scheme();
return false;
}
void CookieMonster::SetCookieableSchemes(
const char* schemes[], size_t num_schemes) {
cookieable_schemes_.clear();
cookieable_schemes_.insert(cookieable_schemes_.end(),
schemes, schemes + num_schemes);
}
bool CookieMonster::SetCookie(const GURL& url,
const std::string& cookie_line) {
CookieOptions options;
return SetCookieWithOptions(url, cookie_line, options);
}
bool CookieMonster::SetCookieWithOptions(const GURL& url,
const std::string& cookie_line,
const CookieOptions& options) {
Time creation_date;
{
AutoLock autolock(lock_);
creation_date = CurrentTime();
last_time_seen_ = creation_date;
}
return SetCookieWithCreationTimeWithOptions(url,
cookie_line,
creation_date,
options);
}
bool CookieMonster::SetCookieWithCreationTime(const GURL& url,
const std::string& cookie_line,
const Time& creation_time) {
CookieOptions options;
return SetCookieWithCreationTimeWithOptions(url,
cookie_line,
creation_time,
options);
}
bool CookieMonster::SetCookieWithCreationTimeWithOptions(
const GURL& url,
const std::string& cookie_line,
const Time& creation_time,
const CookieOptions& options) {
DCHECK(!creation_time.is_null());
if (!HasCookieableScheme(url)) {
return false;
}
AutoLock autolock(lock_);
InitIfNecessary();
COOKIE_DLOG(INFO) << "SetCookie() line: " << cookie_line;
// Parse the cookie.
ParsedCookie pc(cookie_line);
if (!pc.IsValid()) {
COOKIE_DLOG(WARNING) << "Couldn't parse cookie";
return false;
}
if (options.exclude_httponly() && pc.IsHttpOnly()) {
COOKIE_DLOG(INFO) << "SetCookie() not setting httponly cookie";
return false;
}
std::string cookie_domain;
if (!GetCookieDomainKey(url, pc, &cookie_domain)) {
return false;
}
std::string cookie_path = CanonPath(url, pc);
scoped_ptr<CanonicalCookie> cc;
Time cookie_expires = CanonExpiration(pc, creation_time);
cc.reset(new CanonicalCookie(pc.Name(), pc.Value(), cookie_path,
pc.IsSecure(), pc.IsHttpOnly(),
creation_time, creation_time,
!cookie_expires.is_null(), cookie_expires));
if (!cc.get()) {
COOKIE_DLOG(WARNING) << "Failed to allocate CanonicalCookie";
return false;
}
if (DeleteAnyEquivalentCookie(cookie_domain,
*cc,
options.exclude_httponly())) {
COOKIE_DLOG(INFO) << "SetCookie() not clobbering httponly cookie";
return false;
}
COOKIE_DLOG(INFO) << "SetCookie() cc: " << cc->DebugString();
// Realize that we might be setting an expired cookie, and the only point
// was to delete the cookie which we've already done.
if (!cc->IsExpired(creation_time))
InternalInsertCookie(cookie_domain, cc.release(), true);
// We assume that hopefully setting a cookie will be less common than
// querying a cookie. Since setting a cookie can put us over our limits,
// make sure that we garbage collect... We can also make the assumption that
// if a cookie was set, in the common case it will be used soon after,
// and we will purge the expired cookies in GetCookies().
GarbageCollect(creation_time, cookie_domain);
return true;
}
void CookieMonster::SetCookies(const GURL& url,
const std::vector<std::string>& cookies) {
CookieOptions options;
SetCookiesWithOptions(url, cookies, options);
}
void CookieMonster::SetCookiesWithOptions(
const GURL& url,
const std::vector<std::string>& cookies,
const CookieOptions& options) {
for (std::vector<std::string>::const_iterator iter = cookies.begin();
iter != cookies.end(); ++iter)
SetCookieWithOptions(url, *iter, options);
}
void CookieMonster::InternalInsertCookie(const std::string& key,
CanonicalCookie* cc,
bool sync_to_store) {
if (cc->IsPersistent() && store_ && sync_to_store)
store_->AddCookie(key, *cc);
cookies_.insert(CookieMap::value_type(key, cc));
}
void CookieMonster::InternalUpdateCookieAccessTime(CanonicalCookie* cc) {
// Based off the Mozilla code. When a cookie has been accessed recently,
// don't bother updating its access time again. This reduces the number of
// updates we do during pageload, which in turn reduces the chance our storage
// backend will hit its batch thresholds and be forced to update.
const Time current = Time::Now();
if ((current - cc->LastAccessDate()) < last_access_threshold_)
return;
cc->SetLastAccessDate(current);
if (cc->IsPersistent() && store_)
store_->UpdateCookieAccessTime(*cc);
}
void CookieMonster::InternalDeleteCookie(CookieMap::iterator it,
bool sync_to_store) {
CanonicalCookie* cc = it->second;
COOKIE_DLOG(INFO) << "InternalDeleteCookie() cc: " << cc->DebugString();
if (cc->IsPersistent() && store_ && sync_to_store)
store_->DeleteCookie(*cc);
cookies_.erase(it);
delete cc;
}
bool CookieMonster::DeleteAnyEquivalentCookie(const std::string& key,
const CanonicalCookie& ecc,
bool skip_httponly) {
bool found_equivalent_cookie = false;
bool skipped_httponly = false;
for (CookieMapItPair its = cookies_.equal_range(key);
its.first != its.second; ) {
CookieMap::iterator curit = its.first;
CanonicalCookie* cc = curit->second;
++its.first;
if (ecc.IsEquivalent(*cc)) {
// We should never have more than one equivalent cookie, since they should
// overwrite each other.
DCHECK(!found_equivalent_cookie) <<
"Duplicate equivalent cookies found, cookie store is corrupted.";
if (skip_httponly && cc->IsHttpOnly()) {
skipped_httponly = true;
} else {
InternalDeleteCookie(curit, true);
}
found_equivalent_cookie = true;
#ifdef NDEBUG
// Speed optimization: No point looping through the rest of the cookies
// since we're only doing it as a consistency check.
break;
#endif
}
}
return skipped_httponly;
}
int CookieMonster::GarbageCollect(const Time& current,
const std::string& key) {
int num_deleted = 0;
// Collect garbage for this key.
if (cookies_.count(key) > kNumCookiesPerHost) {
COOKIE_DLOG(INFO) << "GarbageCollect() key: " << key;
num_deleted += GarbageCollectRange(current, cookies_.equal_range(key),
kNumCookiesPerHost, kNumCookiesPerHostPurge);
}
// Collect garbage for everything.
if (cookies_.size() > kNumCookiesTotal) {
COOKIE_DLOG(INFO) << "GarbageCollect() everything";
num_deleted += GarbageCollectRange(current,
CookieMapItPair(cookies_.begin(), cookies_.end()), kNumCookiesTotal,
kNumCookiesTotalPurge);
}
return num_deleted;
}
static bool LRUCookieSorter(const CookieMonster::CookieMap::iterator& it1,
const CookieMonster::CookieMap::iterator& it2) {
// Cookies accessed less recently should be deleted first.
if (it1->second->LastAccessDate() != it2->second->LastAccessDate())
return it1->second->LastAccessDate() < it2->second->LastAccessDate();
// In rare cases we might have two cookies with identical last access times.
// To preserve the stability of the sort, in these cases prefer to delete
// older cookies over newer ones. CreationDate() is guaranteed to be unique.
return it1->second->CreationDate() < it2->second->CreationDate();
}
int CookieMonster::GarbageCollectRange(const Time& current,
const CookieMapItPair& itpair,
size_t num_max,
size_t num_purge) {
// First, delete anything that's expired.
std::vector<CookieMap::iterator> cookie_its;
int num_deleted = GarbageCollectExpired(current, itpair, &cookie_its);
// If the range still has too many cookies, delete the least recently used.
if (cookie_its.size() > num_max) {
COOKIE_DLOG(INFO) << "GarbageCollectRange() Deep Garbage Collect.";
// Purge down to (|num_max| - |num_purge|) total cookies.
DCHECK(num_purge <= num_max);
num_purge += cookie_its.size() - num_max;
std::partial_sort(cookie_its.begin(), cookie_its.begin() + num_purge,
cookie_its.end(), LRUCookieSorter);
for (size_t i = 0; i < num_purge; ++i)
InternalDeleteCookie(cookie_its[i], true);
num_deleted += num_purge;
}
return num_deleted;
}
int CookieMonster::GarbageCollectExpired(
const Time& current,
const CookieMapItPair& itpair,
std::vector<CookieMap::iterator>* cookie_its) {
int num_deleted = 0;
for (CookieMap::iterator it = itpair.first, end = itpair.second; it != end;) {
CookieMap::iterator curit = it;
++it;
if (curit->second->IsExpired(current)) {
InternalDeleteCookie(curit, true);
++num_deleted;
} else if (cookie_its) {
cookie_its->push_back(curit);
}
}
return num_deleted;
}
int CookieMonster::DeleteAll(bool sync_to_store) {
AutoLock autolock(lock_);
InitIfNecessary();
int num_deleted = 0;
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) {
CookieMap::iterator curit = it;
++it;
InternalDeleteCookie(curit, sync_to_store);
++num_deleted;
}
return num_deleted;
}
int CookieMonster::DeleteAllCreatedBetween(const Time& delete_begin,
const Time& delete_end,
bool sync_to_store) {
AutoLock autolock(lock_);
InitIfNecessary();
int num_deleted = 0;
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) {
CookieMap::iterator curit = it;
CanonicalCookie* cc = curit->second;
++it;
if (cc->CreationDate() >= delete_begin &&
(delete_end.is_null() || cc->CreationDate() < delete_end)) {
InternalDeleteCookie(curit, sync_to_store);
++num_deleted;
}
}
return num_deleted;
}
int CookieMonster::DeleteAllCreatedAfter(const Time& delete_begin,
bool sync_to_store) {
return DeleteAllCreatedBetween(delete_begin, Time(), sync_to_store);
}
bool CookieMonster::DeleteCookie(const std::string& domain,
const CanonicalCookie& cookie,
bool sync_to_store) {
AutoLock autolock(lock_);
InitIfNecessary();
for (CookieMapItPair its = cookies_.equal_range(domain);
its.first != its.second; ++its.first) {
// The creation date acts as our unique index...
if (its.first->second->CreationDate() == cookie.CreationDate()) {
InternalDeleteCookie(its.first, sync_to_store);
return true;
}
}
return false;
}
// Mozilla sorts on the path length (longest first), and then it
// sorts by creation time (oldest first).
// The RFC says the sort order for the domain attribute is undefined.
static bool CookieSorter(CookieMonster::CanonicalCookie* cc1,
CookieMonster::CanonicalCookie* cc2) {
if (cc1->Path().length() == cc2->Path().length())
return cc1->CreationDate() < cc2->CreationDate();
return cc1->Path().length() > cc2->Path().length();
}
// Currently our cookie datastructure is based on Mozilla's approach. We have a
// hash keyed on the cookie's domain, and for any query we walk down the domain
// components and probe for cookies until we reach the TLD, where we stop.
// For example, a.b.blah.com, we would probe
// - a.b.blah.com
// - .a.b.blah.com (TODO should we check this first or second?)
// - .b.blah.com
// - .blah.com
// There are some alternative datastructures we could try, like a
// search/prefix trie, where we reverse the hostname and query for all
// keys that are a prefix of our hostname. I think the hash probing
// should be fast and simple enough for now.
std::string CookieMonster::GetCookies(const GURL& url) {
CookieOptions options;
return GetCookiesWithOptions(url, options);
}
std::string CookieMonster::GetCookiesWithOptions(const GURL& url,
const CookieOptions& options) {
if (!HasCookieableScheme(url)) {
return std::string();
}
// Get the cookies for this host and its domain(s).
std::vector<CanonicalCookie*> cookies;
FindCookiesForHostAndDomain(url, options, &cookies);
std::sort(cookies.begin(), cookies.end(), CookieSorter);
std::string cookie_line;
for (std::vector<CanonicalCookie*>::const_iterator it = cookies.begin();
it != cookies.end(); ++it) {
if (it != cookies.begin())
cookie_line += "; ";
// In Mozilla if you set a cookie like AAAA, it will have an empty token
// and a value of AAAA. When it sends the cookie back, it will send AAAA,
// so we need to avoid sending =AAAA for a blank token value.
if (!(*it)->Name().empty())
cookie_line += (*it)->Name() + "=";
cookie_line += (*it)->Value();
}
COOKIE_DLOG(INFO) << "GetCookies() result: " << cookie_line;
return cookie_line;
}
void CookieMonster::GetRawCookies(const GURL& url,
std::vector<CanonicalCookie>* raw_cookies) {
raw_cookies->clear();
if (!HasCookieableScheme(url))
return;
CookieOptions options;
options.set_include_httponly();
// Get the cookies for this host and its domain(s).
std::vector<CanonicalCookie*> cookies;
FindCookiesForHostAndDomain(url, options, &cookies);
std::sort(cookies.begin(), cookies.end(), CookieSorter);
for (std::vector<CanonicalCookie*>::const_iterator it = cookies.begin();
it != cookies.end(); ++it)
raw_cookies->push_back(*(*it));
}
void CookieMonster::DeleteCookie(const GURL& url,
const std::string& cookie_name) {
if (!HasCookieableScheme(url))
return;
CookieOptions options;
options.set_include_httponly();
// Get the cookies for this host and its domain(s).
std::vector<CanonicalCookie*> cookies;
FindCookiesForHostAndDomain(url, options, &cookies);
std::set<CanonicalCookie*> matching_cookies;
for (std::vector<CanonicalCookie*>::const_iterator it = cookies.begin();
it != cookies.end(); ++it) {
if ((*it)->Name() != cookie_name)
continue;
if (url.path().find((*it)->Path()))
continue;
matching_cookies.insert(*it);
}
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) {
CookieMap::iterator curit = it;
++it;
if (matching_cookies.find(curit->second) != matching_cookies.end())
InternalDeleteCookie(curit, true);
}
}
CookieMonster::CookieList CookieMonster::GetAllCookies() {
AutoLock autolock(lock_);
InitIfNecessary();
// This function is being called to scrape the cookie list for management UI
// or similar. We shouldn't show expired cookies in this list since it will
// just be confusing to users, and this function is called rarely enough (and
// is already slow enough) that it's OK to take the time to garbage collect
// the expired cookies now.
//
// Note that this does not prune cookies to be below our limits (if we've
// exceeded them) the way that calling GarbageCollect() would.
GarbageCollectExpired(Time::Now(),
CookieMapItPair(cookies_.begin(), cookies_.end()),
NULL);
CookieList cookie_list;
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end(); ++it)
cookie_list.push_back(CookieListPair(it->first, *it->second));
return cookie_list;
}
void CookieMonster::FindCookiesForHostAndDomain(
const GURL& url,
const CookieOptions& options,
std::vector<CanonicalCookie*>* cookies) {
AutoLock autolock(lock_);
InitIfNecessary();
const Time current_time(CurrentTime());
// Query for the full host, For example: 'a.c.blah.com'.
std::string key(url.host());
FindCookiesForKey(key, url, options, current_time, cookies);
// See if we can search for domain cookies, i.e. if the host has a TLD + 1.
const std::string domain(
RegistryControlledDomainService::GetDomainAndRegistry(key));
if (domain.empty())
return;
DCHECK_LE(domain.length(), key.length());
DCHECK_EQ(0, key.compare(key.length() - domain.length(), domain.length(),
domain));
// Walk through the string and query at the dot points (GURL should have
// canonicalized the dots, so this should be safe). Stop once we reach the
// domain + registry; we can't write cookies past this point, and with some
// registrars other domains can, in which case we don't want to read their
// cookies.
for (key = "." + key; key.length() > domain.length(); ) {
FindCookiesForKey(key, url, options, current_time, cookies);
const size_t next_dot = key.find('.', 1); // Skip over leading dot.
key.erase(0, next_dot);
}
}
void CookieMonster::FindCookiesForKey(
const std::string& key,
const GURL& url,
const CookieOptions& options,
const Time& current,
std::vector<CanonicalCookie*>* cookies) {
bool secure = url.SchemeIsSecure();
for (CookieMapItPair its = cookies_.equal_range(key);
its.first != its.second; ) {
CookieMap::iterator curit = its.first;
CanonicalCookie* cc = curit->second;
++its.first;
// If the cookie is expired, delete it.
if (cc->IsExpired(current)) {
InternalDeleteCookie(curit, true);
continue;
}
// Filter out HttpOnly cookies, per options.
if (options.exclude_httponly() && cc->IsHttpOnly())
continue;
// Filter out secure cookies unless we're https.
if (!secure && cc->IsSecure())
continue;
if (!cc->IsOnPath(url.path()))
continue;
// Add this cookie to the set of matching cookies. Since we're reading the
// cookie, update its last access time.
InternalUpdateCookieAccessTime(cc);
cookies->push_back(cc);
}
}
CookieMonster::ParsedCookie::ParsedCookie(const std::string& cookie_line)
: is_valid_(false),
path_index_(0),
domain_index_(0),
expires_index_(0),
maxage_index_(0),
secure_index_(0),
httponly_index_(0) {
if (cookie_line.size() > kMaxCookieSize) {
LOG(INFO) << "Not parsing cookie, too large: " << cookie_line.size();
return;
}
ParseTokenValuePairs(cookie_line);
if (pairs_.size() > 0) {
is_valid_ = true;
SetupAttributes();
}
}
// Returns true if |c| occurs in |chars|
// TODO maybe make this take an iterator, could check for end also?
static inline bool CharIsA(const char c, const char* chars) {
return strchr(chars, c) != NULL;
}
// Seek the iterator to the first occurrence of a character in |chars|.
// Returns true if it hit the end, false otherwise.
static inline bool SeekTo(std::string::const_iterator* it,
const std::string::const_iterator& end,
const char* chars) {
for (; *it != end && !CharIsA(**it, chars); ++(*it));
return *it == end;
}
// Seek the iterator to the first occurrence of a character not in |chars|.
// Returns true if it hit the end, false otherwise.
static inline bool SeekPast(std::string::const_iterator* it,
const std::string::const_iterator& end,
const char* chars) {
for (; *it != end && CharIsA(**it, chars); ++(*it));
return *it == end;
}
static inline bool SeekBackPast(std::string::const_iterator* it,
const std::string::const_iterator& end,
const char* chars) {
for (; *it != end && CharIsA(**it, chars); --(*it));
return *it == end;
}
// Parse all token/value pairs and populate pairs_.
void CookieMonster::ParsedCookie::ParseTokenValuePairs(
const std::string& cookie_line) {
static const char kTerminator[] = "\n\r\0";
static const int kTerminatorLen = sizeof(kTerminator) - 1;
static const char kWhitespace[] = " \t";
static const char kValueSeparator[] = ";";
static const char kTokenSeparator[] = ";=";
pairs_.clear();
// Ok, here we go. We should be expecting to be starting somewhere
// before the cookie line, not including any header name...
std::string::const_iterator start = cookie_line.begin();
std::string::const_iterator end = cookie_line.end();
std::string::const_iterator it = start;
// TODO Make sure we're stripping \r\n in the network code. Then we
// can log any unexpected terminators.
size_t term_pos =
cookie_line.find_first_of(std::string(kTerminator, kTerminatorLen));
if (term_pos != std::string::npos) {
// We found a character we should treat as an end of string.
end = start + term_pos;
}
for (int pair_num = 0; pair_num < kMaxPairs && it != end; ++pair_num) {
TokenValuePair pair;
std::string::const_iterator token_start, token_real_end, token_end;
// Seek past any whitespace before the "token" (the name).
// token_start should point at the first character in the token
if (SeekPast(&it, end, kWhitespace))
break; // No token, whitespace or empty.
token_start = it;
// Seek over the token, to the token separator.
// token_real_end should point at the token separator, i.e. '='.
// If it == end after the seek, we probably have a token-value.
SeekTo(&it, end, kTokenSeparator);
token_real_end = it;
// Ignore any whitespace between the token and the token separator.
// token_end should point after the last interesting token character,
// pointing at either whitespace, or at '=' (and equal to token_real_end).
if (it != token_start) { // We could have an empty token name.
--it; // Go back before the token separator.
// Skip over any whitespace to the first non-whitespace character.
SeekBackPast(&it, token_start, kWhitespace);
// Point after it.
++it;
}
token_end = it;
// Seek us back to the end of the token.
it = token_real_end;
if (it == end || *it != '=') {
// We have a token-value, we didn't have any token name.
if (pair_num == 0) {
// For the first time around, we want to treat single values
// as a value with an empty name. (Mozilla bug 169091).
// IE seems to also have this behavior, ex "AAA", and "AAA=10" will
// set 2 different cookies, and setting "BBB" will then replace "AAA".
pair.first = "";
// Rewind to the beginning of what we thought was the token name,
// and let it get parsed as a value.
it = token_start;
} else {
// Any not-first attribute we want to treat a value as a
// name with an empty value... This is so something like
// "secure;" will get parsed as a Token name, and not a value.
pair.first = std::string(token_start, token_end);
}
} else {
// We have a TOKEN=VALUE.
pair.first = std::string(token_start, token_end);
++it; // Skip past the '='.
}
// OK, now try to parse a value.
std::string::const_iterator value_start, value_end;
// Seek past any whitespace that might in-between the token and value.
SeekPast(&it, end, kWhitespace);
// value_start should point at the first character of the value.
value_start = it;
// It is unclear exactly how quoted string values should be handled.
// Major browsers do different things, for example, Firefox supports
// semicolons embedded in a quoted value, while IE does not. Looking at
// the specs, RFC 2109 and 2965 allow for a quoted-string as the value.
// However, these specs were apparently written after browsers had
// implemented cookies, and they seem very distant from the reality of
// what is actually implemented and used on the web. The original spec
// from Netscape is possibly what is closest to the cookies used today.
// This spec didn't have explicit support for double quoted strings, and
// states that ; is not allowed as part of a value. We had originally
// implement the Firefox behavior (A="B;C"; -> A="B;C";). However, since
// there is no standard that makes sense, we decided to follow the behavior
// of IE and Safari, which is closer to the original Netscape proposal.
// This means that A="B;C" -> A="B;. This also makes the code much simpler
// and reduces the possibility for invalid cookies, where other browsers
// like Opera currently reject those invalid cookies (ex A="B" "C";).
// Just look for ';' to terminate ('=' allowed).
// We can hit the end, maybe they didn't terminate.
SeekTo(&it, end, kValueSeparator);
// Will be pointed at the ; seperator or the end.
value_end = it;
// Ignore any unwanted whitespace after the value.
if (value_end != value_start) { // Could have an empty value
--value_end;
SeekBackPast(&value_end, value_start, kWhitespace);
++value_end;
}
// OK, we're finished with a Token/Value.
pair.second = std::string(value_start, value_end);
// From RFC2109: "Attributes (names) (attr) are case-insensitive."
if (pair_num != 0)
StringToLowerASCII(&pair.first);
pairs_.push_back(pair);
// We've processed a token/value pair, we're either at the end of
// the string or a ValueSeparator like ';', which we want to skip.
if (it != end)
++it;
}
}
void CookieMonster::ParsedCookie::SetupAttributes() {
static const char kPathTokenName[] = "path";
static const char kDomainTokenName[] = "domain";
static const char kExpiresTokenName[] = "expires";
static const char kMaxAgeTokenName[] = "max-age";
static const char kSecureTokenName[] = "secure";
static const char kHttpOnlyTokenName[] = "httponly";
// We skip over the first token/value, the user supplied one.
for (size_t i = 1; i < pairs_.size(); ++i) {
if (pairs_[i].first == kPathTokenName)
path_index_ = i;
else if (pairs_[i].first == kDomainTokenName)
domain_index_ = i;
else if (pairs_[i].first == kExpiresTokenName)
expires_index_ = i;
else if (pairs_[i].first == kMaxAgeTokenName)
maxage_index_ = i;
else if (pairs_[i].first == kSecureTokenName)
secure_index_ = i;
else if (pairs_[i].first == kHttpOnlyTokenName)
httponly_index_ = i;
else { /* some attribute we don't know or don't care about. */ }
}
}
// Create a cookie-line for the cookie. For debugging only!
// If we want to use this for something more than debugging, we
// should rewrite it better...
std::string CookieMonster::ParsedCookie::DebugString() const {
std::string out;
for (PairList::const_iterator it = pairs_.begin();
it != pairs_.end(); ++it) {
out.append(it->first);
out.append("=");
out.append(it->second);
out.append("; ");
}
return out;
}
bool CookieMonster::CanonicalCookie::IsOnPath(
const std::string& url_path) const {
// A zero length would be unsafe for our trailing '/' checks, and
// would also make no sense for our prefix match. The code that
// creates a CanonicalCookie should make sure the path is never zero length,
// but we double check anyway.
if (path_.empty())
return false;
// The Mozilla code broke it into 3 cases, if it's strings lengths
// are less than, equal, or greater. I think this is simpler:
// Make sure the cookie path is a prefix of the url path. If the
// url path is shorter than the cookie path, then the cookie path
// can't be a prefix.
if (url_path.find(path_) != 0)
return false;
// Now we know that url_path is >= cookie_path, and that cookie_path
// is a prefix of url_path. If they are the are the same length then
// they are identical, otherwise we need an additional check:
// In order to avoid in correctly matching a cookie path of /blah
// with a request path of '/blahblah/', we need to make sure that either
// the cookie path ends in a trailing '/', or that we prefix up to a '/'
// in the url path. Since we know that the url path length is greater
// than the cookie path length, it's safe to index one byte past.
if (path_.length() != url_path.length() &&
path_[path_.length() - 1] != '/' &&
url_path[path_.length()] != '/')
return false;
return true;
}
std::string CookieMonster::CanonicalCookie::DebugString() const {
return StringPrintf("name: %s value: %s path: %s creation: %" PRId64,
name_.c_str(), value_.c_str(), path_.c_str(),
static_cast<int64>(creation_date_.ToTimeT()));
}
} // namespace